Welcome

Welcome to the third Public Information Centre (PIC) meeting for the Ross/ Collier/ Bayfield Streets and Bell Farm Road Class EA studies. This follows the second PIC on November 23, 2016 and the initial public consultation completed during the Multi-Modal Active Transportation Master Plan (MMATMP), which included the first PIC.

Please sign in on the attendance sheet and obtain a comment sheet at the registration desk.

Should you have any questions regarding the presentation materials, background reports or any other aspect of the study, please speak to the City or Consultant study team members in attendance.

We encourage your input/feedback on the material being presented on the display boards. Please deposit completed comment sheets in the comment box or mail / fax / e-mail to the address at the bottom of the form by May 17, 2017.

There is an opportunity at any time during the EA process for interested persons to provide written input.

Any comments received will be collected under the Environmental Assessment Act and Freedom of Information and Privacy Act and, with the exception of personal information, will become part of the public record.
Study Objectives and Background:

Objective of this PIC:
- Engage public, stakeholders and agencies to seek input on the Technically Preferred Plan

Overall Study Objectives:
- Develop alternative design solutions for the preferred solutions identified in the Multi-Modal Active Transportation Master Plan (completed Phases 1 & 2 of the Class EA process)
- Identify the location, extent and sensitivity of affected environments
- Assess the design alternatives given the potential environmental impacts
- Seek public input and comments
- Identify a preferred design solution
- Establish measures to mitigate adverse impacts as required
- Satisfy the requirements for Phases 3 & 4 of the Municipal Class EA Process

Completed Studies/Activities
- Tree Inventory / Survey
- Cultural Heritage Assessment
- Natural Heritage Assessment
- Stage 1 Archaeological Assessment
- Traffic Analysis
- Topographic and Utility Surveys
- Drainage and Stormwater Management
Both projects are being undertaken as Schedule ‘C’ Municipal Class EA’s in accordance with the Municipal Class Environmental Assessment process. A copy of this document is available at the Resource Table. The data and reports produced for the study will be documented in Environmental Study Reports (ESR) for each project.
As part of the City’s planned population growth from 145,000 to 210,000 and 101,000 jobs by 2031, the City’s MMATMP was developed to serve as the City’s roadmap in developing a well-balanced transportation network to serve its future needs and development through 2031.

The MMATMP was developed to provide a transportation system that:

• is safe, efficient and accessible with choices in mobility
• fosters the use and development of a sustainable transportation network
• provides a public transit system that can offer a real alternative to the private automobile
• provides a network of on-road and off-road pedestrian and cycling facilities that allow the use of active transportation modes as an alternative to the automobile

As 40% of the noted growth is designated to occur within existing developed areas, road widenings are required to implement active transportation and provide adequate traffic capacity. Specific recommendations for each project will be detailed in subsequent panels.
Active Transportation (AT):
AT is any form of human-powered transportation. Walking, cycling, wheeling, in-line skating and skateboarding are all forms of active transportation. AT can also involve combining modes such as walking/cycling with public transit.

AT infrastructure being considered (in addition to sidewalks):

<table>
<thead>
<tr>
<th>AT Infrastructure</th>
<th>Notes</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle Lanes and Buffered Bicycle Lanes</td>
<td>A bicycle lane is a portion of a roadway which has been designated by pavement markings and signage for the exclusive use of cyclists (OTM, Book 18).</td>
<td></td>
</tr>
<tr>
<td>Shared Lanes / Sharrows</td>
<td>Shared Lanes: Markings are placed on the travel lane and generally indicate where cyclists should travel (OTM, Book 18). Sharrows: “Sharrow” is the term used for shared roadway lane markings or shared lane arrows. A sharrow consists of two white chevron markings and a bicycle stencil. Sharrows are intended to guide cyclists as to where they should ride within a travel lane shared by both motorists and cyclists. They are an optional treatment and are context specific (OTM, Book 18).</td>
<td></td>
</tr>
</tbody>
</table>
Project Purpose:
This project will determine the preferred alternative design solution based on the MMATMP recommendations, identify property requirements, enhance pedestrian safety and examine options to create a gateway feature into the downtown.

Problem Statement:
As 40% of the City’s growth is designated to occur as infill and intensification, it is critical that the City’s existing transportation links are optimized to accommodate this growth. The intersection is not operationally efficient and can contribute to queuing on Collier Street and Bayfield Street. In addition, there are no pedestrian crossing facilities between Sophia Street and Dunlop Street.

Opportunity Statement:
There is an opportunity to develop a preferred design solution that improves traffic operations, pedestrian safety and the streetscape/aesthetics of this intersection. This solution will support future land use and redevelopment in the study area.

Municipal Infrastructure Needs:
To ensure underground infrastructure lifecycle requirements align with the reconstruction of the intersection and adjacent streets, the following improvements are proposed.

<table>
<thead>
<tr>
<th>Street Section</th>
<th>Road Structure Condition</th>
<th>Water</th>
<th>Sanitary</th>
<th>Storm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ross Street – Toronto St to Bayfield St</td>
<td>Good</td>
<td>Replace 30m of 150mm Ductile Iron (DI) (installed 1934)</td>
<td>250mm PVC, remaining service life: 60 years*</td>
<td>300-375mm, remaining service life: 102 years*</td>
</tr>
<tr>
<td>Collier Street – Bayfield St to Clapperton St</td>
<td>Fair</td>
<td>Replace 60m of 100mm Cast Iron (CI) (installed 1925)</td>
<td>No sanitary sewer on this section of Collier Street</td>
<td>300mm, remaining service life: 90 years*</td>
</tr>
<tr>
<td>Bayfield Street – Ross St to Clapperton St</td>
<td>Poor</td>
<td>Replace 65m of 250mm CI (installed 1925)</td>
<td>600mm, remaining service life: 70 years*</td>
<td>1800mm, remaining service life: 70 years*</td>
</tr>
</tbody>
</table>

* Capacity to be confirmed; improvements will be identified where required. Minor in-situ rehabilitation may be recommended to extend service life.
1- Vitrified clay sewer, rehabilitation may be required via in-situ techniques (relining), to be confirmed during implementation.
Ross / Collier / Bayfield Streets Class EA
Study Area and Existing Conditions

Study Area

Existing Conditions

Collier Street at Clapperton Street
Existing signalized intersection.

Collier Street east of Bayfield Street
Narrow boulevard and angled parking on Collier Street.

Bayfield Street and Collier Street
Vacant property on NE intersection quadrant.

Bayfield Street at Ross Street
Urbanized 2-lane cross-section with sidewalks.

Ross Street west of Bayfield Street
Pedestrian crossing mid-block; no pedestrian crossings between Sophia Street and Dunlop Street (approx. 330m).

Ross Street west of Maple Avenue

Ross Street and Bayfield Street

Bayfield Street looking south towards Collier Street.

Bayfield Street at Ross Street
Bayfield Street logged south towards Collier Street.

Ross Street west of Bayfield Street
Urbanized 2-lane cross-section with sidewalks.

Ross Street west of Maple Avenue
Buildings on south side of Ross Street located at property line.

Ross Street west of Maple Avenue
Residential and commercial land-use.

Bayfield Street at Worsley Street (source: Google Maps)

Bayfield Street at Worsley Street (source: Google Maps)

Bayfield Street north of Ross Street
5 Lane urbanized cross-section with sidewalks.
The evaluation of the alternatives was completed using a qualitative assessment to compare the net effects and performance of the alternatives. This method considers the advantages and disadvantages of each of the alternatives using evaluation criteria as descriptors to measure the relative differences of the options being considered.

The evaluation of the alternatives included an assessment of the: Physical Environment; Natural Environment; Social Environment; Cultural Environment; and, Economic Environment. The evaluation of alternatives can be found on the resource table in the Analysis and Evaluation Report, included as an appendix in the Draft ESR.
Ross / Collier / Bayfield Streets Class EA
Technically Preferred Plan - Interim
Ross / Collier / Bayfield Streets Class EA
Technically Preferred Plan

The Technically Preferred Plan (as illustrated on the preceding display boards) combines:

- **Ross Street**: Alternative 3 (maintain existing 20m ROW). Maintain future property protection for the 27m ROW as identified in the Official Plan (see Alternative 1).
- **Collier Street**: Alternative 2 (maintain existing 30m ROW).
- **Bayfield Street**: Alternative 1 (maintain existing 20m ROW).
- **Ross/Collier/Bayfield Intersection**: Alternative J.

Benefits

- Reduced short-term property impacts, utility relocations, and cost on Ross Street.
- Parking provided for businesses along Collier Street while maintaining bicycle lanes for cyclists travelling along the corridor.
- Realignment of Ross-Collier with the use of a roundabout.
- Roundabout will eliminate queues, reduce potential for collisions, allow pedestrians and cyclists to complete their crossings and turning movements, and allow for the continual flow of traffic. Roundabouts are considered to be the safest intersection configuration and have the most efficient movement of traffic through an intersection. Improved accessibility across Bayfield Street.
- Minimizes property acquisition.
- Creates a linear connection of the arterial roads (Ross-Collier) and allows an eastbound left turn movement from Ross Street to Bayfield Street.
- The roundabout design will increase exposure to local businesses, create a gateway feature in the downtown and is expected to support urban renewal in the downtown core. This can increase the tax base to the City and support the investment in operational and safety improvements.

Impacts

- The minor impacts of the Alternative J design will be relocation and integration of driveway access to the new Georgian International site development.

The Analysis and Evaluation Report can be found on the Resource Table.
Interim Roundabout Implementation:

- The Technically Preferred Plan includes a two-staged approach for implementation of the roundabout.

- The interim roundabout design represents the 1st stage and can be implemented in the near-term horizon as it does not include significant impacts to adjacent businesses and limits property impacts.

- Funding for the roundabout and associated transportation improvements are not in the 2017-2026 Capital Plan. This project will be reviewed as part of the annual capital planning process.

Interim Roundabout:

- The interim roundabout is designed to minimize property impacts, improve traffic flow, provide pedestrian crossing facilities, create a gateway into the downtown and helps to calm traffic entering the downtown.

- The reduced diameter roundabout can accommodate buses and fire trucks on all movements; transport trucks are limited to North-East movements only. Advisory signs are recommended to convey this restriction.

- Westbound Collier Street traffic will need to traverse the roundabout to travel southbound on Bayfield Street.

<table>
<thead>
<tr>
<th>Design Vehicle</th>
<th>Approach Speed</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial Fire Truck</td>
<td>20 km/h</td>
<td>None</td>
</tr>
<tr>
<td>Transit Bus</td>
<td>20 km/h</td>
<td>None</td>
</tr>
<tr>
<td>Transport Truck WB-15</td>
<td>15 km/h</td>
<td>None</td>
</tr>
<tr>
<td>Transport Truck WB-17</td>
<td>15 km/h</td>
<td>N to W, W to N, W to E, E to W</td>
</tr>
<tr>
<td>Transport Truck WB-19</td>
<td>15 km/h</td>
<td>N to W, W to N, W to E, E to W</td>
</tr>
<tr>
<td>Transport Truck WB-20.5</td>
<td>15 km/h</td>
<td>N to W, W to N, W to E, E to W</td>
</tr>
</tbody>
</table>
Ultimate Roundabout Implementation:

- The ultimate roundabout design represents the 2nd stage of the Technically Preferred Plan. It is based on a 40 m inscribed circle diameter and is designed to accommodate turning movements for most design vehicles and provide a more prominent gateway feature.

- The ultimate roundabout design represents the long-term vision for the intersection and will guide development in the immediate area. The Notice of Completion will be filed on the ultimate roundabout design as it will provide long-term property protection.

- Implementation of the ultimate roundabout is intended to occur when renewal is required for the interim roundabout or in the event that the interim roundabout is deferred and the required property to accommodate the ultimate roundabout design has been conveyed to the City; thus allowing the City to directly proceed to implementation of the ultimate roundabout design.

<table>
<thead>
<tr>
<th>Design Vehicle</th>
<th>Approach Speed</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial Fire Truck</td>
<td>20 km/h</td>
<td>None</td>
</tr>
<tr>
<td>Transit Bus</td>
<td>20 km/h</td>
<td>None</td>
</tr>
<tr>
<td>Transport Truck WB-15</td>
<td>15 km/h</td>
<td>None</td>
</tr>
<tr>
<td>Transport Truck WB-17</td>
<td>15 km/h</td>
<td>N to W prohibited</td>
</tr>
<tr>
<td>Transport Truck WB-19</td>
<td>15 km/h</td>
<td>N to W prohibited</td>
</tr>
<tr>
<td>Transport Truck WB-20.5</td>
<td>15 km/h</td>
<td>N to W prohibited</td>
</tr>
</tbody>
</table>
Project Purpose:
This project will determine the preferred design solution based on the MMATMP recommendations that can be integrated as part of future renewal works in this corridor.

As part of the City’s commitment to the health of Lake Simcoe and its watercourses this project will examine options to implement (‘retrofit’) stormwater management (SWM) in this corridor. Implementing SWM will help improve the environment by treating stormwater to remove pollutants and by controlling flows that can cause watercourse degradation through erosion. Implementing SWM is recommended in the City’s Comprehensive Stormwater Management Master Plan.

Problem Statement:
Bell Farm Road is approaching the end of its service life and requires reconstruction. The existing section of the road with a rural cross section does not have sidewalks or stormwater management. To accommodate growth, the MMATMP recommends this road be widened to increase traffic capacity and provide active transportation facilities.

Opportunity Statement:
To address recommendations of the MMATMP and complete necessary renewal activities, there is an opportunity to replace and upgrade municipal infrastructure in a cost effective and environmentally sustainable manner.

Municipal Infrastructure Needs:
To ensure underground infrastructure lifecycle requirements align with a reconstructed road, the following improvements are proposed.

<table>
<thead>
<tr>
<th>Street Section</th>
<th>Road Structure Condition</th>
<th>Water</th>
<th>Sanitary</th>
<th>Storm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bell Farm Road – West Section</td>
<td>Poor</td>
<td>Replace 200mm Ductile Iron (DI) (installed 1972)</td>
<td>250mm Asbestos Cement (AC), remaining service life: 75 years*</td>
<td>New SWM system to be installed</td>
</tr>
<tr>
<td>Bell Farm Road – East Section</td>
<td>Fair</td>
<td>Replace 200mm DI (installed 1972)</td>
<td>250mm AC, remaining service life: 75 years*</td>
<td>Partial SWM exists.* New SWM to be installed where required.</td>
</tr>
</tbody>
</table>

* Capacity to be confirmed; improvements will be identified where required. Minor in-situ rehabilitation may be recommended to extend service life.

Stormwater Management (SWM):
New SWM systems will be designed to provide quantity and quality control, and opportunities will be assessed to implement low impact development practices.
Study Area

Bell Farm Road Class EA – Study Area and Existing Conditions

Existing Conditions

- Pedestrians utilizing shoulders, deep ditch
- Bell Farm Road, east of St. Vincent Street
- Sediment accumulation in ditch. Bell Farm Road at St. Vincent Street

Bell Farm Road – West & East Sections

<table>
<thead>
<tr>
<th>Cross-Section</th>
<th>ROW</th>
<th>No. of Lanes</th>
<th>Sidewalks</th>
<th>Bicycle Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Section</td>
<td>Existing Conditions</td>
<td>26m</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>East Section</td>
<td>Existing Conditions</td>
<td>26m</td>
<td>4</td>
<td>Both Sides (not continuous)</td>
</tr>
</tbody>
</table>

- 4-Lane urbanized cross-section with sidewalks.
- Bell Farm Road, west of Duckworth Street
- Asphalt exhibiting alligator cracking. Bell Farm Road, west of Duckworth Street (source: Google Maps)
- Coniferous trees abutting residential properties. Bell Farm Road, east of Alliance Boulevard (source: Google Maps)

- Georgian College Student Residence Entrance
- Bell Farm Road, west of Duckworth Street
- Bell Farm Road, east of Duckworth Street (source: Google Maps)
- Barrie Police Station

Barrie Fire Station No. 2
The evaluation of the alternatives was completed using a qualitative assessment to compare the net effects and performance of the alternatives. This method considers the advantages and disadvantages of each of the alternatives using evaluation criteria as descriptors to measure the relative differences of the options being considered. The evaluation of the alternatives included an assessment of the: Physical Environment; Natural Environment; Social Environment; Cultural Environment; and, Economic Environment. The evaluation of alternatives can be found on the resource table in the Analysis and Evaluation Report, included as an appendix in the Draft ESR.

The cost of construction for the Bell Farm Road Improvements Technically Preferred Plan is approximately $5.5 million.
Bell Farm Road Class EA – Technically Preferred Alternative

<table>
<thead>
<tr>
<th>Corridor Improvements</th>
<th>Section</th>
<th>Cross Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technically Preferred Plan</td>
<td>West</td>
<td></td>
</tr>
<tr>
<td></td>
<td>East</td>
<td></td>
</tr>
<tr>
<td>Long-term Property Protection as per the Official Plan</td>
<td>West</td>
<td></td>
</tr>
<tr>
<td></td>
<td>East</td>
<td></td>
</tr>
</tbody>
</table>
Next Steps:
• The project team will review public, stakeholder and agency comments from this PIC
• Finalize the Recommended Plan
• Prepare and finalize the Environmental Study Report
• Submit a staff report to General Committee containing the recommended plan to seek Council endorsement (a letter will be sent advising of the submission staff report submission date to those who wish to be kept informed)
• File a Notice of Study Completion and complete 30-day public review period

How can you remain involved in this Study?
• On the comment sheet, please indicate if you would like to be kept informed of the project process; a subsequent notice will be provided advising of staff report submission to General Committee

Help shape decisions made in this Study:
• You can provide your comments by completing a comment sheet and dropping it in the comment box, or you are welcome to take it home and return it at a later date. Please submit your comments by May 17, 2017.
• If you would like more information or if you have any questions, concerns or comments, please contact:

Mr. Brett Gratrix, P.Eng.
City of Barrie, Engineering Department
70 Collier Street, 6th Floor, Barrie, ON L4M 4T5
Tel: (705) 739-4220 Ext. 5117, Fax: (705) 739-4247
Email: brett.gratrix@barrie.ca

Thank You For Participating

Comments and personal information regarding this project are collected under the authority of the Environmental Assessment Act to assist in decision making and to determine further public consultation needs relating to the project. Comments and opinions which do not constitute personal information, as defined by the Freedom of Information and Protection of Privacy Act, will be shared among the Ministry of the Environment and Climate Change and others as appropriate, and may be included in the study documentation which will be made available for public review. Personal information will remain confidential unless prior consent to disclose is obtained.
<table>
<thead>
<tr>
<th>Resource Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Modal Active Transportation Master Plan</td>
</tr>
<tr>
<td>Bell Farm Road Study Design</td>
</tr>
<tr>
<td>Ross, Collier and Bayfield Streets Study Design</td>
</tr>
<tr>
<td>Bell Farm Road Land Use Plan Report</td>
</tr>
<tr>
<td>Ross, Collier and Bayfield Streets Land Use Plan Report</td>
</tr>
<tr>
<td>Bell Farm Road Arborist Report</td>
</tr>
<tr>
<td>Cultural Heritage Report</td>
</tr>
<tr>
<td>Stage 1 Archaeology Report</td>
</tr>
<tr>
<td>Bell Farm Road Noise Assessment Report</td>
</tr>
<tr>
<td>Ross, Collier and Bayfield Streets Noise Assessment Report</td>
</tr>
<tr>
<td>Bell Farm Road Analysis and Evaluation Report</td>
</tr>
<tr>
<td>Ross, Collier and Bayfield Streets Analysis and Evaluation Report</td>
</tr>
<tr>
<td>Draft Environmental Study Report</td>
</tr>
</tbody>
</table>