

**Hydrogeological Brief - Block 192,
953 Maplevue Drive, Barrie**

**Maplevue South (Innisfil) Ltd.
Barrie, Ontario**

BURNSIDE

**Hydrogeological Brief - Block 192,
953 Mapleview Drive, Barrie**

**Mapleview South (Innisfil) Ltd.
Barrie, Ontario**

**R.J. Burnside & Associates Limited
292 Speedvale Avenue West Unit 20
Guelph ON N1H 1C4 CANADA**

**June 2024
300042309.0003**

Distribution List

No. of Hard Copies	PDF	Email	Organization Name
0	Yes	Yes	Mapleview South (Innisfil) Ltd.
0	Yes	Yes	Duncan Richardson, The Jones Consulting Group Ltd.

Record of Revisions

Revision	Date	Description
-	June 21, 2024	Initial Submission to Mapleview South (Innisfil) Ltd. and The Jones Consulting Group Ltd.

R.J. Burnside & Associates Limited**Report Prepared By:**

Stephanie Charity, P.Geo.
Hydrogeologist
SC:cl

Report Reviewed By:

Dwight Smikle, P.Geo.
Vice President, Hydrogeology
DS:cl

Table of Contents

1.0	Introduction	1
2.0	Physical Setting	1
3.0	Hydrogeological Setting	1
3.1	Regional Hydrostratigraphy	2
3.2	Hydraulic Conductivity	3
3.3	Seasonal Groundwater High	4
3.4	Significant Groundwater Recharge Areas	4
3.5	Groundwater Quality	4
4.0	Groundwater Balance	5
4.1	Water Balance Components	5
4.2	Approach and Methodology	7
4.3	Water Balance Component Values	7
4.4	Pre-Development Water Balance (Existing Conditions)	8
4.6	Mitigation Measures for Infiltration	9
5.0	Development Considerations	9
5.1	Construction Below the Water Table	9
5.2	Excavations into Municipal Aquifer	9
5.3	Impacts to Private Wells	10
5.4	Well Decommissioning	10
6.0	References	11

Tables

Table 1: Estimated Hydraulic Conductivity from In Situ Well Tests	3
Table 2: Seasonal Groundwater Levels	4
Table 3: Water Balance Component Values	8

Figures

Figure 1	Site Location
Figure 2	Borehole, Well and Cross-Section Locations
Figure 3	Surficial Geology
Figure 4	Interpreted Geological Cross-Section A-A'
Figure 5	Interpreted Geological Cross-Section B-B'

Appendices

Appendix A	Site Plan
Appendix B	Borehole Logs
Appendix C	Hydraulic Conductivity Data
Appendix D	Groundwater Level Data
Appendix E	Water Quality
Appendix F	Water Balance

Disclaimer

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of R.J. Burnside & Associates Limited.

In the preparation of the various instruments of service contained herein, R.J. Burnside & Associates Limited was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than R.J. Burnside & Associates Limited. For its part R.J. Burnside & Associates Limited has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. R.J. Burnside & Associates Limited, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third party materials and documents.

R.J. Burnside & Associates Limited makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.

1.0 Introduction

R.J. Burnside & Associates Limited (Burnside) has been requested to prepare the following hydrogeological brief to support submission of an application for Site Plan Approval for Block 192 at 953 Mapleview Drive, Barrie Ontario (herein referred to as the subject lands). The legal address is Block 192 – 953 Mapleview Drive, City of Barrie, Ontario.

The subject lands are located within the Mapleview South lands that were previously studied by Burnside and for which a report entitled “Hydrogeological Assessment, Mapleview South (Innisfil) Ltd. Barrie, Ontario” was completed in May 2023. The current hydrogeology brief draws from the work previously completed as the hydrogeological conditions are consistent with the previous work.

The subject lands are approximately 0.74 ha located on Mapleview Drive East in the northeast portion of the Mapleview South lands (Figure 1). The subject lands are currently used for agriculture and rural residential. Adjacent lands uses are agriculture and residential (Figure 2).

The Site Plan includes a 5-Storey residential building with surface and underground parking (Appendix A).

2.0 Physical Setting

The subject lands are located within the Sandy Cove Creek subwatershed of the larger Lake Simcoe watershed. The topography of the subject lands slopes from the north and the south towards the tributary of Sandy Cove Creek (Figure 3). Elevations on the subject lands range from 254 masl to 259 masl.

A review of the quaternary geology mapping for the area (OGS, 2003) indicates that the overburden sediments of the subject lands consist of ice contact stratified drift and as silty to sandy glacial till (Figure 3). The bedrock underlying the subject lands is mapped as the Verulum Formation of the Simcoe Group, which consists of limestone and shale (OGS, 2007).

3.0 Hydrogeological Setting

The local soils underlying the subject lands were investigated as a part of a previous geotechnical study completed by Cambium in 2018 which included boreholes in the vicinity of the subject lands. The locations of boreholes drilled in the area of the subject lands are shown on Figure 2 and boreholes logs are provided in Appendix B.

To illustrate the shallow stratigraphy of the subject lands, schematic geologic cross-sections have been prepared (Figures 4 and 5) using borehole logs and MECP well records. The locations of the cross-sections are illustrated on Figure 2 along with the locations of water wells and boreholes used in the construction of the cross-sections.

Surficial geological mapping suggests that a change from sandy ice contact drift and silty clay till occurs on the subject lands (Figure 3). Boreholes north of the subject lands (BH102-18 and MS-103) indicate that the local soils consist of silty sand underlain by sandy silt till. At MS-106, silty sandy clay deposits are encountered at 1.6 m below grade.

Cross-sections A-A' and B-B' across the subject lands (Figures 4 and 5) illustrate the presence of coarse-textured sand deposits underlying the subject lands with thickness of 8 to 10 m. A layer of silty sand clay deposits is mapped south of the subject lands at surface overlying sand.

Shallow groundwater flow direction on the subject lands is to the south, southeast (Burnside, 2023).

3.1 Regional Hydrostratigraphy

The overburden deposits of the subject lands influence groundwater occurrence and flow. The overburden has been interpreted by regional studies such as the Tier 3 Water Balance (AquaResource, 2011) and Source Water Protection Assessment Report (LSRCA, 2012) to consist of alternating sequences of coarser-grained permeable layers (aquifers) and finer-grained less permeable areas (aquitards) of varying thicknesses. The basic hydrostratigraphic sequence that was modelled in the regional studies (AquaResource, 2011) consists of four main aquifer areas (A1-A4) and four main aquitards (C1 to C4) with a confining layer (UC) over the uppermost aquifer (A1).

A description of the interpreted regional hydrostratigraphic framework is provided below (LSRCA, 2012):

- Surficial Geology Layer – This layer represents coarse grained sediments in stream beds and at surface surficial geology areas that overly the UC. The thickness ranges from 0.1 m to 3 m.
- UC – Upper Confining Layer – Represents smaller areas of less permeable surficial material. The upper confining layer has been mapped as coarse-grained lacustrine deposits which are part of a regionally extensive sand plain (LSRCA, 2012). Regional studies such as the AquaResource (2011) report indicate that the confining layer (UC) is patchy in the area of the study area.

- A1 – Represents the uppermost aquifer. Frequently exists as a surficial unconfined aquifer and is stratigraphically equivalent to the Oak Ridges Moraine. It is generally associated with coarse grained glacial and interglacial sediments mapped as ice contact stratified drift. The majority of the local domestic wells are completed within this area. The upper aquifer A1 is reported to be present throughout the larger Barrie area, and has been interpreted to occur extensively in the study area.
- C1 – Upper aquitard. Described as varved clay and silt (LRSCA, 2012).
- A2 – Intermediate aquifer which is stratigraphically equivalent to areas within the Northern Till. The aquifer is generally described as being composed of sand with some clast rich portions (LRSCA, 2012). This area is used for the Innisfil Heights water supply.
- C2 – Intermediate aquitard.
- A3 – This area constitutes the main Barrie municipal aquifer and is the source of the Stroud water supply; it is stratigraphically equivalent to the Thorncliffe deposits in the Upland regions.
- C3 – Lower aquitard.
- A4 – Lower aquifer, thin and sometimes combined with A3 where C3 is thin or absent.
- C4 – Lower aquitard but may also represent weathered bedrock.

3.2 Hydraulic Conductivity

In situ hydraulic conductivity testing was completed at wells in the vicinity of the subject lands (MS-103 and MS-106s) as part of previous studies. The results are provided in Appendix C and summarized below in Table 1.

Table 1: Estimated Hydraulic Conductivity from In Situ Well Tests

Well	Screened Formation	Depth of Screen (mbgl)	Hydraulic Conductivity (m/sec) In Situ Test
MS-103	Sandy Silt Till	5.7 – 7.2	2.8×10^{-5}
MS-106s	Silty Sandy Clay	4.5 – 6.1	8.0×10^{-8}

*meters below ground level

The results of the in situ hydraulic conductivity testing indicate that hydraulic conductivity of the surficial soils range from 10^{-5} to 10^{-8} m/s.

3.3 Seasonal Groundwater High

Groundwater monitoring was completed as part of previous studies at monitoring wells in the vicinity of the subject lands. Hydrographs from these studies are provided in Appendix D. The groundwater data are summarized below in Table 2 for wells located in the vicinity of the subject lands.

Table 2: Seasonal Groundwater Levels

Well	Screened Formation and Depth	Highest GW Elevation (masl)
MS-101	Sandy silt and sand (7.2 m)	256.79
MS-103	Sandy silt till (7.3 m)	256.84
MS-106s	Silty sandy clay (6.0 m)	Flowing (>253.16)
MS-106d	Sand (11.7 m)	Flowing (>253.16)

MS-101 located 200 m west of the subject lands, was screened in sandy silt and sand. Water levels at MS-101 ranged from 255.1 masl to 256.8 masl and varied by 1.7 m seasonally (Figure D-1, Appendix D).

Monitoring well MS-103 is located 100 m north of the subject lands. The well is installed in a sandy silt till layer and groundwater was reported at elevations ranging from 254.45 masl and 256.84 masl, varying by 2.4 m seasonally (Figure D-2, Appendix D).

At MS-106 s/d, located just south of the subject lands the shallow well is installed in finer grain silty sandy clay and the deeper well is installed in sand creating confined conditions. An upward gradient is observed at this location with flowing conditions recorded during most monitoring events (2018 to 2021) (Figure D-3, Appendix D).

3.4 Significant Groundwater Recharge Areas

The available LSRCA mapping indicates that the subject lands are located within a Significant Groundwater Recharge Area (SGRA). Boreholes in the vicinity of the subject lands (Appendix B) indicate that surficial sediments consist of silty sand and compact to dense sandy silt till. When combined with the water level information, these data suggest that groundwater recharge may be occurring in the area.

3.5 Groundwater Quality

Water quality data collected in May 2019 from monitoring well (MS-103) as part of previous studies provides groundwater quality in the vicinity of the subject lands. The water sample was submitted to a certified laboratory for analyses of general water quality indicators (e.g., pH, hardness, and conductivity), basic ions (including chloride and nitrate) and selected metals to characterize the background water quality. The

groundwater testing results from the analytical laboratory are provided in Table E-1, Appendix E and discussed below:

- High turbidity was reported with a value of 26,400 NTU (MS-103). This is likely a result of high silt content in the sample caused by a lack of well development after drilling.
- Nitrate was detected in the sample with a value of 1.75 mg/L (MS-103). Nitrate in shallow groundwater is typically associated with areas where agricultural land use results in elevated nitrates in groundwater. Current land use on the subject lands is agricultural and is interpreted to be the cause of the slightly elevated nitrate. The sample concentration is below the ODWQS for nitrate, 10 mg/L.
- Total phosphorus was reported in the sample at a concentration of 0.03 mg/L. Total phosphorus is a measure of all forms of phosphorus (dissolved or particulate) that are found in the water sample. There was no dissolved phosphorus (ortho-phosphate) reported in the groundwater sample suggesting the reported concentrations are particulate.

4.0 Groundwater Balance

Development of an area affects the natural water balance. The most significant difference between pre- and post-development conditions is the addition of impervious surfaces as a type of surface cover (i.e., roads, parking lots, driveways, and rooftops). Impervious surfaces prevent infiltration of water into the soils and the removal of the vegetation removes the evapotranspiration component of the natural water balance resulting in evaporation as the only remaining loss mechanism (beside runoff).

4.1 Water Balance Components

A water balance is an accounting of the water resources within a given area. As a concept, the water balance is relatively simple and may be estimated from the following equation:

$$P = S + ET + R + I$$

Where: P = precipitation
 S = change in groundwater storage
 ET = evapotranspiration/evaporation
 R = surface water runoff
 I = infiltration

The components of the water balance vary in space and time and depend on climatic conditions as well as the soil and land cover conditions (i.e., rainfall intensity, land slope, soil hydraulic conductivity and vegetation). Runoff, for example, occurs particularly

Hydrogeological Brief - Block 192, 953 Mapleview Drive, Barrie
June 2024

during periods of snowmelt when the ground is frozen, or during intense rainfall events. Precise measurement of the water balance components is difficult and as such, approximations and simplifications are made to characterize the water balance of a property. Field observations of the drainage conditions, land cover and soil types, groundwater levels and local climatic records are important input considerations for the water balance calculations.

The groundwater balance components for the subject area are discussed below:

Precipitation (P)

The long-term average annual precipitation for the area is 933 mm based on data from the Environment Canada Barrie WPCC (Station 6110557, 44°22'33.012" N, 79°41'23.010" W, elevation 221.0 masl) for the period between 1981 and 2010. The climate station is located 5.2 km northwest of the subject lands. Average monthly records of precipitation and temperature from this station have been used for the water balance calculations in this study (Appendix F).

Storage (S)

Although there are groundwater storage gains and losses on a short-term basis, the net change in groundwater storage on a long-term basis is assumed to be zero so this term is dropped from the equation.

Evapotranspiration (ET)

Evapotranspiration and evaporation components vary based on the characteristics of the land surface cover (i.e., type of vegetation, soil moisture conditions, perviousness of surfaces, etc.). Potential evapotranspiration (PET) refers to the water loss from a vegetated surface to the atmosphere under conditions of an unlimited water supply. The actual rate of evapotranspiration (AET) is generally less than the PET under dry conditions (i.e., during the summer when there is a soil moisture deficit). In this report, the PET and AET have been calculated using a soil-moisture balance approach.

Water Surplus (R + I)

The difference between the mean annual P and the mean annual ET is referred to as the water surplus. Part of the water surplus travels across the surface of the soil as surface or overland runoff (R) and the remainder infiltrates the surficial soil (I). The infiltration is comprised of two end member components: one component that moves vertically downward to the groundwater table (referred to as recharge) and a second component that moves laterally through the topsoil profile or shallow soils as interflow that re-emerges locally to surface (i.e., as runoff) at some short time following cessation of precipitation. As opposed to the "direct" component of surface runoff that occurs during

precipitation or snowmelt events, interflow becomes an “indirect” component of runoff. The interflow component of surface runoff is not accounted for in the water balance equation cited above since it is often difficult to distinguish between interflow and direct (overland) runoff, however both interflow and direct runoff together form the total surface water runoff component.

4.2 Approach and Methodology

The analytical approach to calculate the water balance involves monthly soil-moisture balance calculations to determine the pre-development (based on existing land use) infiltration volumes. A soil-moisture balance approach assumes that soils do not release water as potential recharge while a soil moisture deficit exists. During wetter periods, any excess of precipitation over evapotranspiration first goes to restore soil moisture. Once the soil moisture deficit is overcome, any further excess water can then pass through the soil as infiltration and either become interflow (indirect runoff) or recharge (deep infiltration).

A soil moisture storage capacity of 150 mm was selected as a representative value for the existing vegetation and soil conditions which consists of predominantly short to moderate-rooted vegetation in the fields and agricultural areas (Table F-1, Appendix F). A soil moisture storage capacity of 75 mm was used to represent residential urban lawn (Table F-2, Appendix F). Tables F-1 and F-2 in Appendix F details the monthly potential evapotranspiration calculations accounting for latitude and climate, and then calculate the actual evapotranspiration and water surplus components of the water balance based on the monthly precipitation and soil moisture conditions.

The MECP SWM Planning and Design Manual (2003) methodology for calculating total infiltration based on topography, soil type and land cover was used and a corresponding runoff component was calculated for the soil moisture storage conditions. The calculated water balance components from this table are then used to assess the pre-development volumes for runoff and infiltration as presented on Table F-3 in Appendix F.

4.3 Water Balance Component Values

The detailed monthly calculations of the water balance components are provided in Tables F-1 and F-2 in Appendix F. For these calculations, it has been assumed that sandy loam soils are representative for the subject lands for estimating the soil infiltration factor.

The detailed monthly calculations show that a water surplus is generally available from November to May. The monthly water balance calculations illustrate how infiltration occurs during periods when there is sufficient water available to overcome the soil moisture storage requirements. The monthly calculations are summed to provide

estimates of the annual water balance component values (Tables F-1 and F-2, Appendix F). A summary of these values is provided in Table 3.

Table 3: Water Balance Component Values

Water Balance Component	Agricultural Land Use	Urban Lawn
Average Precipitation	933 mm/year	933 mm/year
Actual Evapotranspiration	593 mm/year	555 mm/year
Water Surplus	340 mm/year	378 mm/year
Infiltration	204 mm/year	246 mm/year
Runoff	136 mm/year	132 mm/year

A water balance calculation of the potential water surplus for impervious areas is shown at the bottom of Table F-1 in Appendix F. There is an evaporation component from impervious surfaces and this is typically estimated to be between about 10% and 20% of the total precipitation. For the purposes of the calculations in this study, the evaporation has been estimated to be 15% of precipitation. The remaining 85% of the precipitation that falls on impervious surfaces is assumed to become runoff. Therefore, assuming an evaporation/loss from impervious surfaces of 15% of the precipitation, there is a potential water surplus from impervious areas of 793 mm/year.

4.4 Pre-Development Water Balance (Existing Conditions)

The pre-development water balance calculations are presented in Table F-3 in Appendix F. The water balance component values from Table F-1 were used to calculate the average annual volume of infiltration for the subject lands which is calculated to be about 1,504 m³/year (Table F-3, Appendix F).

4.5 Post-Development Water Balance with No Mitigation

To assess potential development impacts on infiltration, the post development infiltration volumes on the subject lands have been calculated on Table F-3 in Appendix F. The total areas for the proposed land cover were provided by Jones Consulting Group.

The infiltration and runoff components for the post-development land uses have been calculated using the MECP SWM Planning and Design Manual (2003) methodology based on topography, soil type and land cover as shown on Tables F-1 and F-2 in Appendix F.

As shown in the Appendix tables, the post-development infiltration volume (without mitigation) is estimated at about 590 m³/year (Table F-3, Appendix F). Comparing the pre- and post-development infiltration volume shows that development has the potential to reduce the infiltration on the subject lands from 1,504 m³/year to 590 m³/year, i.e., a

Hydrogeological Brief - Block 192, 953 Mapleview Drive, Barrie
June 2024

reduction of about 914 m³/year or 61%. These calculations assume no LID measures for stormwater management are in place.

4.6 Mitigation Measures for Infiltration

To minimize the potential impacts of development on the water balance, the use of Low Impact Development (LID) measures for stormwater management are generally recommended. It is our understanding that an infiltration gallery which collects runoff is proposed for the subject lands. The infiltration gallery will be designed to collect about 71% of runoff from the site (see Table F-4, Appendix F) which will result in approximately 3040 m³/year of infiltration.

The bottom of the infiltration gallery has been designed to be located above the seasonal high water level (see Figure 5) within fill which will be conducive to infiltration. Specific information on the design of the infiltration gallery is included in the SWM report completed by Jones Consulting.

5.0 Development Considerations

5.1 Construction Below the Water Table

The Ministry of the Environment, Conservation and Parks (MECP) has regulations that govern water taking for construction dewatering. Water takings above 50,000 L/day but below 400,000 L/day require registration under Environmental Activity Sector Registry (EASR). Takings above 400,000 L/day require a Category 3 Permit to Take Water (PTTW).

Groundwater levels measured at monitoring well MS-103 ranged between 3.7 m and 6.0 m below existing grade. A review of proposed grading plans indicates that fill on the site that will raise proposed grades up to 4 to 5 m. The site plan includes an underground parking garage with a proposed invert above the seasonal high groundwater table (see Figure 5, Cross-section B-B'). No short-term or long-term dewatering is expected for the underground parking garage.

Based on the anticipated depth of fill and the depth to water table, the need for dewatering at volumes greater than 50,000 L/day (requiring an EASR or PTTW) for installation of municipal services is not anticipated.

5.2 Excavations into Municipal Aquifer

All excavations associated with the proposed development will occur in the surficial geology layer as described in Section 3.1. No excavations will occur in the confining layers to the municipal aquifer located more than 40 m below the subject lands.

5.3 Impacts to Private Wells

The area surrounding the subject lands is not currently serviced and residences are supplied by private wells. The subject lands are mainly surrounded by agricultural lands and a nearby subdivision is municipally serviced (Figure 2). There are relatively few domestic wells located in the vicinity of the subject lands and since construction dewatering and foundation drain dewatering is not proposed, there should be no impact to any private supply wells within 300 m of the subject lands.

In support of the ongoing development within the SPA, a water well survey was completed on behalf of the Hewitt's Landowners Group to identify private water supply wells within 300 m of the Hewitt's SPA area (Burnside, 2019). The report, which included the subject lands identified potentially vulnerable wells in the vicinity of the subject lands and outlined a monitoring and mitigation plan. This report was submitted to the City of Barrie and a domestic well monitoring program was initiated in 2019. It is expected that the monitoring will continue for at least five years. During this period, the interference protocol outlined in the report will be implemented should any episode of interference occur.

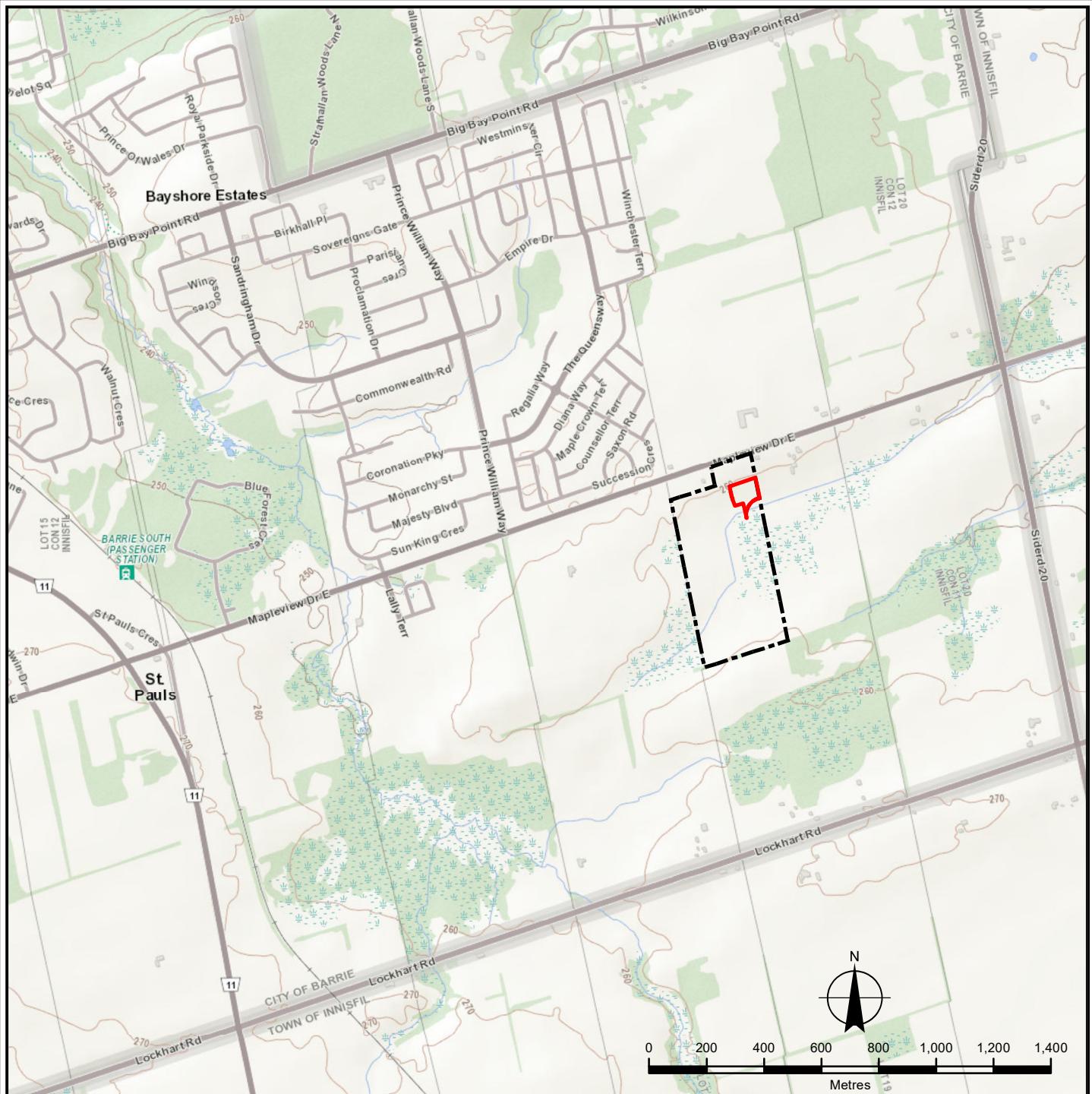
5.4 Well Decommissioning

Prior to or during construction, it is necessary to ensure that all inactive wells within the development footprint have been located and properly decommissioned by a licensed water well contractor according to Ontario Regulation 903. This regulation applies to private domestic wells and to any groundwater observation wells on the subject lands unless they are maintained throughout the construction for monitoring purposes.

Hydrogeological Brief - Block 192, 953 Mapleview Drive, Barrie
June 2024

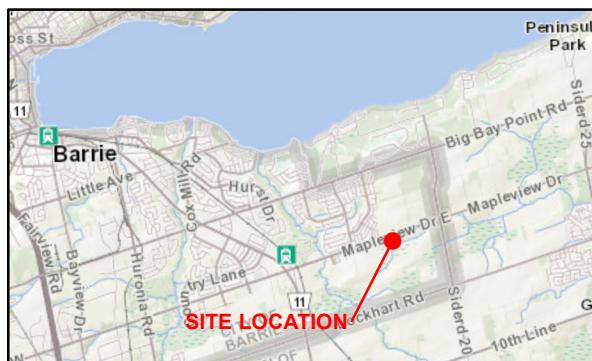
6.0 References

- AquaResource et al. 2011. City of Barrie Tier Three Water Balance and Local Area Risk Assessment Groundwater Flow Model, AquaResource, Golder and IWC, 2011.
- Burnside, 2016. Hewitt's Secondary Plan Area Hydrogeological Assessment, Hewitt's Landowners Group, R.J. Burnside & Associates Limited, June 2016.
- Burnside, 2019. Hewitt's SPA Lands Well Survey Report, Hewitt's Creek Landowners Group, Barrie, Ontario. R.J. Burnside & Associates Limited, January 2019 (Revised June 2019).
- Burnside, 2023. Hydrogeological Assessment, Mapleview South (Innisfil) Ltd., Barrie, Ontario. R.J. Burnside & Associates Limited, March 2021 (Updated May 2023).
- Cambium, 2018. Draft Geotechnical Investigation Report Mapleview South Development, Mapleview Drive East, City of Barrie, ON. Cambium Inc., June 13, 2018.
- LSRCA, 2012. The Barrie Creeks, Lovers Creek and Hewitt's Creek Subwatershed Plans, Lake Simcoe Region Conservation Authority, 2012.
- LSRCA, 2015. Lake Simcoe Region Conservation Authority – Approved Assessment Report; Lake Simcoe and Couchiching- Black River Source Protection Area, Part 1 Lake Simcoe Watershed, January 2015.
- Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario, Open File 3300, Scale 1:50,000.
- OGS, 2007. Paleozoic Geology of Southern Ontario; Ontario Geological Society, Miscellaneous Release – Data 219, 2007.
- Ontario Ministry of the Environment, Conservation and Parks, Water Well Records.


BURNSIDE

[THE DIFFERENCE IS OUR PEOPLE]

Figures


Figures

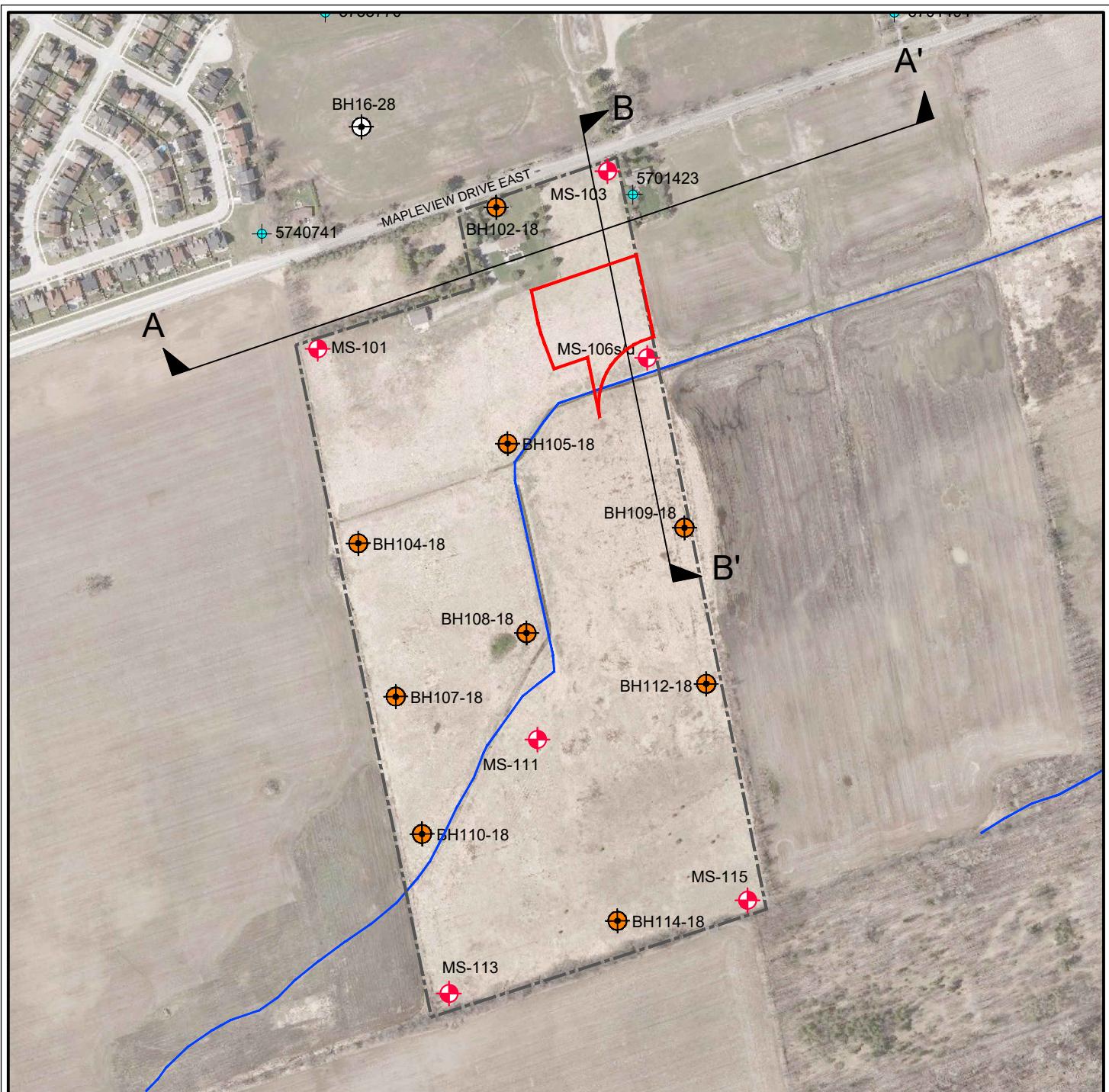
LEGEND

BLOCK 192

MAPLEVIEW SOUTH LANDS

SCALE: 1:150,000

Client / Report
MAPLEVIEW SOUTH (INNISFIL) LTD.
BARRIE, ONTARIO
BLOCK 192 SITE PLAN APPLICATION
HYDROGEOLOGICAL BRIEF


Figure Title:

SITE LOCATION

Drawn	Checked	Date	Figure No.
SK	SC	June 2024	1
Scale		Project No.	

1:20,000

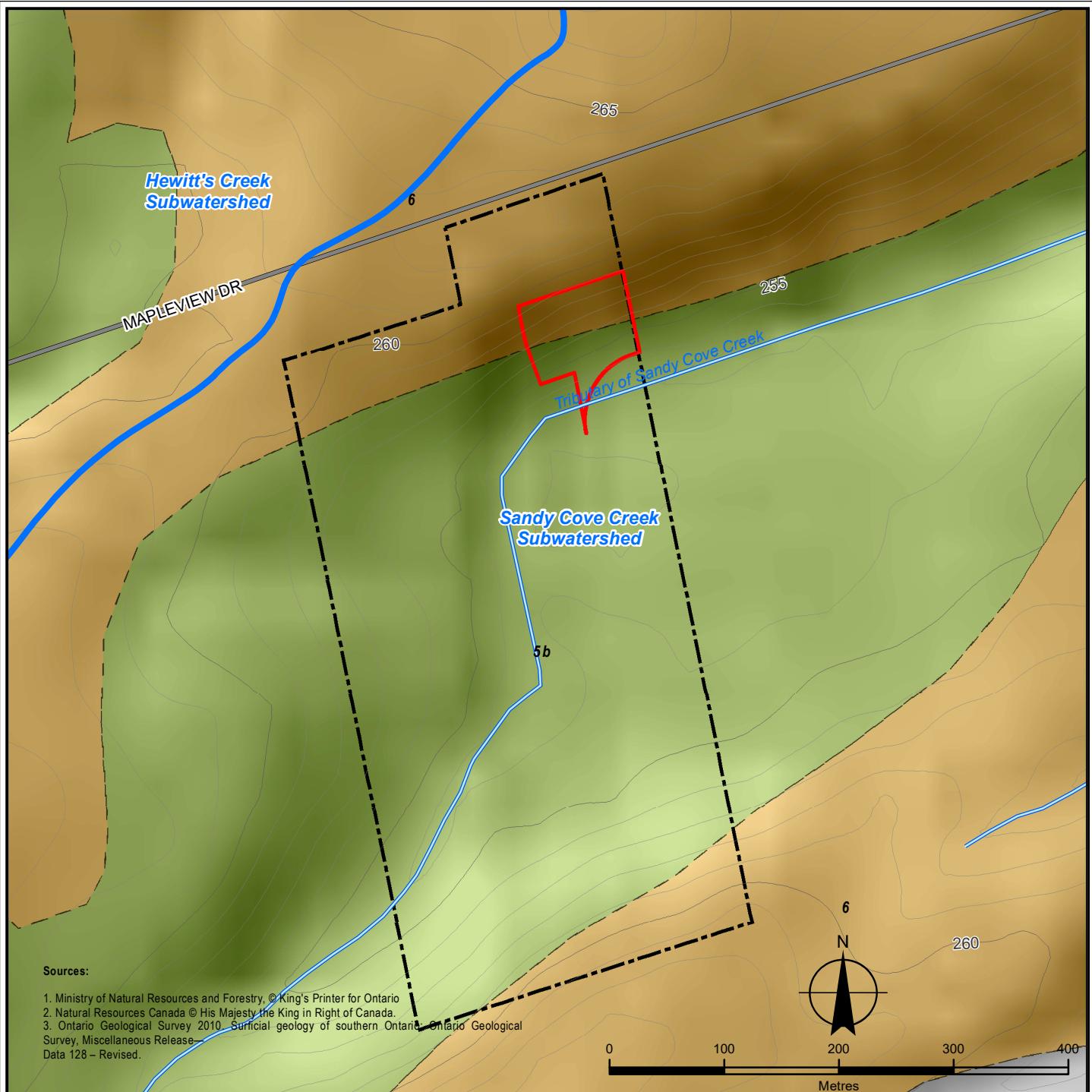
300042309.0003

LEGEND

- MAPLEVIEW SOUTH LANDS (dashed line)
 - BLOCK 192 (red line)
 - WATERCOURSE (blue line)
 - MONITORING WELL (CAMBIUM, 2018) (red dot)
 - BOREHOLE (CAMBIUM, 2018) (orange dot)
 - MECP WELL RECORD LOCATION (cyan dot)
- A A'
- CROSS-SECTION LOCATION KEY

0 100 200 300 400
Metres

Client / Report

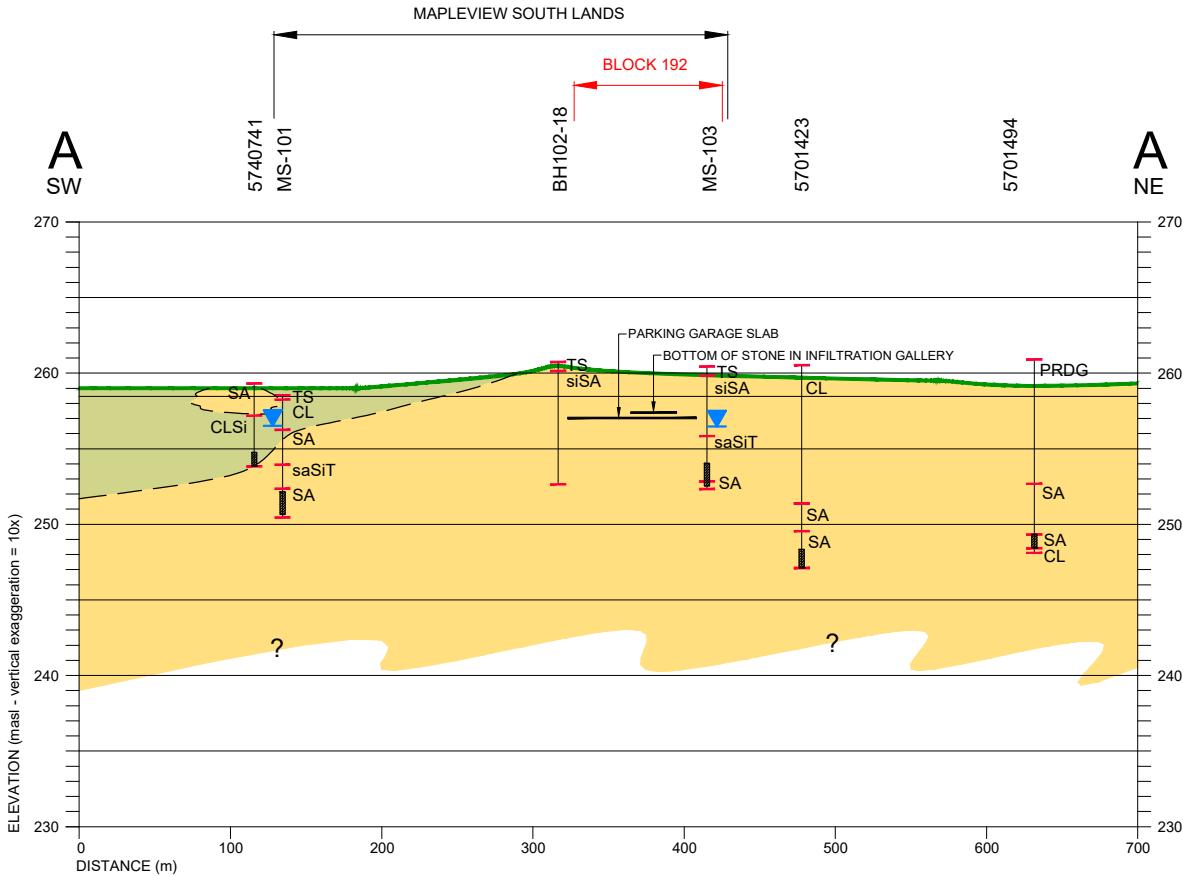

MAPLEVIEW SOUTH (INNISFIL) LTD.
BARRIE, ONTARIO

BLOCK 192 SITE PLAN APPLICATION
HYDROGEOLOGICAL BRIEF

Figure Title

BOREHOLE, WELL AND CROSS-SECTION LOCATIONS

Drawn SK	Checked SC	Date June 2024	Figure No.
Scale 1:5,000		Project No. 300042309.0003	2


Client / Report

MAPLEVIEW SOUTH (INNISFIL) LTD.
BARRIE, ONTARIO
BLOCK 192 SITE PLAN APPLICATION
HYDROGEOLOGICAL BRIEF

Figure Title:

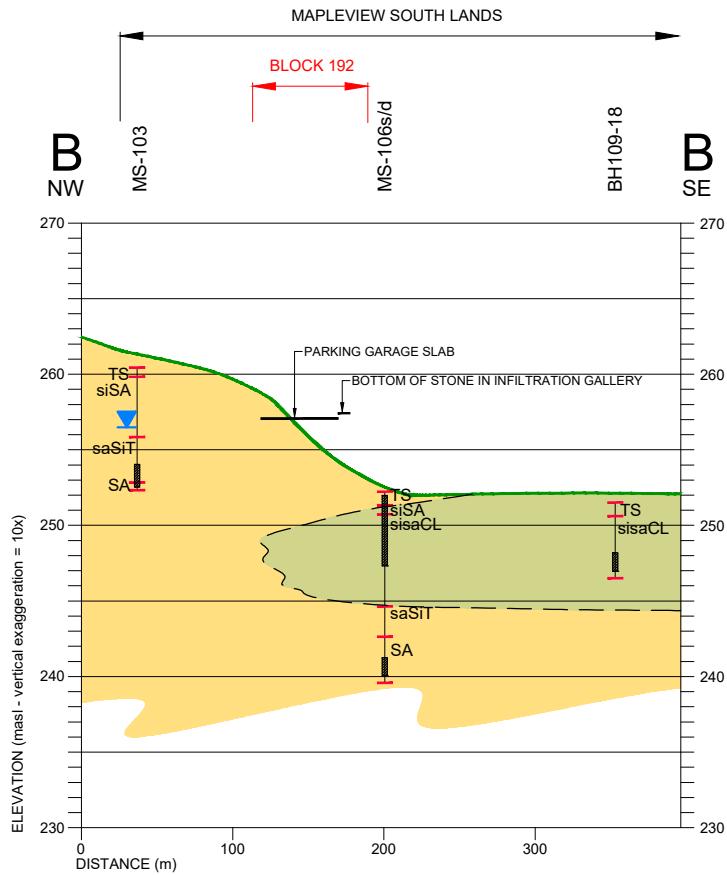
SURFICIAL GEOLOGY

Drawn	Checked	Date	Figure No.
SK	SC	June 2024	3
Scale	Project No.	300042309.0003	
1:5,000			

LEGEND

BH1	WELL NUMBER / ID	si	SILTY
		sa	SANDY
		cl	CLAYEY
	EXISTING GROUND PROFILE	GR	GRAVEL
		SA	SAND
	GEOLOGICAL CONTACT	Si	SILT
		CL	CLAY
	STATIC WATER LEVEL (MOECC WELL RECORD)	ST	STONES
		LSMN	LIMESTONE
	MEASURED WATER LEVEL (MAY 29, 2019)		
	WELL SCREEN		
-----	INTERPRETED STRATIGRAPHY		

Client / Report


MAPLEVIEW SOUTH (INNISFIL) LTD.
BARRIE, ONTARIO

**BLOCK 192 SITE PLAN APPLICATION
HYDROGEOLOGICAL BRIEF**

Figure Title

INTERPRETED GEOLOGICAL CROSS-SECTION A-A'

Drawn SK	Checked SC	Date June 2024	Figure No. 4
Scale 1:5,000		Project No. 300042309.0003	

LEGEND

BH1	WELL NUMBER / ID	si	SILTY
—	EXISTING GROUND PROFILE	sa	SANDY
—	GEOLOGICAL CONTACT	cl	CLAYEY
▽	STATIC WATER LEVEL (MOECC WELL RECORD)	GR	GRAVEL
▽	MEASURED WATER LEVEL (MAY 29, 2019)	SA	SAND
---	WELL SCREEN	Si	SILT
---	INTERPRETED STRATIGRAPHY	CL	CLAY
		ST	STONES
		LSMN	LIMESTONE
		SAND / SILT / GRAVEL	
		SILT CLAY TILL	

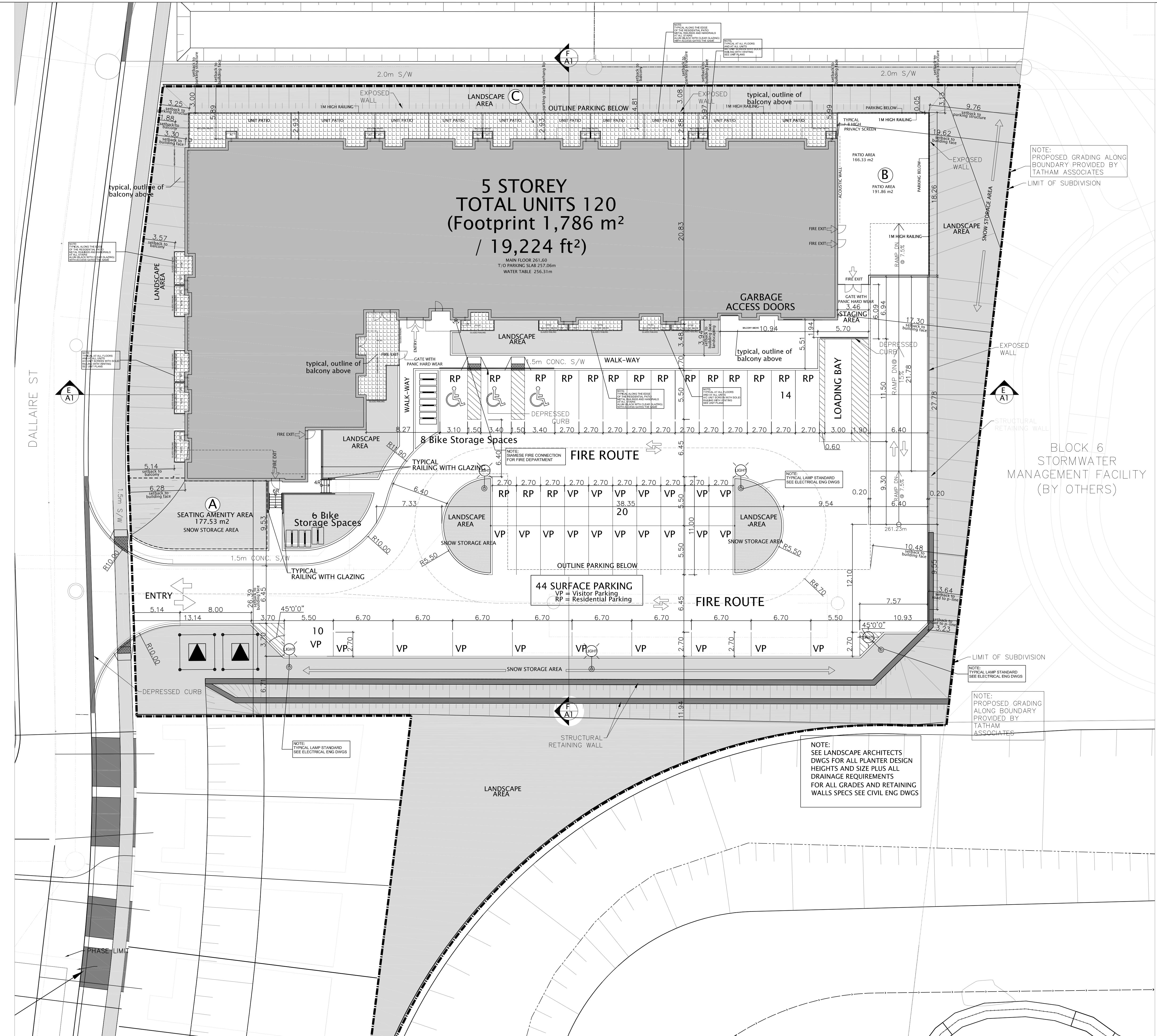
Client / Report

MAPLEVIEW SOUTH (INNISFIL) LTD.
BARRIE, ONTARIO

BLOCK 192 SITE PLAN APPLICATION
HYDROGEOLOGICAL BRIEF

Figure Title

INTERPRETED GEOLOGICAL
CROSS-SECTION B-B'


Drawn SK	Checked SC	Date June 2024	Figure No.
Scale 1:5,000	Project No. 300042309.0003		5

Appendix A

Site Plan

15	ISSUED FOR PRE-CONSULTATION MEETING	JUN 14, 2024
14	ISSUED FOR PRE-CONSULTATION MEETING	May 06, 2024
13	ISSUED FOR PRE-CONSULTATION MEETING	Apr 24, 2024
12	ISSUED FOR PRE-CONSULTATION MEETING	Apr 10, 2024
11	ISSUED FOR PRE-CONSULTATION MEETING	Apr 01, 2024
12	ISSUED FOR PRE-CONSULTATION MEETING	Mar 26, 2024
11	ISSUED FOR PRE-CONSULTATION MEETING	Mar 26, 2024
10	ISSUED FOR PRE-CONSULTATION MEETING	Mar 26, 2024
9	ISSUED FOR PRE-CONSULTATION MEETING	Mar 26, 2024
8	ISSUED FOR PRE-CONSULTATION MEETING	Mar 26, 2024
7	ISSUED FOR PRE-CONSULTATION MEETING	Mar 26, 2024
6	ISSUED FOR PRE-CONSULTATION MEETING	Mar 16, 2024
5	ISSUED FOR PRE-CONSULTATION MEETING	Oct 24, 2023
4	ISSUED FOR PRE-CONSULTATION MEETING	July 18, 2023
3	ISSUED FOR CLIENT AND CONSULTANT REVIEW	May 23, 2023
2	ISSUED FOR CLIENT AND CONSULTANT REVIEW	Mar 30, 2023
1	ISSUED FOR CLIENT AND CONSULTANT REVIEW	Mar 30, 2023
No. Description		Date Rev.

Appendix B

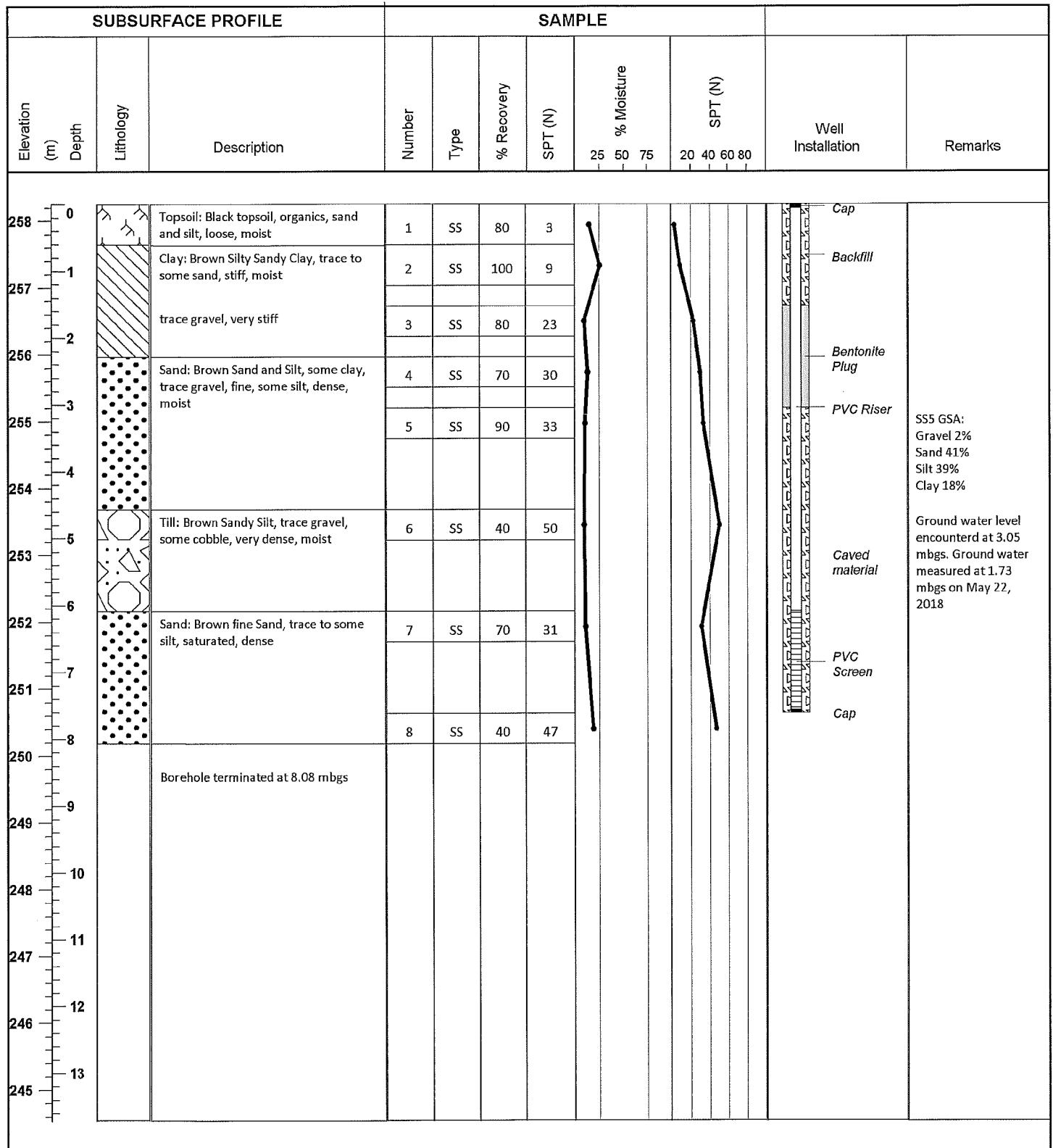
Borehole Logs

Peterborough

Barrie

Oshawa

Kingston


T: 866-217-7900

www.cambium-inc.com

Log of Borehole:

BH101-18

Page 1 of 1

Client: The Jones Consulting Group Ltd.**Project Name:** Mapleview South Development Project**Project No.:** 7468-001**Contractor:** Walker Drilling**Method:** Hollow Stem Auger**Date Completed:** 2018-05-14**Location:** 953 Mapleview Dr. East, Barrie**UTM:** 17T, 611321, 4912044**Elevation:** 258.25m

Logged By: AG

Input By: AG

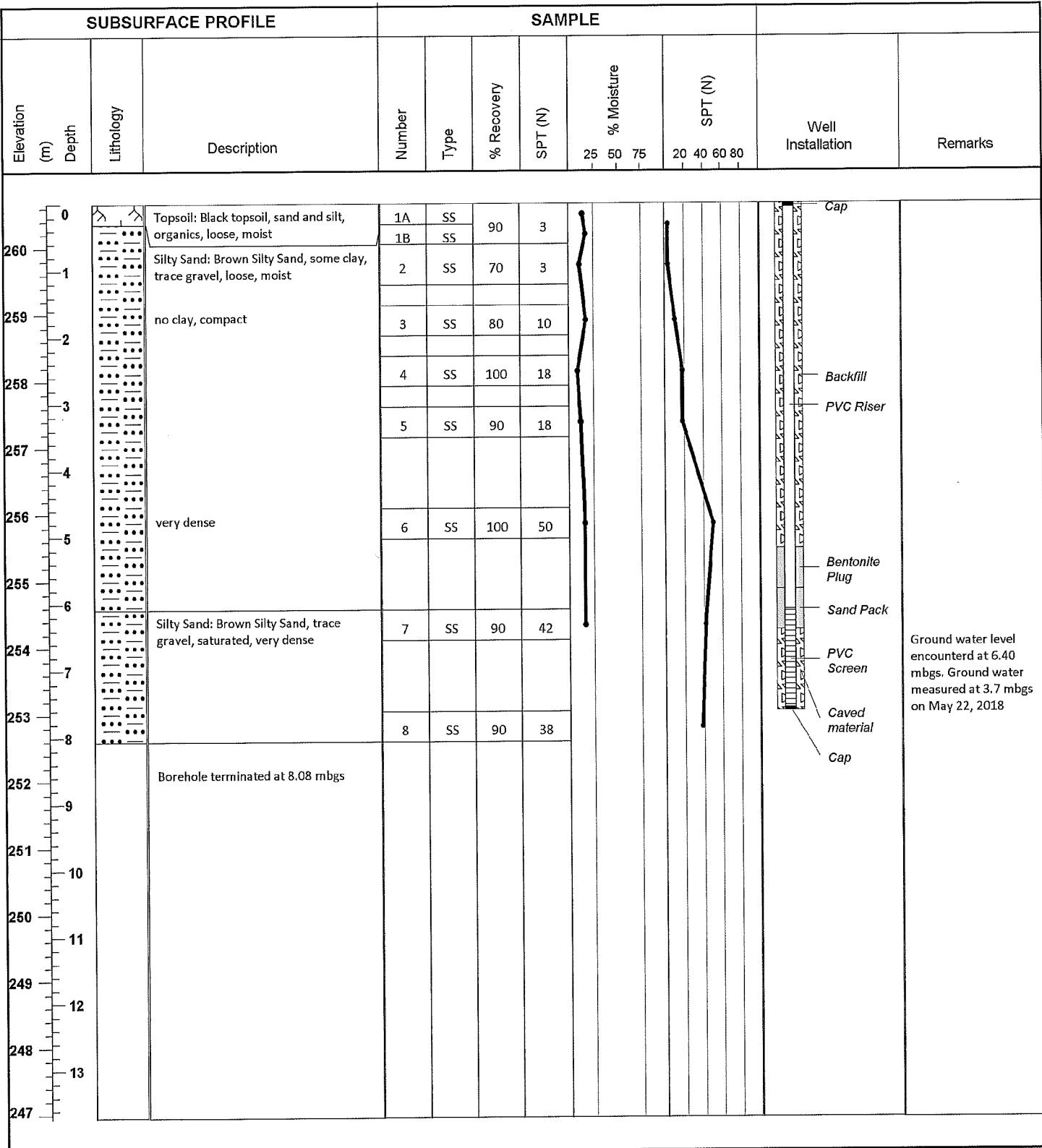
Peterborough

Barrie

Oshawa

Kingston

CAMBIUM


T: 866-217-7900

www.cambium-inc.com

Log of Borehole:

BH102-18

Page 1 of 1

Client: The Jones Consulting Group Ltd.**Project Name:** Mapleview South Development Project**Project No.:** 7468-001**Contractor:** Walker Drilling**Method:** Hollow Stem Auger**Date Completed:** 2018-05-14**Location:** 953 Mapleview Dr. East, Barrie**UTM:** 17T, 611471, 4912163**Elevation:** 260.66m

Logged By: AG

Input By: AG

Peterborough

Barrie

Oshawa

Kingston

CAMBIUM

T: 866-217-7900

www.cambium-inc.com

Log of Borehole:

BH103-18

Page 1 of 1

Client: The Jones Consulting Group Ltd.**Project Name:** Mapleview South Development Project**Project No.:** 7468-001**Contractor:** Walker Drilling**Method:** Hollow Stem Auger**Date Completed:** 2018-05-14**Location:** 953 Mapleview Dr. East, Barrie**UTM:** 17T, 611572, 4912192**Elevation:** 260.45m

SUBSURFACE PROFILE			SAMPLE														
Elevation (m)	Depth	Lithology	Description	Number	Type	% Recovery	SPT (N)	25	50	75	20	40	60	80	Well Installation	Remarks	
260	0		Topsoil: Black and Brown topsoil, organics, very loose, moist	1	SS	90	2									Cap	
259	1		Silty Sand: Brown Silty Sand, some clay, trace gravel, firm, moist	2	SS	80	6									Backfill	
258	2		0.2m layer of coarse sand	3	SS	50	6									PVC Riser	
257	3		Stiff	4	SS	50	7									SS2 GSA: Gravel 3% Sand 49% Silt 32% Clay 16%	
256	4			5	SS	60	18										
255	5		Till: Brown Sandy Silt, trace gravel, very dense, moist	6	SS	80	50									Ground water level encountered at 4.57 mbgs. Ground water measured at 3.69 mbgs on May 22, 2018	
254	6			7	SS	0	50									Bentonite Plug	
253	7															Sand Pack	
252	8		Sand: Brown Sand, trace silt, dense, saturated	8	SS	50	47									PVC Screen	
			Borehole terminated at 8.08 mbgs													Cap	
251	9																
250	10																
249	11																
248	12																
247	13																

Logged By: AG

Input By: AG

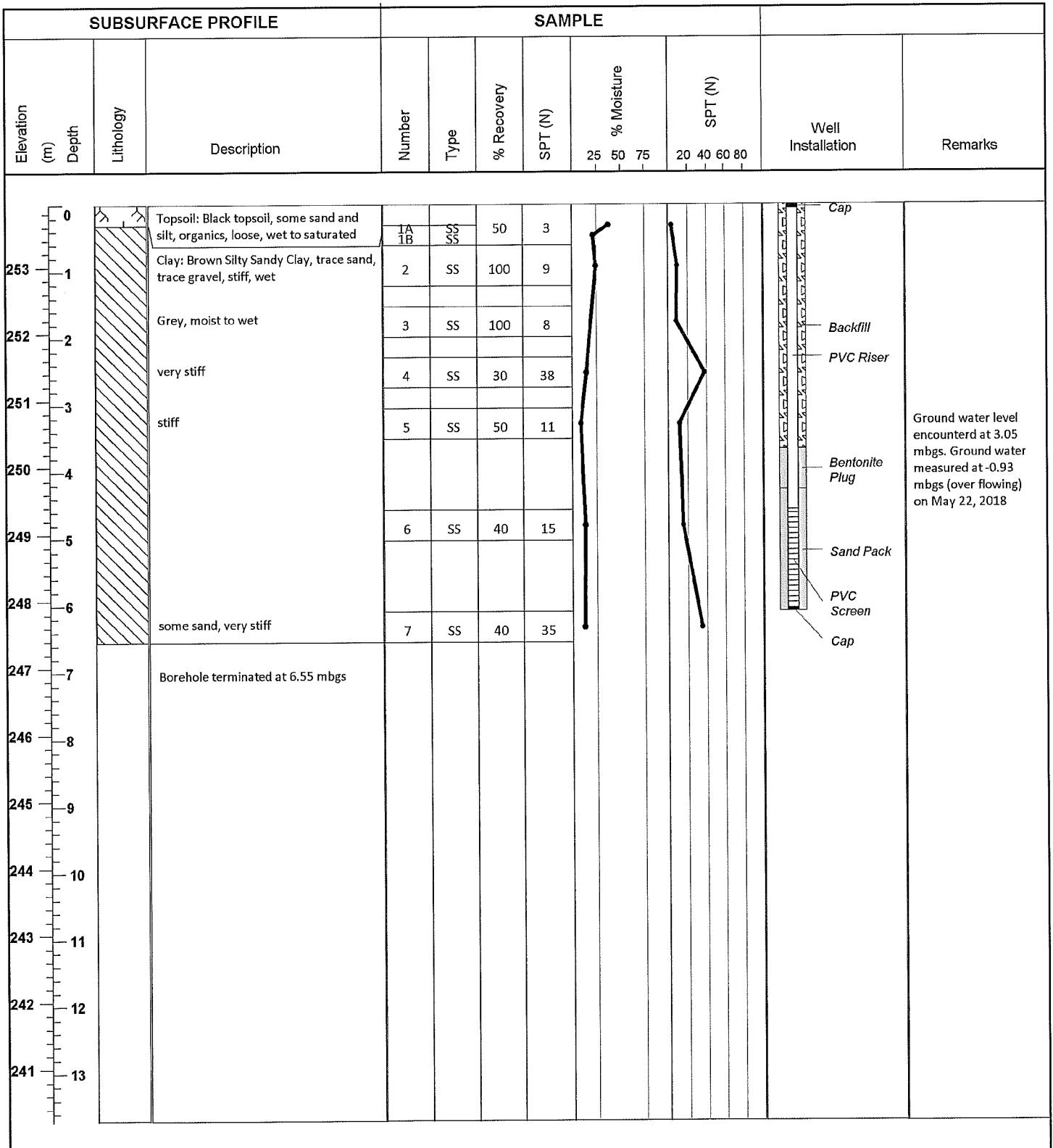
Peterborough

Barrie

Oshawa

Kingston

CAMBIUM


T: 866-217-7900

www.cambium-inc.com

Client: The Jones Consulting Group Ltd.**Contractor:** Walker Drilling**Location:** 953 Mapleview Dr. East, Barrie**Log of Borehole:**

BH104-18

Page 1 of 1

Project Name: Mapleview South Development Project**Method:** Hollow Stem Auger**UTM:** 17T, 611363, 4911873**Project No.:** 7468-001**Date Completed:** 2018-05-14**Elevation:** 253.93m

Logged By: AG

Input By: AG

Peterborough
Barrie
Oshawa
Kingston
T: 866-217-7900
www.cambium-inc.com

Log of Borehole:

BH105-18

Page 1 of 1

Client: The Jones Consulting Group Ltd.
Contractor: Walker Drilling
Location: 953 Mapleview Dr. East, Barrie

Project Name: Mapleview South Development Project
Method: Hollow Stem Auger
UTM: 17T, 611481, 4911961

Project No.: 7468-001
Date Completed: 2018-05-14
Elevation: 252.82m

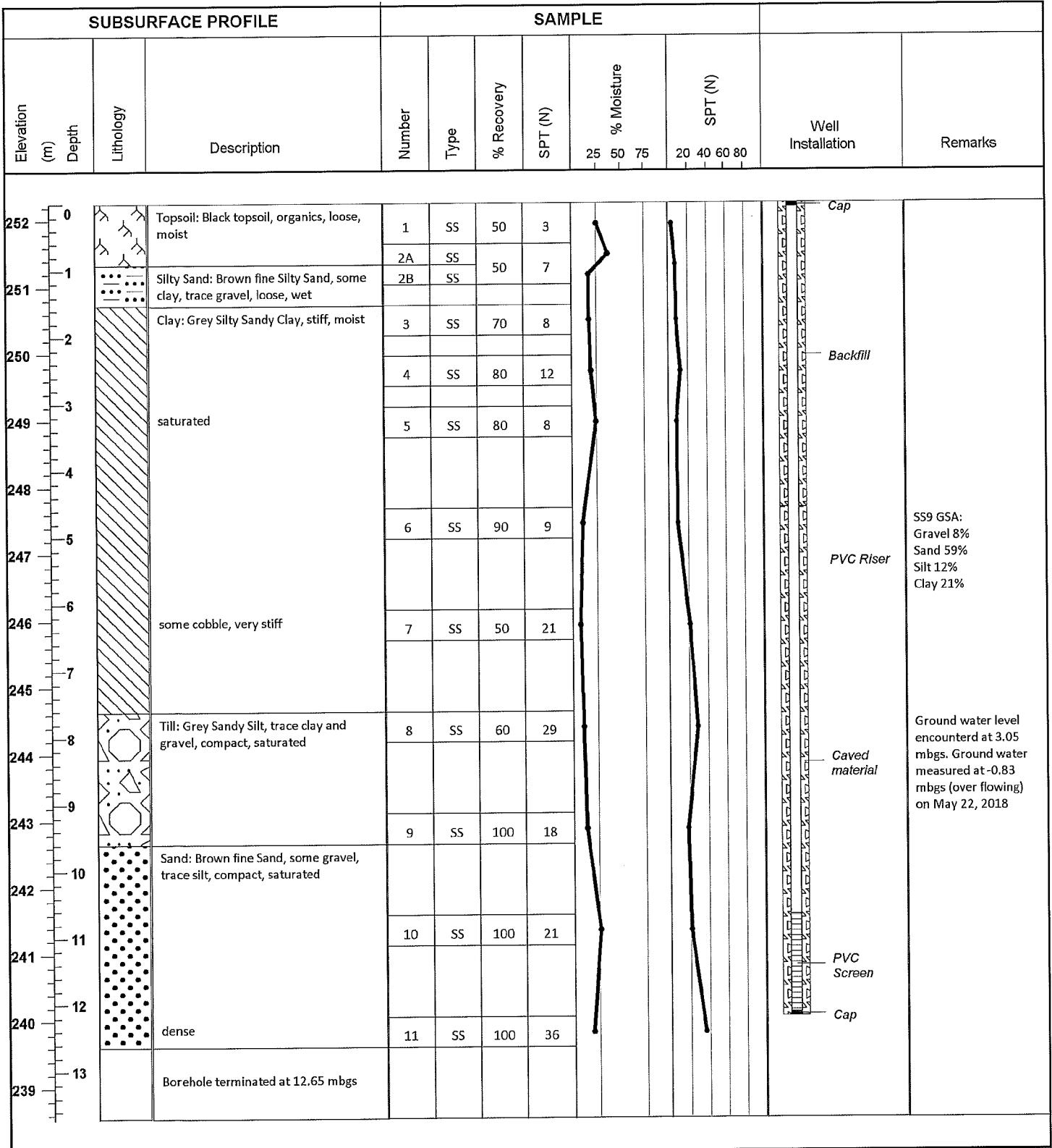
SUBSURFACE PROFILE			SAMPLE										
Elevation (m)	Depth	Lithology	Description	Number	Type	% Recovery	SPT (N)	% Moisture			SPT (N)	Well Installation	Remarks
0			Topsoil: Black topsoil, organics, loose, moist	1	SS	25	5						
252	1		Clay: Grey Silty Sandy Clay, trace gravel, stiff, moist	2A	SS	25	10						
251	2			2B	SS								
250	3			3	SS	100	8						
249	4			4	SS	100	10						
248	5			5	SS	100	8						
247	6		Till: Grey Sandy Silt, trace clay, compact, saturated	6	SS	60	19						
246	7		possible cobble, trace gravel, saturated	7	SS	50	18						
245	8		Borehole terminated at 6.55 mbgs										
244	9												
243	10												
242	11												
241	12												
240	13												

Logged By: AG

Input By: AG

Peterborough
Barrie
Oshawa
Kingston
T: 866-217-7900
www.cambium-inc.com

Log of Borehole:


BH106-18A

Page 1 of 1

Client: The Jones Consulting Group Ltd.
Contractor: Walker Drilling
Location: 953 Maplevue Dr. East, Barrie

Project Name: Maplevue South Development Project
Method: Hollow Stem Auger
UTM: 17T, 611598, 4912035

Project No.: 7468-001
Date Completed: 2018-05-14
Elevation: 252.25m

Peterborough
Barrie
Oshawa
Kingston
T: 866-217-7900
www.cambium-inc.com

Log of Borehole:

BH106-18B

Page 1 of 1

Client: The Jones Consulting Group Ltd.
Contractor: Walker Drilling
Location: 953 Mapleview Dr. East, Barrie

Project Name: Mapleview South Development Project
Method: Hollow Stem Auger
UTM: 17T, 611598, 4912036

Project No.: 7468-001
Date Completed: 2018-05-14
Elevation: 252.28m

SUBSURFACE PROFILE			SAMPLE										
Elevation (m)	Depth	Lithology	Description	Number	Type	% Recovery	SPT (N)	% Moisture			SPT (N)	Well Installation	Remarks
							25	50	75	20	40	60	80
252	0												
251	1												
250	2												
249	3												
248	4												
247	5												
246	6												
245	7												
244	8												
243	9												
242	10												
241	11												
240	12												
239	13												

Logged By: AG

Input By: AG

Appendix C

Hydraulic Conductivity Data

Grain Size Distribution Chart

CAMBUIUM

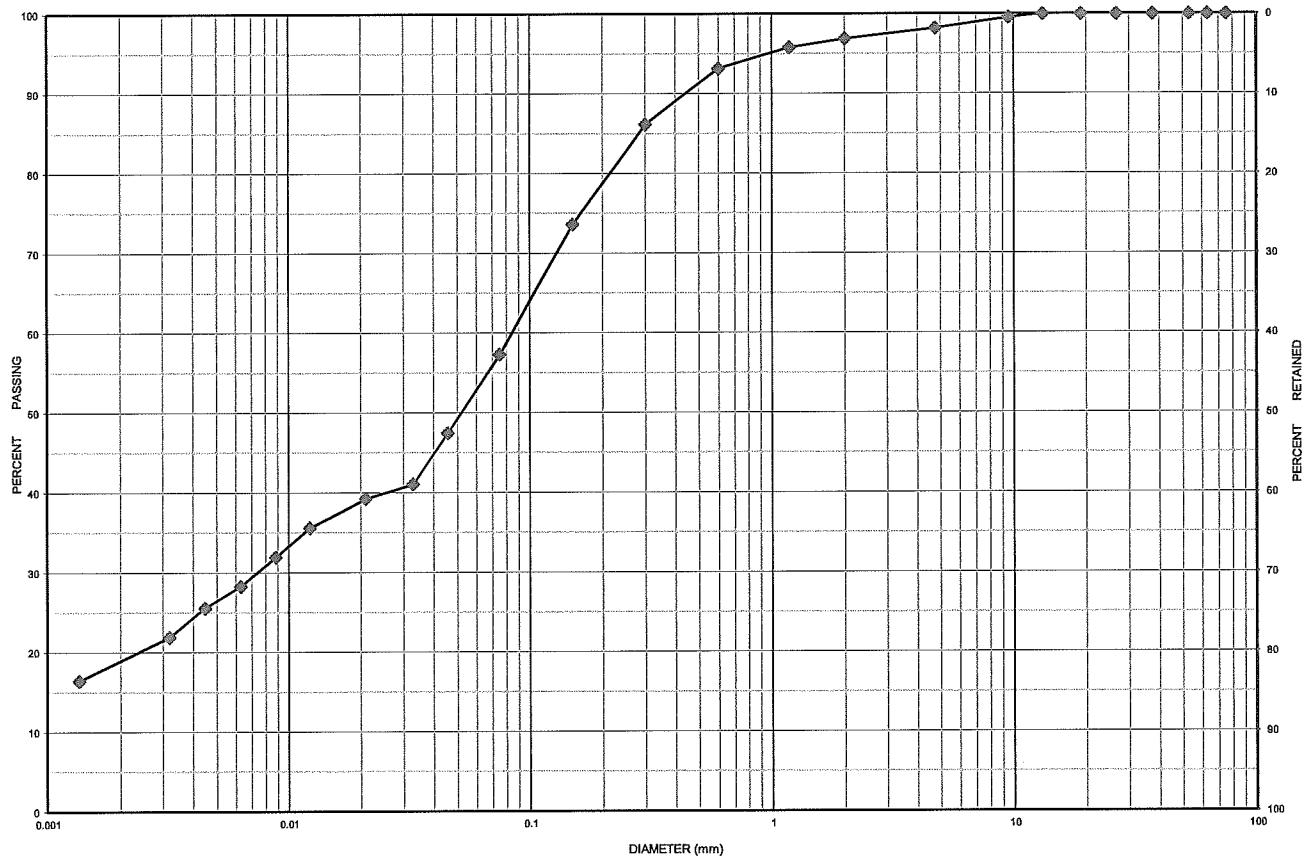
Project Number: 7468-001

Client: The Jones Consulting Group Ltd.

Project Name: Geotech - Mapleview South Development, Innisfil

Sample Date: May 9, 2018

Sampled By: Alex Griffin - Cambium Inc.


Location: BH 101-18 SS 5

Depth: 3 m to 3.5 m

Lab Sample No: S-18-0444

UNIFIED SOIL CLASSIFICATION SYSTEM

CLAY & SILT (<0.075 mm)	SAND (<4.75 mm to 0.075 mm)			GRAVEL (>4.75 mm)	
	FINE	MEDIUM	COARSE	FINE	COARSE

MIT SOIL CLASSIFICATION SYSTEM

CLAY	SILT	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	BOULDERS
		SAND	GRAVEL					

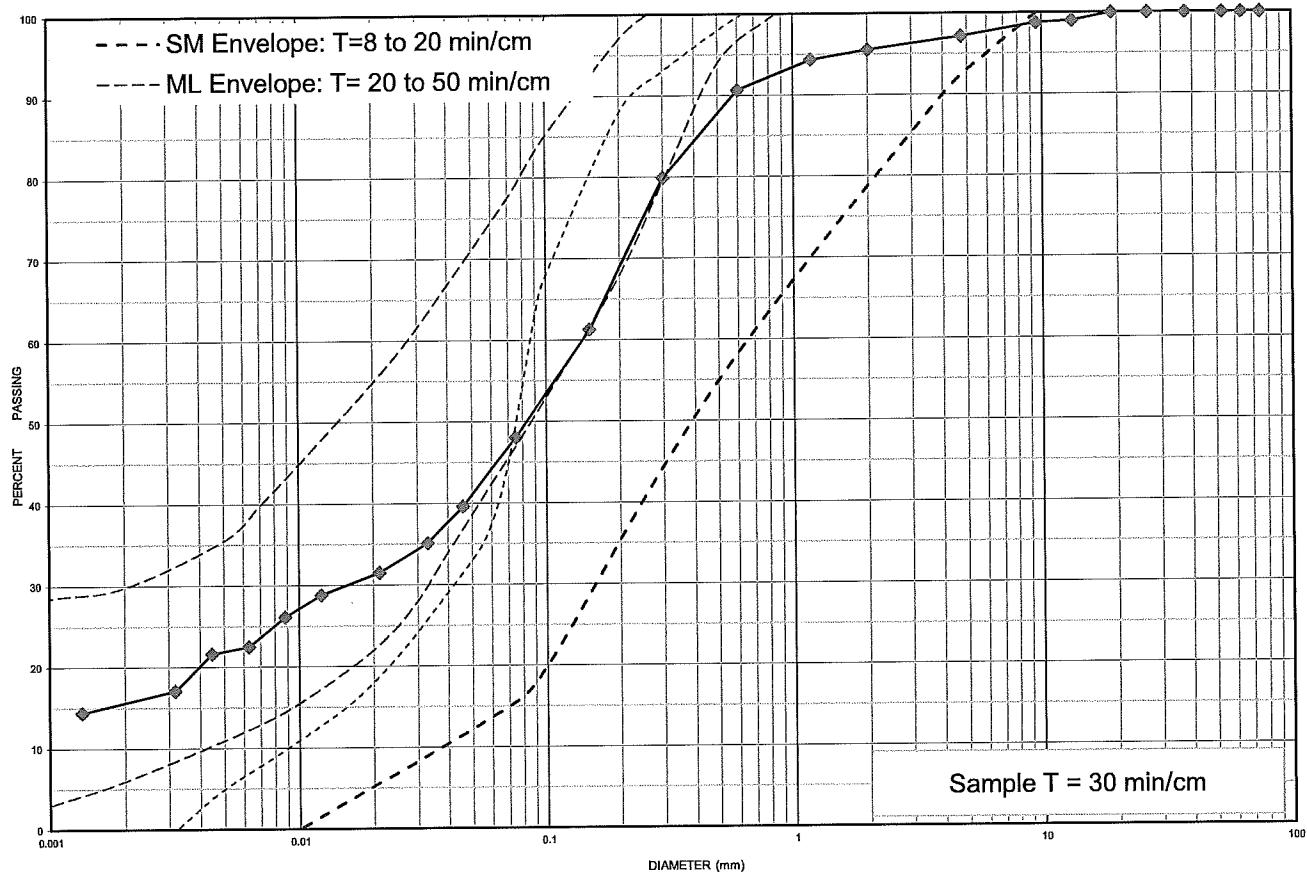
Location	Sample No.	Depth	Gravel	Sand	Silt	Clay	Moisture
BH 101-18	SS 5	3 m to 3.5 m	2	41	57		10.4
Description	Classification	D ₆₀	D ₃₀	D ₁₀	C _u	C _c	
Sand and Silty some Clay trace Gravel	SP-ML	0.085	0.0074	-	-	-	

Issued By:

(Senior Project Manager)

Date Issued:

June 5, 2018

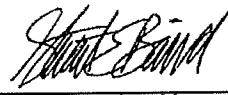

Grain Size Distribution Chart

CAMBUIUM

Project Number: 7468-001 **Client:** The Jones Consulting Group Ltd.
Project Name: Geotech - Mapleview South Development, Innisfil
Sample Date: May 9, 2018 **Sampled By:** Alex Griffin - Cambium Inc.
Hole No.: BH 103-18 SS 2 **Depth:** 0.6 m to 1.2 m **Lab Sample No:** S-18-0441

UNIFIED SOIL CLASSIFICATION SYSTEM

CLAY & SILT (<0.075 mm)	SAND (<4.75 mm to 0.075 mm)			GRAVEL (>4.75 mm)	
	FINE	MEDIUM	COARSE	FINE	COARSE



MIT SOIL CLASSIFICATION SYSTEM

CLAY	SILT	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	BOULDERS
		SAND	GRAVEL					

Borehole No.	Sample No.	Depth	Gravel	Sand	Silt	Clay	Moisture
BH 103-18	SS 2	0.6 m to 1.2 m	3	49	48		13.7
		Description	Classification	D ₆₀	D ₃₀	D ₁₀	C _u
		Silty Sand some Clay trace Gravel	SM	0.14	0.02	-	C _c

Issued By: _____

(Senior Project Manager)

Date Issued: _____

June 7, 2018

Cambium Inc. (Laboratory)

866.217.7900 | cambium-inc.com
701 The Queensway | Units 5-6 | Peterborough | ON | K9J 7J6

Form: L6V.2 - Grad.Hydro

Grain Size Distribution Chart

CAMBİUM

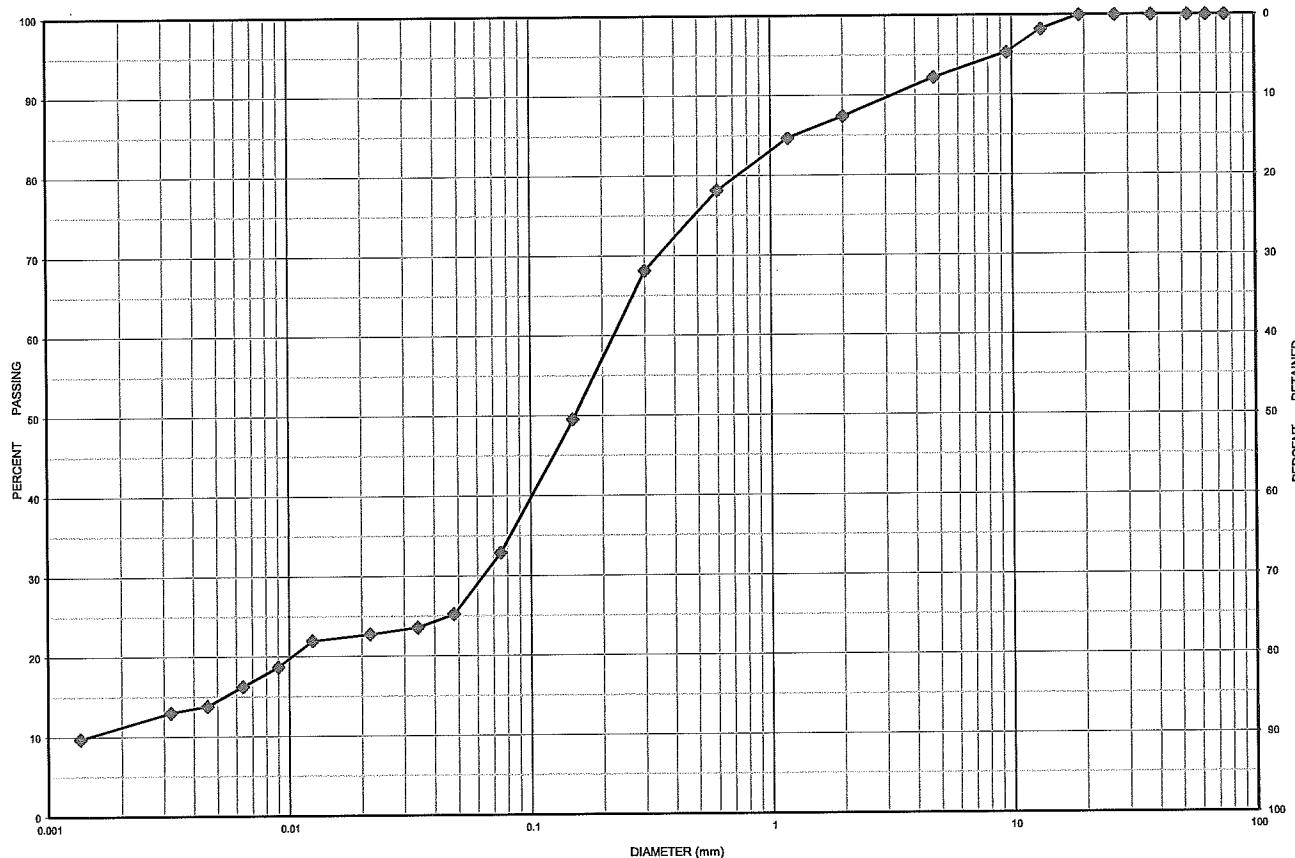
Project Number: 7468-001

Client: The Jones Consulting Group Ltd.

Project Name: Geotech - Mapleview South Development, Innisfil

Sample Date: May 9, 2018

Sampled By: Alex Griffin - Cambium Inc.


Location: BH 106-18 SS 9

Depth: 9.1 m to 9.6 m

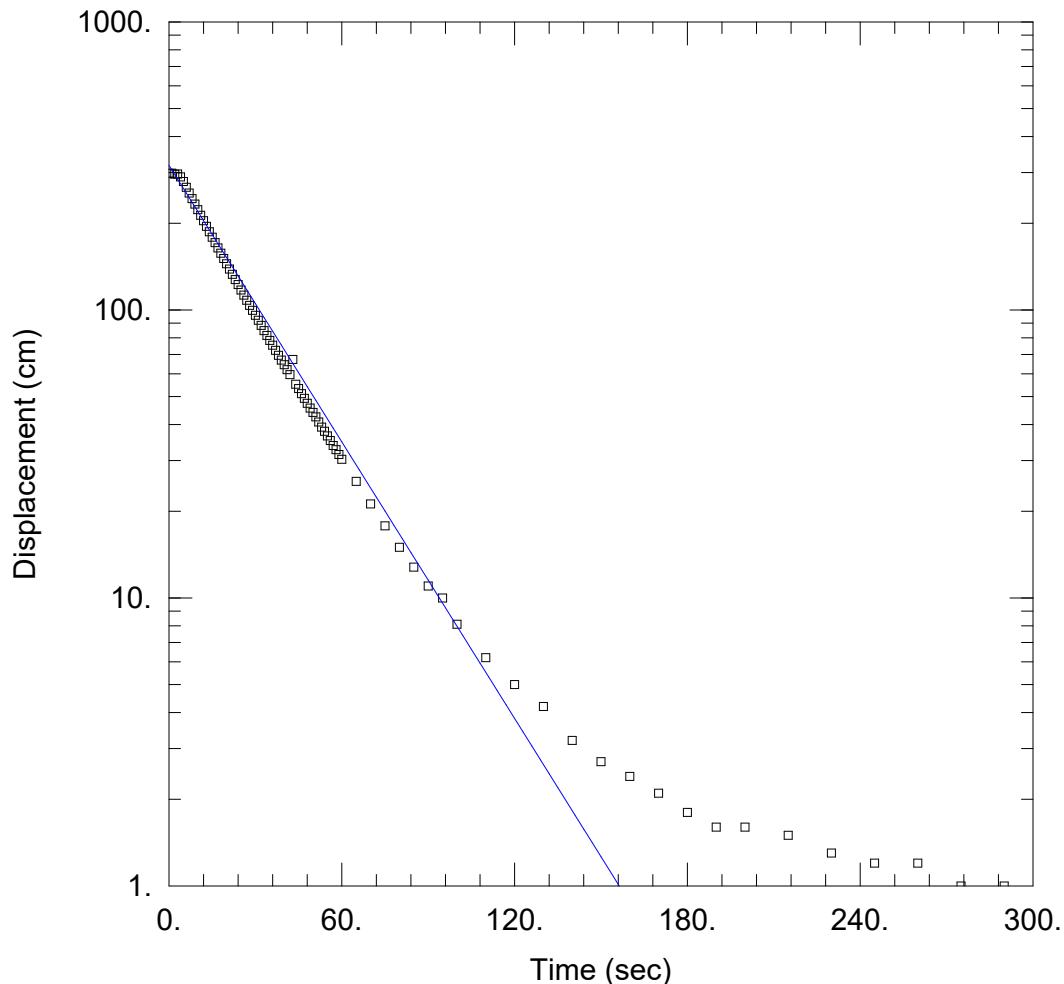
Lab Sample No: S-18-0442

UNIFIED SOIL CLASSIFICATION SYSTEM

CLAY & SILT (<0.075 mm)	SAND (<4.75 mm to 0.075 mm)			GRAVEL (>4.75 mm)	
	FINE	MEDIUM	COARSE	FINE	COARSE

MIT SOIL CLASSIFICATION SYSTEM

CLAY	SILT	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	BOULDERS
		SAND			GRAVEL			


Location	Sample No.	Depth	Gravel	Sand	Silt	Clay	Moisture
BH 106-18	SS 9	9.1 m to 9.6 m	8	59	33		13.2
Description	Classification	D ₆₀	D ₃₀	D ₁₀	C _u	C _c	
Silty Sand some Clay trace Gravel	SM	0.220	0.064	0.0014	157.14	13.30	

Issued By:

(Senior Project Manager)

Date Issued:

June 7, 2018

HYDRAULIC CONDUCTIVITY TEST AT MS-103 (SCREENED IN SANDY SILT TILL)

PROJECT INFORMATION

Company: R.J Burnside & Associates Limi

Project: 300042309

Location: Barrie

Test Well: MS-103

Test Date: June 18, 2019

AQUIFER DATA

Saturated Thickness: 314. cm

Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MS-103)

Initial Displacement: 298.5 cm

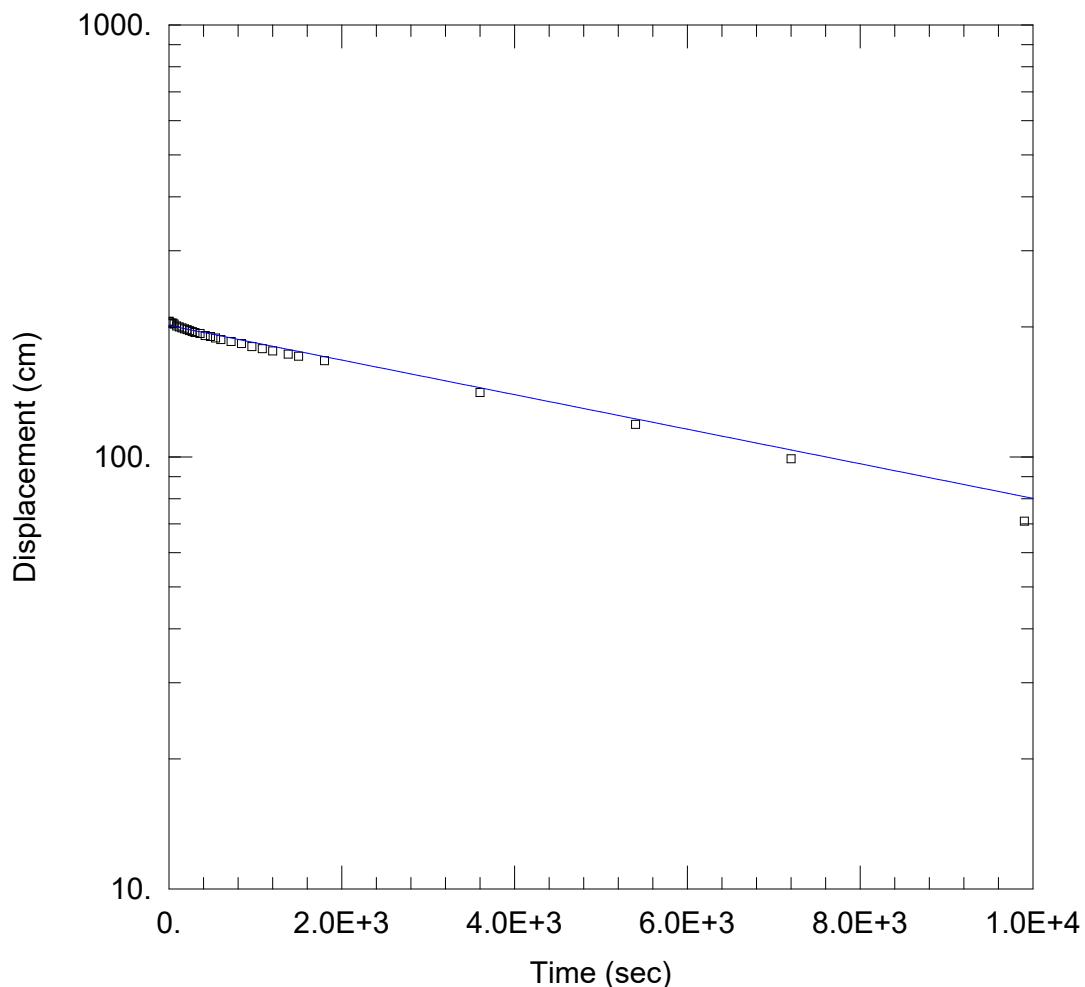
Static Water Column Height: 314. cm

Total Well Penetration Depth: 314. cm

Screen Length: 152. cm

Casing Radius: 2.54 cm

Well Radius: 7.62 cm


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

$K = 0.002844$ cm/sec

$y_0 = 317.6$ cm

HYDRAULIC CONDUCTIVITY TEST AT MS-106S (SCREENED IN SILTY SANDY CLAY)

PROJECT INFORMATION

Company: R.J Burnside & Associates Limi

Project: 300042309

Location: Barrie

Test Well: MS-106s

Test Date: November 12, 2019

AQUIFER DATA

Saturated Thickness: 698. cm

Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MS-106s)

Initial Displacement: 206. cm

Static Water Column Height: 698. cm

Total Well Penetration Depth: 698. cm

Screen Length: 152. cm

Casing Radius: 2.54 cm

Well Radius: 7.62 cm

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

$K = 8.039E-6$ cm/sec

$y_0 = 201.4$ cm

Appendix D

Groundwater Level Data

Table D-1
Groundwater Elevations

	Well Depth (mbgl)	Ground Surface Elevation (masl)	22-May-2018		2-Aug-2018		6-Sep-2018		28-Sep-2018	
			Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)
MS-101	7.24	258.25	1.73	256.52	2.59	255.66	2.68	255.57	2.85	255.40
MS-103	7.32	260.45	3.69	256.76	4.70	255.75	4.87	255.58	5.05	255.40
MS-106s	6.06	252.25	0.17	252.08	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing
MS-106d	11.71	252.28	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing

Notes:

"-" denotes data unavailable

Ground elevations from Cambium Incorporated

Table D-1
Groundwater Elevations

	Well Depth (mbgl)	Ground Surface Elevation (masl)	24-Oct-2018		29-Nov-2018		17-Dec-2018		1-Feb-2019	
			Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)
MS-101	7.24	258.25	2.92	255.33	2.15	256.10	2.19	256.06	2.55	255.70
MS-103	7.32	260.45	5.14	255.31	4.62	255.83	4.47	255.98	4.68	255.77
MS-106s	6.06	252.25	Flowing	Flowing	Frozen	Frozen	Frozen	Frozen	Frozen	Frozen
MS-106d	11.71	252.28	Flowing	Flowing	Frozen	Frozen	Frozen	Frozen	Frozen	Frozen

Notes:

"-" denotes data unavailable

Ground elevations from Cambium Incorporated

Table D-1
Groundwater Elevations

	Well Depth (mbgl)	Ground Surface Elevation (masl)	1-Mar-2019		2-Apr-2019		6-May-2019		29-May-2019	
			Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)
MS-101	7.24	258.25	2.69	255.56	2.37	255.88	1.46	256.79	1.87	256.38
MS-103	7.32	260.45	4.83	255.62	4.70	255.75	3.61	256.84	4.00	256.45
MS-106s	6.06	252.25	Frozen	Frozen	Frozen	Frozen	Flowing	Flowing	Flowing	Flowing
MS-106d	11.71	252.28	Frozen	Frozen	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing

Notes:

"-" denotes data unavailable

Ground elevations from Cambium Incorporated

Table D-1
Groundwater Elevations

	Well Depth (mbgl)	Ground Surface Elevation (masl)	25-Jun-2019		26-Aug-2019		23-Oct-2019		16-Dec-2019	
			Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)
MS-101	7.24	258.25	2.19	256.06	-	-	3.18	255.07	2.62	255.63
MS-103	7.32	260.45	4.34	256.11	6.00	254.45	5.36	255.09	4.93	255.52
MS-106s	6.06	252.25	Flowing	Flowing	-	-	Flowing	Flowing	Frozen	Frozen
MS-106d	11.71	252.28	Flowing	Flowing	-	-	Flowing	Flowing	Frozen	Frozen

Notes:

"-" denotes data unavailable

Ground elevations from Cambium Incorporated

Table D-1
Groundwater Elevations

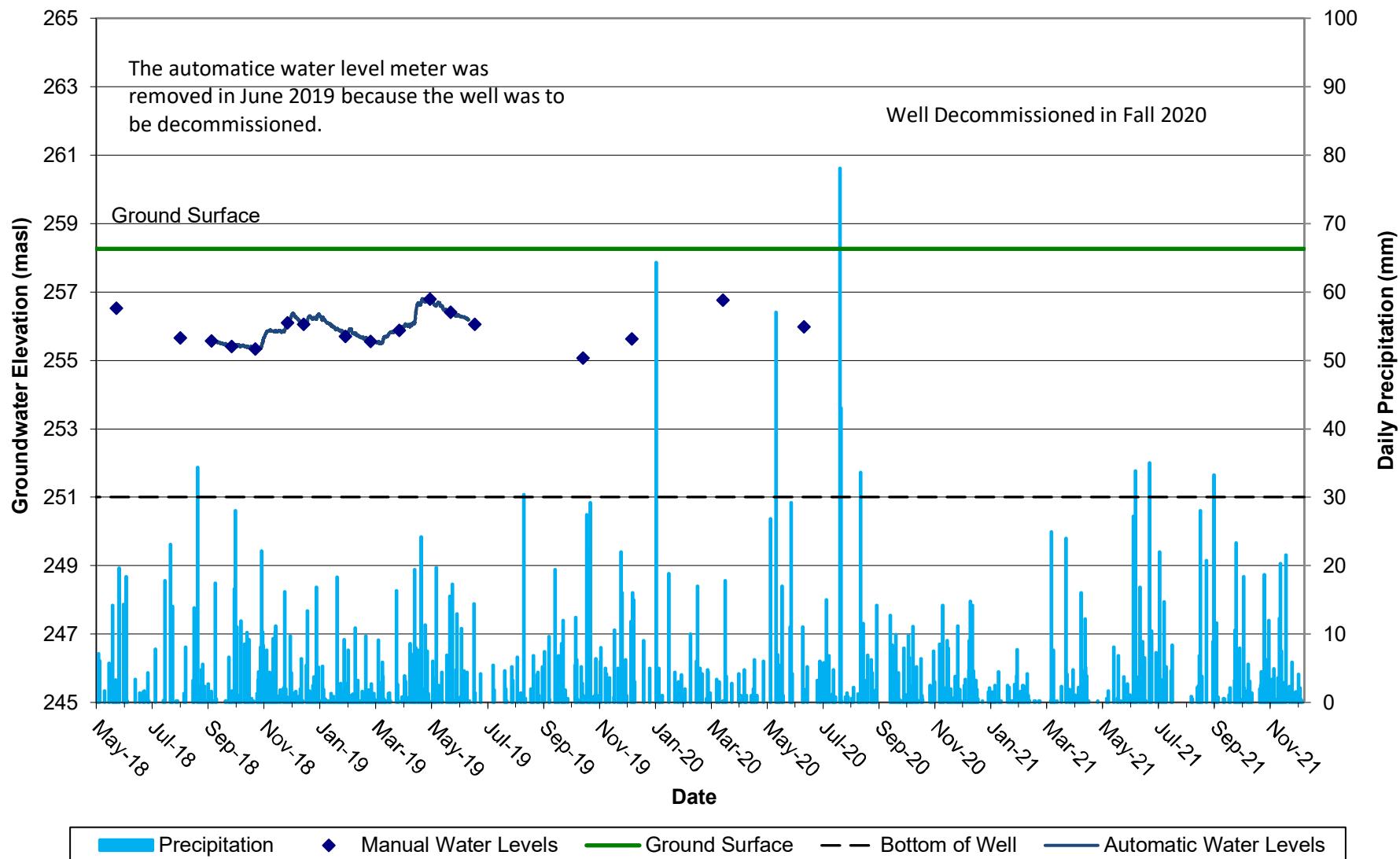
	Well Depth (mbgl)	Ground Surface Elevation (masl)	26-Mar-2020		24-Jun-2020		21-Sep-2020		17-Dec-2020	
			Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)
MS-101	7.24	258.25	1.49	256.76	2.27	255.98	-	-	Removed	-
MS-103	7.32	260.45	3.68	256.77	4.24	256.21	4.03	256.42	Removed	-
MS-106s	6.06	252.25	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing	Frozen	Frozen
MS-106d	11.71	252.28	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing

Notes:

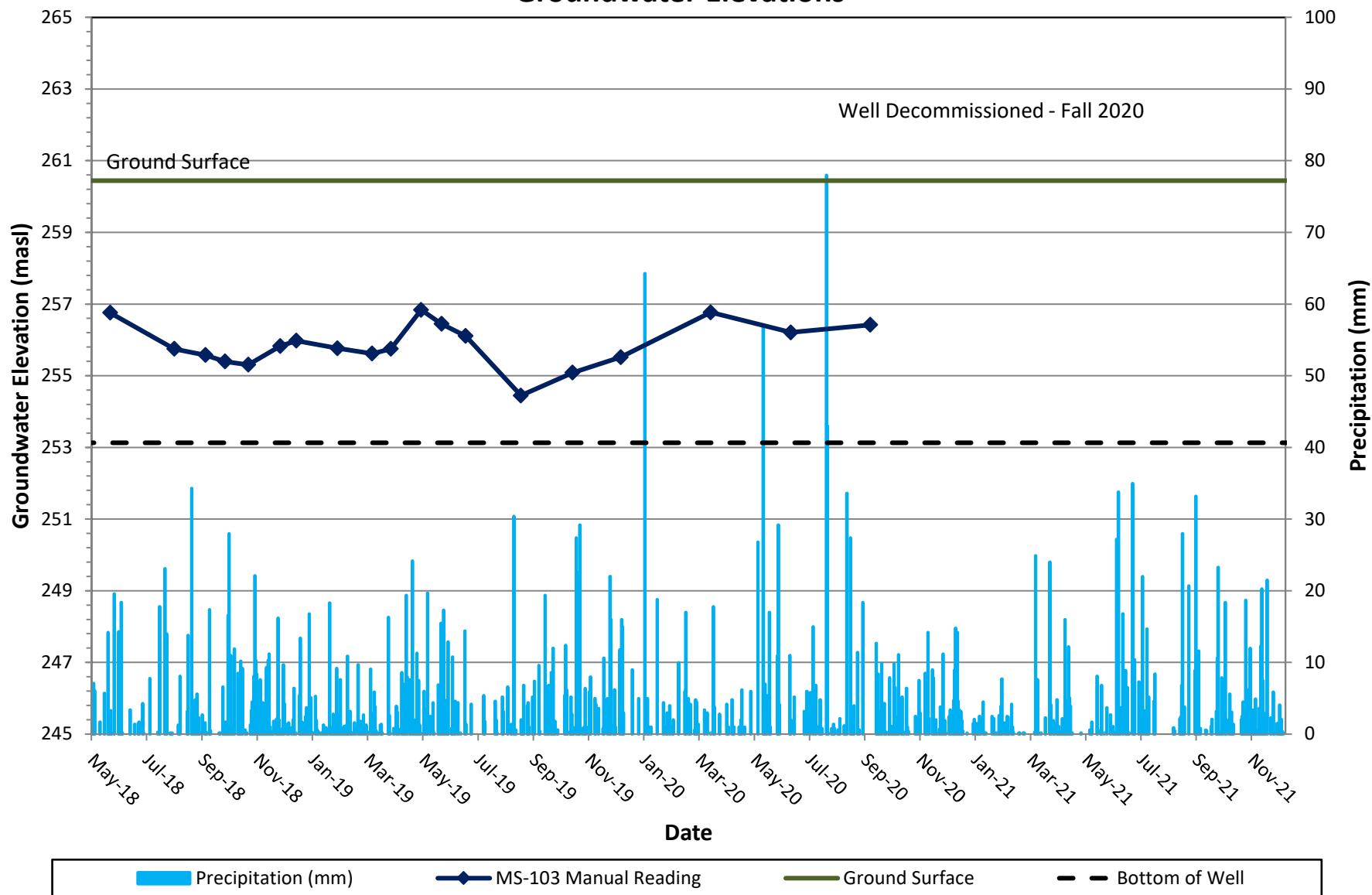
"-" denotes data unavailable

Ground elevations from Cambium Incorporated

Table D-1
Groundwater Elevations

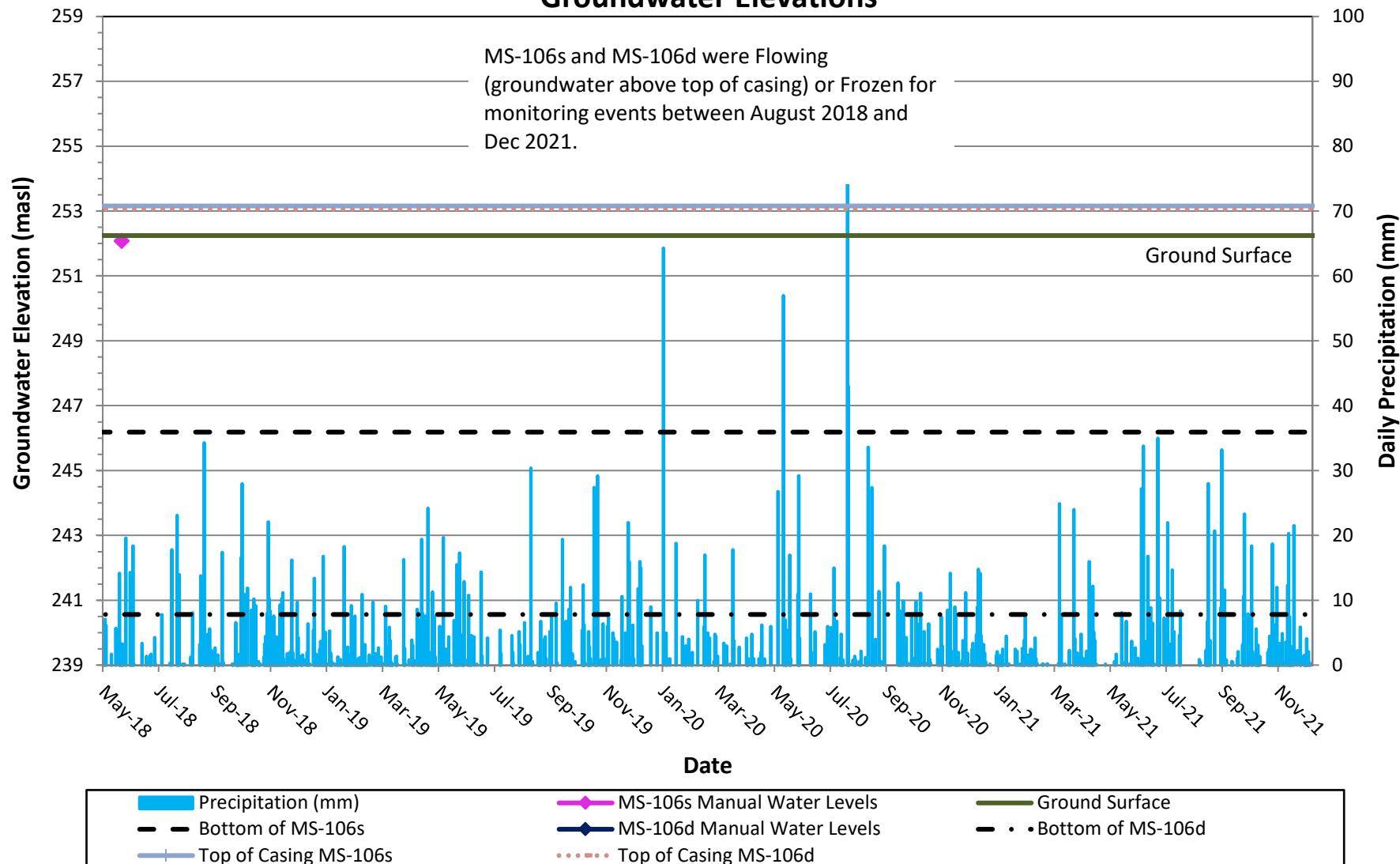

	Well Depth (mbgl)	Ground Surface Elevation (masl)	1-Apr-2021		24-Aug-2021		14-Dec-2021	
			Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)	Water Level (mbgs)	Water Elevation (masl)
MS-101	7.24	258.25	Removed	-	Removed	-	Removed	-
MS-103	7.32	260.45	Removed	-	Removed	-	Removed	-
MS-106s	6.06	252.25	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing
MS-106d	11.71	252.28	Flowing	Flowing	Flowing	Flowing	Flowing	Flowing

Notes:


"-" denotes data unavailable

Ground elevations from Cambium Incorporated

MS-101 (Well Depth 7.2 m, Screened in Sandy Silt Till/Sand)
Groundwater Elevations


MS-103 (Well Depth: 7.3 m, Screened in Sandy Silt Till) Groundwater Elevations

MS-106s (Well Depth: 6.0 m, Screened in Silty Sandy Clay)

MS-106d (Well Depth: 11.7 m, Screened in Sand)

Groundwater Elevations

Appendix E

Water Quality

Table E-1
Groundwater Quality

Monitoring Well				MS-103
Date Sampled				6-May-19
Parameter	Unit	RDL	PWQO	
Electrical Conductivity	µS/cm	2		536
pH	pH Units	NA	(6.5-8.5)	7.79
Saturation pH				7.23
Langelier Index				0.56
Total Hardness (as CaCO ₃)	mg/L	0.5		239
Total Dissolved Solids	mg/L	20		306
Alkalinity (as CaCO ₃)	mg/L	5		179
Bicarbonate (as CaCO ₃)	mg/L	5		179
Carbonate (as CaCO ₃)	mg/L	5		<5
Hydroxide (as CaCO ₃)	mg/L	5		<5
Fluoride	mg/L	0.05		<0.05
Chloride	mg/L	0.10		18
Nitrate as N	mg/L	0.05		1.75
Nitrite as N	mg/L	0.05		<0.05
Bromide	mg/L	0.05		<0.05
Sulphate	mg/L	0.10		10.3
Ortho Phosphate as P	mg/L	0.10		<0.10
Ammonia as N	mg/L	0.02		<0.02
Total Phosphorus	mg/L	0.02	0.03	0.03
Total Organic Carbon	mg/L	1.0		4.8
Colour	TCU	5		<5
Turbidity	NTU	15		26400
Calcium	mg/L	0.05		85.5
Magnesium	mg/L	0.05		6.24
Sodium	mg/L	0.05		7.52
Potassium	mg/L	0.05		0.83
Aluminum (Dissolved)	mg/L	0.004	0.075	0.007
Antimony	mg/L	0.003		<0.003
Arsenic	mg/L	0.003	1	<0.003
Barium	mg/L	0.002		0.023
Beryllium	mg/L	0.001		<0.001
Boron	mg/L	0.010	2	<0.010
Cadmium	mg/L	0.001	0.0002	<0.001
Chromium	mg/L	0.003	0.009	<0.003
Cobalt	mg/L	0.001		<0.001
Copper	mg/L	0.003	0.005	<0.003
Iron	mg/L	0.010	0.3	<0.010
Lead	mg/L	0.001	0.001	<0.001
Manganese	mg/L	0.002		<0.002
Mercury (Dissolved)	mg/L	0.0001	0.0002	<0.0001
Molybdenum	mg/L	0.002	0.04	<0.002
Nickel	mg/L	0.003	0.025	<0.003
Selenium	mg/L	0.004	0.01	<0.004
Silver	mg/L	0.002	<0.002	<0.002
Strontium	mg/L	0.005		0.161
Thallium	mg/L	0.006	0.0003	<0.006
Tin	mg/L	0.002		<0.002
Titanium	mg/L	0.002		<0.002
Tungsten	mg/L	0.010		<0.010
Uranium	mg/L	0.002	0.005	<0.002
Vanadium	mg/L	0.002		<0.002
Zinc	mg/L	0.005	0.03	<0.005
Zirconium	mg/L	0.004		<0.004
% Difference/ Ion Balance	%	NA		7.4

RDL - Reported Detection Limit

PWQS - Provincial Water Quality Standards

Appendix F

Water Balance

WATER BALANCE CALCULATIONS

Mapleview South - Block 192
 Mapleview South (Innisfil) Ltd.
 Barrie, ON
 PROJECT No.300042309

TABLE F-1

Water Balance Components														
Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 150 mm (moderately-rooted vegetation in sandy loam soils)														
Precipitation data from Barrie WPCC Climate Station (1981 - 2010)														
Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR	
Average Temperature (Degree C)	-7.7	-6.6	-2.1	5.6	12.3	17.9	20.8	19.7	15.3	8.7	2.7	-3.5	6.9	
Heat index: $i = (t/5)^{1.514}$	0.00	0.00	0.00	1.19	3.91	6.90	8.66	7.97	5.44	2.31	0.39	0.00	36.8	
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.00	25.18	58.76	88.02	103.48	97.59	74.33	40.47	11.47	0.00	499	
Adjusting Factor for U (Latitude 44° 20' N)	0.81	0.82	1.02	1.13	1.27	1.29	1.3	1.2	1.04	0.95	0.8	0.76		
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	28	75	114	135	117	77	38	9	0	593	
WATER BALANCE COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR	
Precipitation (P)	83	62	58	62	82	85	77	90	94	78	89	74	933	
Potential Evapotranspiration (PET)	0	0	0	28	75	114	135	117	77	38	9	0	593	
P - PET	83	62	58	34	8	-29	-57	-27	17	39	80	74	340	
Change in Soil Moisture Storage	0	0	0	0	0	-29	-57	-27	17	39	58	0	0	
Soil Moisture Storage max 150 mm	150	150	150	150	150	121	64	37	53	92	150	150		
Actual Evapotranspiration (AET)	0	0	0	28	75	114	135	117	77	38	9	0	593	
Soil Moisture Deficit max 150 mm	0	0	0	0	0	29	86	113	97	58	0	0		
Water Surplus - available for infiltration or runoff	83	62	58	34	8	0	0	0	0	0	22	74	340	
Potential Infiltration (based on MOE methodology*; independent of temperature)	50	37	35	20	5	0	0	0	0	0	13	44	204	
Potential Direct Surface Water Runoff (independent of temperature)	33	25	23	13	3	0	0	0	0	0	9	29	136	
IMPERVIOUS AREA WATER SURPLUS														
Precipitation (P)	933	mm/year												
Potential Evaporation (PE) from impervious areas (assume 15%)	140	mm/year												
P-PE (surplus available for runoff from impervious areas)	793	mm/year												

Assume January storage is 100% of Soil Moisture Storage

Soil Moisture Storage 150 mm

<< See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

*MOE SWM infiltration calculations

topography - hilly land (avg slope ~ 5%)

0.1

<< Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

soils - combinations of sandy loam and loam

0.4

<< Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

cover - predominantly cultivated land

0.1

<< Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

Infiltration factor

0.6

Latitude of site (or climate station)

44° N.

WATER BALANCE CALCULATIONS

Mapleview South - Block 192
 Mapleview South (Innisfil) Ltd.
 Barrie, ON
 PROJECT No.300042309

TABLE F-2

Water Balance Components														
Based on Thornthwaite's Soil Moisture Balance Approach with a Soil Moisture Retention of 75 mm (urban lawn in sandy loam soils)														
Precipitation data from Barrie WPCC Climate Station (1981 - 2010)														
Potential Evapotranspiration Calculation	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR	
Average Temperature (Degree C)	-7.7	-6.6	-2.1	5.6	12.3	17.9	20.8	19.7	15.3	8.7	2.7	-3.5	6.9	
Heat index: $i = (t/5)^{1.514}$	0.00	0.00	0.00	1.19	3.91	6.90	8.66	7.97	5.44	2.31	0.39	0.00	36.8	
Unadjusted Daily Potential Evapotranspiration U (mm)	0.00	0.00	0.00	25.18	58.76	88.02	103.48	97.59	74.33	40.47	11.47	0.00	499	
Adjusting Factor for U (Latitude 44° 20' N)	0.81	0.82	1.02	1.13	1.27	1.29	1.3	1.2	1.04	0.95	0.8	0.76		
Adjusted Potential Evapotranspiration PET (mm)	0	0	0	28	75	114	135	117	77	38	9	0	593	
WATER BALANCE COMPONENTS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR	
Precipitation (P)	83	62	58	62	82	85	77	90	94	78	89	74	933	
Potential Evapotranspiration (PET)	0	0	0	28	75	114	135	117	77	38	9	0	593	
P - PET	83	62	58	34	8	-29	-57	-27	17	39	80	74	340	
Change in Soil Moisture Storage	0	0	0	0	0	-29	-46	0	17	39	19	0	0	
Soil Moisture Storage max 75 mm	75	75	75	75	75	46	0	0	17	56	75	75		
Actual Evapotranspiration (AET)	0	0	0	28	75	114	123	90	77	38	9	0	555	
Soil Moisture Deficit max 75 mm	0	0	0	0	0	29	75	75	58	19	0	0		
Water Surplus - available for infiltration or runoff	83	62	58	34	8	0	0	0	0	0	60	74	378	
Potential Infiltration (based on MOE methodology*; independent of temperature)	54	40	38	22	5	0	0	0	0	0	39	48	246	
Potential Direct Surface Water Runoff (independent of temperature)	29	22	20	12	3	0	0	0	0	0	21	26	132	
IMPERVIOUS AREA WATER SURPLUS														
Precipitation (P)	933	mm/year												
Potential Evaporation (PE) from impervious areas (assume 15%)	140	mm/year												
P-PE (surplus available for runoff from impervious areas)	793	mm/year												

Assume January storage is 100% of Soil Moisture Storage

Soil Moisture Storage 75 mm

<< See "Water Holding Capacity" values in Table 3.1, MOE SWMPDM, 2003

*MOE SWM infiltration calculations

topography - hilly land (avg slope ~ 5%)

0.1

<< Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

soils - combinations of sandy loam and loam

0.4

<< Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

cover - urban lawn

0.15

<< Infiltration Factors from the bottom section of Table 3.1, MOE SWMPDM, 2003

Infiltration factor

0.65

Latitude of site (or climate station)

44 ° N.

WATER BALANCE CALCULATIONS

Mapleview South - Block 192
 Mapleview South (Innisfil) Ltd.
 Barrie, ON
 PROJECT No.300042309

TABLE F-3

Water Balance for Pre- and Post-Development Land Use Conditions (with no SWM/LID measures in place) Site Plan Block 192												
Land Use Description	Approx. Land Area* (m ²)	Estimated Impervious Fraction for Land Use*	Estimated Impervious Area (m ²)	Runoff from Impervious Area** (m/a)	Runoff Volume from Impervious Area (m ³ /a)	Estimated Pervious Area (m ²)	Runoff from Pervious Area** (m/a)	Runoff Volume from Pervious Area (m ³ /a)	Infiltration from Pervious Area** (m/a)	Infiltration Volume from Pervious Area (m ³ /a)	Total Runoff Volume (m ³ /a)	Total Infiltration Volume (m ³ /a)
Pre-Development Land Use												
Natural Heritage System / Wetland	185	0.00	0	0.793	0	185	0.136	25	0.204	38	25	38
Open Space /Agricultural	7,122	0.00	0	0.793	0	7,122	0.136	968	0.204	1,452	968	1,452
Rural Residential	93	0.25	23	0.793	18	70	0.132	9	0.204	14	28	14
TOTAL PRE-DEVELOPMENT	7,400		23		18	7,377		1,002		1,504	1,021	1,504
Post-Development Land Use (with no LID measures in place)												
Buildings	1,800	1.00	1,800	0.793	1,427	0	0.132	0	0.246	0	1,427	0
Pavement	3,000	1.00	3,000	0.793	2,379	0	0.132	0	0.246	0	2,379	0
Landscaped	2,400	0.00	0	0.793	0	2,400	0.132	318	0.246	590	318	590
Landscaped with Underground Parking	200	1.00	200	0.793	159	0	0.132	0	0.246	0	159	0
TOTAL POST-DEVELOPMENT	7,400		5,000		3,965	2,400		318		590	4,282	590
% Change from Pre to Post											420	61
Effect of development (with no mitigation)											4.2 times increase in runoff	61% reduction of infiltration

* data provided by Jones Consulting Group Ltd.

** figures from Tables F-1 and F-2

To balance pre- to post-,
the infiltration target (m³/a) =

914

WATER BALANCE CALCULATIONS

Mapleview South - Block 192
Mapleview South (Innisfil) Ltd.
Barrie, ON
PROJECT No.300042309

TABLE F-4

Water Balance Mitigation Strategy Direct Runoff to Infiltration Facility					
Total Area (m²)	Total Annual Precipitation (m)*	Runoff Volume from Impervious Area (m³/a)***	Runoff Volume from Pervious Area (m³/a)***	Total Runoff Volume (m³/a)	Potential Infiltration (m³/a) in Facility (assumes 71% capture of total annual runoff volume)**
7,400	0.933	3,965	318	4,282	3,040

* values from Barrie WPCC climate station

** based on data provided by Jones Consulting

*** figures from Table F-3

