HYDROGEOLOGICAL INVESTIGATION REPORT PROPOSED RESIDENTIAL DEVELOPMENT 79 COLLIER STREET, BARRIE, ONTARIO

Prepared for:

Vitmont Holdings (Barrie) Inc. c/o Marydel Holmes 100 Caster Avenue Woodbridge, Ontario, L4L 5Y9

Prepared By:

SIRATI & PARTNERS CONSULTANTS LTD.

Project: SP20-666-30 September 15, 2020

12700- Keele Street, King City

ON L7B 1H5

Tel: (905) 833-1582 Fax: (905) 833-5360 www.sirati.ca

TABLE OF CONTENTS

1.0.	INTRODUCTION AND BACKGROUND	1
2.0.	SCOPE OF WORK	1
3.0.	PAST INVESTIGATIONS	2
4.0.	LAND USE	4
5.0.	SITE DEVELOPMENT PLAN	4
6.0.	ENVIRONMENTAL FEATURES	4
7.0.	PHYSICAL SETTING	5
7.1	Topography and Drainage	5
7.2	Physiography	5
7.3	Overburden Geology	5
7.4	Bedrock Geology	6
8.0.	HYDROGEOLOGY	6
9.0.	BOREHOLE DRILLING AND MONITORING WELL INSTALLATION	6
9.1	Soil Stratigraphy	7
9.2	Groundwater Levels	7
9.3	Groundwater Flow Direction and Hydraulic Gradients	8
9.4	Estimated Hydraulic Conductivity	9
10.0.	CONSTRUCTION DEWATERING REQUIREMENTS	9
10.1	1 1	
10.2		
11.0.	ASSESSMENT OF POTENTIAL IMPACTS	
11.1	Natural Features	10
11.2	Water Supply Wells near the Site	10
11.3	· ·	
1	1.3.1 Well Head Protection Area	10
1	1.3.2 Issue Contributing Area – Chloride and Sodium	11
1	1.3.3 Significant Groundwater Recharge Area	11
1	1.3.4 Highly Vulnerable Aquifer	11
1	1.3.5 Wellhead Protection Area – Q (Water Quantity)	12
12.0.	WATER BALANCE	12
12.1	Site Condition	12
12.2	Site Level Water Balance	12
12.3	Climatic Data	13
12.4	Infiltration and Runoff	15

12.5	Summary of Water Balance Calculation	16
12.6	Discussions on LID Measures	16
14.0.	SELECTED BIBLIOGRAPHY	20
15.0.	LIMITATIONS AND USE OF THE REPORT	21
16.0.	SIGNATURES	22
FIGURE	CS CS	
Figure 1-	1 – Site Location Plan	
Figure 5-	1 – Site Development Plan	
Figure 5-	2 – Building Sectional Map	
Figure 6-	1 – Barrie Creeks Subwatershed Map	
Figure 6-	2 – Key Hydrological and Natural Heritage Features	
Figure 6-	3 – MECP Source Protection Information Atlas Map	
Figure 6-	4 – LSRCA Regulation Area Map	
Figure 7-	1 - Site Topographic Survey Plan	
Figure 7-	2 – Physiography Map	
Figure 7-	3 – Surficial Geology Map	
Figure 7-	4 – Bedrock Geology Map	
Figure 8-	1 – MECP Water Well Records Map	
Figure 9-	1 – Borehole Location Plan (SIRATI)	
Figure 9-	2 – Cross Section Profile A-A' (N-S)	
Figure 9-	3 – Cross Section Profile B-B' (NW-SE)	
Figure 9-	4 – Inferred Groundwater Flow Direction Map	
Figure 12	2-1 – Pre-Development Plan – Site Statistics	
Figure 12	2-2 – Post-Development Plan – Site Statistics	
Figure 12	2-3 – Mean Annual Temperature at the Site	

Figure 12-4 – Mean Annual Precipitation at the Site

Figure 12-5 – Mean Monthly Average Temperature and Precipitation in Study Area

APPENDICES

Appendix A1 – Borehole Logs (V.A. Wood, 2016)

Appendix A2 – Borehole Logs (PGL, 2019)

Appendix A3 – Borehole Logs (SIRATI, 2020)

Appendix B – Grain Size Gradation Chart

Appendix C – Water Balance Calculation (Thornthwaite data)

1.0. INTRODUCTION AND BACKGROUND

Sirati & Partners Consultants Ltd. (SIRATI) was retained by Vitmont Holdings (Barrie) Inc. c/o Marydel Homes ("the Client") to conduct a Hydrogeological Investigation at the property identified as 79 Collier Street, Barrie, Ontario (the Property or the Site). The location of the Property is shown in Figure 1-1.

We understand that prior to December 2019, the municipal address for the Site was 36 Mulcaster Street, Barrie, Ontario. According to a City of Barrie memo dated December 11, 2019, the municipal address 79 Collier Street was assigned to the Site.

We also understand that the Site is an L-shaped property with an approximate area of 1,600 m² (0.16 hectares) located at the southwest corner of the intersection of Mulcaster Street and Collier Street in Downtown Barrie. It is bounded by Collier Street to the north, by Mulcaster Street to the east, by a retaining wall and a laneway to the south, followed by multiple commercial buildings, and by commercial property to the west. To the southeast of the Site is an armory building currently in operation as the Grey & Simcoe Foresters Regimental Museum.

It is understood that the Client intends to develop the Property with a fifteen-storey apartment complex with added commercial spaces.

The hydrogeological study was undertaken to ascertain the soil and groundwater conditions of the Site, assess any impacts on the surrounding natural environment due to the proposed development and provide recommendations or mitigative measures.

2.0. SCOPE OF WORK

This hydrogeological investigation assessment was carried out with the following tasks:

- Review of available background information: a review of available geological and
 hydrogeological information for the site and surrounding areas and the investigation reports
 completed for the Site was conducted to provide background information to allow for
 characterization of the Site's soil and groundwater conditions.
- **Detailed site inspection**: an inspection of the Site was completed to review existing site conditions including identification of any hydrogeological features such as significant areas of potential groundwater recharge or areas of groundwater discharge.
- Measurement of groundwater levels: groundwater levels were measured in the existing monitoring wells to establish and/or confirm the general groundwater flow condition.

Project: SP20-666-30 Vitmont Holdings (Barrie) Inc.

nont Holdings (Barrie) Inc. Hydrogeological Investigation Report, 79 Collier Street, Barrie, ON

 Water Balance (Preliminary): a preliminary water balance study was completed for the proposed development using the Thornthwaite approach and the climatic data obtained from Environment Canada.

- **Dewatering Assessment:** an assessment of the short-term and long-term dewatering was conducted for the construction of the proposed residential building with one level of underground parking. The assessment also evaluated the need for Permit to Take Water (PTTW) or Environmental Activity and Sector Registry (EASR) registration.
- Report Preparation: a hydrogeological report was prepared presenting the results, findings, and recommendations of this investigation.

It should be noted that a Phase Two Environmental Site Assessment (ESA) was concurrently conducted by SIRATI at the Site. In addition, environmental site assessments and geotechnical investigations were completed previously at the Site by other consultants.

The data or information obtained in the current and former investigations has been incorporated into this hydrogeological investigation report.

3.0. PAST INVESTIGATIONS

1) V.A. Wood Associates Ltd. (V.A. Wood) completed a geotechnical assessment at the Site in 2016. A report entitled "Geotechnical Investigation, Proposed Condominium, 36 Mulcaster Street, Barrie, Ontario," dated April 2016 was prepared for Edgecon Inc. by V.A. Wood. (Ref. No. 6862-16-02). The extracted data including borehole locations and borehole logs are presented in Appendix A1.

During geotechnical investigation, a total of six (6) boreholes (with no monitoring well installation) were completed across the Site. The boreholes were advanced to the depths ranging from 3.5 m below ground surface (mbgs) to 15.7 mbgs. The boreholes encountered a pavement 300 mm to 400 mm thick, followed by 1 m to 3.7 m of loose to compact gravelly sand fill, then generally competent native deposits of sand, gravelly sand till. The groundwater table is considered to be at least 5.5 mbgs. Soil samples taken from fill materials were submitted for analysis of polyaromatic hydrocarbons (PAHs), petroleum hydrocarbons (PHCs), and metals. The analytical results were summarized in a letter report "Ref. No. 6862-16-02, Soil Analytical Testing, 36 Mulcaster Street, Barrie, Ontario," dated April 8, 2016. The test results show that some of the samples have concentrations of PAHs, some metals, sodium adsorption ratio (SAR) and electrical conductivity (EC) exceeding the Ministry of Environment, Conservation and

Parks (MECP) Site Condition Standards (SCS).

2) PGL Environmental Consultants (PGL) conducted a Phase II ESA at the Site in 2019, which was based on the findings of a Phase I ESA completed in February 2015 by Spice Environmental Inc. (Spice). A report entitled "Phase II Environmental Site Assessment, 36 Mulcaster Street, Barrie, Ontario," dated June 2019 was prepared for Grant Thornton Limited by PGL. The extracted data including the borehole locations and borehole logs are presented in Appendix A2.

The Spice's Phase I ESA identified onsite risks of environmental contamination due to the importation of up to 2,500 m³ fill of unknown quality and the remains of a drill shed which was destroyed by fire in 1885.

The 2019 Phase II ESA findings are described below:

- Six (6) boreholes (BH101 to BH104 and BH201 and BH202) were advanced at the Site, to the depths ranging from 6.1 mbgs to 13.7 mbgs. Five (5) boreholes were completed as monitoring wells (identified as BH101M, BH102M, BH103M, BH201M and BH201M). However, monitoring wells BH101M, BH102M, BH103M were found to be dry.
- Fill material was present at depths ranging from 2 mbgs to 5mbgs in the boreholes across the Site. Staining and extraneous materials such as bricks, debris, and charcoal were observed in the fill.
- Soil samples were collected and analyzed for petroleum hydrocarbons Fractions 1 to 4 (PHC F1-F4), benzene, toluene, ethylbenzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs) and metals.
- Groundwater was encountered at roughly 8.7 mbgs. Two (2) groundwater samples were collected and tested for PAHs and metals.
- Soil and groundwater results were compared to Ontario Regulation 153/04 Table 2 Site
 Condition Standards (SCS) for industrial/commercial/community land use and a coarsetextured soil. They were also compared against the Table 2 residential/parkland/institutional
 SCS in the event the Site is redeveloped for residential purposes.
- Impacts of PAHs and metals were identified in the fill material on the west side of the Site.

 The groundwater results met the applicable Table 2 SCS for both industrial/commercial/community and residential/parkland/ institutional land uses.
- The 2019 Phase II ESA recommended that impacted fill be addressed through remediation and/or a Risk Assessment during redevelopment of the Site.

It should be noted that the previous Phase II ESA was carried out for due diligence purpose for prior to divestment of the Site. A Phase One ESA, followed by a Phase Two ESA was recently conducted by SIRATI in support of the proposed development. The preliminary results indicate that exceedances of the MECP Table 2 Standards were found in some soil and groundwater samples for one or more parameters including PAHs, metals, PHCs and VOCs.

4.0. LAND USE

The Site is located located at the southwest corner of the intersection of Mulcaster Street and Collier Street, in a built up mixed residential and commercial area, in Barrie.

The Site is relatively flat with a gentle slope from north to south. To the southeast corner of the Site is an existing heritage structure currently in operation as the Grey & Simcoe Foresters Regimental Museum.

5.0. SITE DEVELOPMENT PLAN

The Property covering an area of about 0.40 acres (0.16 ha) was proposed to be developed as a step-like structure consisting of a 15-storey bulging in the north, a 14-storey structure in the center and a 13-storey building in the south, with a total of 127 residential units and equal number of parking spaces. Parking is being provided at one level underground parking and three (3) levels of above ground parking. Commercial spaces are being provided in the eastern half of the Site.

The site development plan with the outlay of the building is shown in Figure 5-1.

Figure 5-2 shows the building sectional plan provided by the Client, which indicates the finished floor (FF) grade elevation at 234.38 m above mean sea level (mAMSL).

6.0. ENVIRONMENTAL FEATURES

To assess environmental features, the databases maintained by the Ministry of Natural Resources and Forestry (MNRF), the Ministry of Environment, Conservation and Parks (MECP), and the Lake Simcoe and the Region Conservation Authority (LSRCA) were reviewed.

Based on the data reviewed, the Site is situated within the Barrie Creeks subwatershed, as shown on Figure 6-1, under the jurisdiction of the Lake Simcoe and Couchiching Black Source Protection Area. No creeks or waterbodies are present at the Site.

As per MNRF Natural Heritage System database, the Site is not located in any significant natural areas or areas of natural and scientific interests (ANSIs) (Figure 6-2).

As shown on the MECP Sourcewater Protection Atlas map (Figure 6-3), the Site is located within a drinking water vulnerable area (wellhead protection area, WHPA-B, and Issue Contributing Area).

The Site is not located in any LSRCA regulation areas, as shown in Figure 6-4.

7.0. PHYSICAL SETTING

7.1 Topography and Drainage

The Site is located within the Barrie subwatershed of the Lake Simcoe watershed area. As shown in Figure 6-1, the Barrie subwatershed consists of Barrie Creeks, Lovers Creek and Hewitt's Creek. The Site falls within the Barrie Creeks subwatershed. Barrie Creeks subwatershed is roughly 37.5 km² in area and includes six (6) major creeks and all these creeks drain separately into Kempenfelt Bay of the Lake Simcoe.

Figure 7-1 presents the topography survey map prepared by C.A. MacDonald Surveying Inc., dated June 9, 2015. It indicates that the Site slopes generally to the south, with the elevations ranging from approximately 234.6 mAMSL in the north/northeast to about 230.4 mAMSL at the southwest corner. The nearest water body is Kempenfelt Bay of the Lake Simcoe, with the nearest point located about 160 m southeast of the Site.

7.2 Physiography

According to Chapman and Putnam (1984), three (3) physiographic regions are found within the subwatershed: the Simcoe Uplands, the Simcoe Lowlands, and the Peterborough Drumlin Field. As shown in Figure 7-2, the Site is located in the Sand Plain area in the Simcoe Lowlands physiographic region. The region is described as having lower elevations, with flat-floored valley features that generally correspond to current river systems (Sharpe *et al.*, 1999). The lowlands were flooded by glacial Lake Algonquin, and as a result, are floored by sand, silt and clay (Chapman and Putnam, 1984).

7.3 Overburden Geology

The surficial geology at the Site, was described as foreshore-basinal deposits consisting mainly of sand and silt with varying amounts of gravel, with high infiltration rates (Figure 7-3). In general, the thickness ranges from approximately 83 m to 191 m.

The Paleozoic bedrock topography appears to strongly influence the overlying Quaternary sediment thickness and distribution. The thicker Quaternary sediments occur in bedrock topographical lows (i.e. within bedrock valleys), while the thinnest areas of Quaternary deposits occur along the shoreline of Kempenfelt Bay.

7.4 Bedrock Geology

The bedrock can be characterized as being from the Paleozoic Era, consisting primarily of limestone of the Middle Ordovician Simcoe Group (Figure 7-4). The Simcoe Group consists of four formations that dip gently towards the southwest: Gull River Formation, Bobcaygeon Formation, Verulam Formation and the Lindsay Formation from oldest to youngest. However, only the Verulam and Lindsay Formations are found within these subwatersheds.

Verulam Formation occurs along the shoreline of Kempenfelt Bay and expands west of the City of Barrie and ranges in thickness from 32 m to 65 m and consists of fossiliferous limestone with inter-beds of calcareous shale.

8.0. HYDROGEOLOGY

Water well records on file with the Ministry of the Environment, Conservation and Parks (MECP) serve as a database for this hydrogeological assessment. The well locations were provided from the MECP interactive water well record database. According to the well records, there appears to be 79 wells within a 500 m radius around the property. The locations of the recorded water wells are shown in Figure 8-1.

Five (5) water wells (#5700235 for municipal, #5700236 and #5700262 for industrial, #5718640 for cooling/AC and #5719264 for public) were found for water supply use, and the others were recorded as test holes, observation wells, abandoned wells or with no detailed information.

Based on the details in the well records, a thick layer of overburden materials seems to be present in the study area. Bedrock was not encountered at the maximum explored depth of about 98 mbgs in a test hole identified as #5700288. The groundwater levels recorded in water supply wells and deep test holes ranged from 3 m above ground surface (artesian flowing water) to about 8.4 mbgs.

9.0. BOREHOLE DRILLING AND MONITORING WELL INSTALLATION

Concurrently with the Phase Two ESA, a total of five (5) boreholes (BH1 to BH5) were advanced at the Site, of which two (2) monitoring wells identified as BH/MW2 and BH/MW3 were completed with installation of monitoring wells.

As mentioned earlier, five (5) monitoring wells were installed at the Site in the previous investigations. However, during the site visit, only two (2) monitoring wells (BH201M and BH202M) were found existing at the Site.

Figure 9-1 depicts the locations of boreholes and monitoring wells completed by SIRATI, along with the monitoring wells completed previously by other consultant. The observed soil stratigraphy and the details of monitoring well construction are presented in Borehole Logs included in Appendix A1, A2 and A3.

9.1 Soil Stratigraphy

The soil stratigraphy as revealed from the advanced boreholes by SIRATI, generally consisted of topsoil/asphalt overlying the fill materials, underlain by cohesionless soils, predominantly composed of sand. No bedrock was encountered at the maximum explored depth of 15.7 mbgs (by V.A.Wood).

Following is the generalized stratigraphy at the Site, as depicted in the boreholes.

Topsoil

A layer of topsoil with a maximum thickness of 0.15 m was found at the surface of borehole number 1.

Asphalt

A layer of asphalt was found at the surface of all the boreholes, except MW1, with a maximum thickness of about 0.1 m.

Fill

Fill material consisting of sand, some stone, trace silt, clay with pieces of brick was found to a maximum depth of 2.3 mbgs at BH2.

Sand

A layer of sand with trace gravel with some silt was encountered from about 2.3 mbgs to the explored depth of 13.7 mbgs. This layer was moist to wet, white to dark grey in color.

The cross-section profiles A-A' and B-B' as shown in Figures 9-2 and 9-3, respectively, present the general soil stratigraphy of the Site. As can be seen from the cross-section, a layer of sand deposits exists below the fill materials across the entire Site.

A representative soil sample taken from BH/MW2 was selected for grain size analysis. The result is provided in Appendix B, which indicated the tested soil as silty fine sand.

9.2 Groundwater Levels

Groundwater levels were measured on July 16, and July 27, 2020 in two (2) new monitoring wells (BH/MW2 and BH/MW3) installed by SIRATI and two (2) existing monitoring wells (BH201M and BH202M) previously installed by PGL. The recorded groundwater levels are presented in Table 9-1 below.

Project: SP20-666-30 Vitmont Holdings (Barrie) Inc.

Table 9-1:

Well Construction Details and Measured Groundwater Levels

Monitoring	Ground Well		Well Screen		June 3, 2019		July 16, 2020		July 27, 2020	
Well	Elevation (mAMSL)	Depth (mbgs)	Depth (mbgs)	Screened Soil Type	Depth to Ground water (mbgs)	Ground water Elevation (mAMSL)	Depth to Ground water (mbgs)	Ground water Elevation (mAMSL)	Depth to Ground water (mbgs)	Ground water Elevation (mAMSL)
BH/MW 2	231.75	10.70	7.7 ~10.7	Sand	-	-	9.48	222.27	9.51	222.24
BH/MW 3	232.10	12.20	9.2 ~ 12.2	Sand	-	-	9.88	222.22	9.82	222.28
BH201M	230.80	13.70	10.7 ~ 13.7	Sand	8.7	222.10	8.80	222.00	8.87	221.93
BH202M	231.05	13.70	10.7 ~ 13.7	Sand	8.7	222.35	8.81	222.24	8.89	222.16

Notes:

mAMSL - metres above mean sea level; mbgs - metres below ground surface

As presented above, the latest measured groundwater levels ranged in depth from 8.87 mbgs to 9.82 mbgs, and the elevations ranged from 221.93 mAMSL to 222.28 mAMSL, with an average groundwater elevation of 222.15 mAMSL.

9.3 Groundwater Flow Direction and Hydraulic Gradients

Based on the groundwater elevation data obtained from the latest monitoring event, a site-specific groundwater elevation contour map was prepared to present the inferred the groundwater flow direction. As shown in Figure 9-4, the groundwater flow direction was inferred to be southwards, generally following the local surface drainage.

The hydraulic gradient is a gradient or slope between two or more hydraulic head measurements over the length of the flow path. The hydraulic gradients help determine the groundwater flux or discharge. Groundwater will flow down the hydraulic gradient. Based on the groundwater elevation data for the shallow monitoring wells, horizontal hydraulic gradient was calculated to be approximately 0.004 m/m (Table 9-2).

Table 9-2: Horizontal Hydraulic Gradients – 79 Collier Street, Barrie, Ontario

Monitoring Well	Groundwate (mAN		Distance Between Monitors (m)	Gradient (m/m)	
BH/MW2 to BH/MW3	222.24	222.28	27	0.001	
BH/MW2 to BH202M	222.24	222.16	16	0.005	
BH/MW3 to BH202M	222.28	222.16	20	0.006	
			Average	0.004	

Project: SP20-666-30 Vitmont Holdings (Barrie) Inc.

9.4 Estimated Hydraulic Conductivity

The native soils present at the Site are predominantly sandy soils. Based on the result of grain size analysis of one representative soil sample, the hydraulic conductivity was estimated using empirical Hazen equation, and was estimated to be 4.3×10^{-6} m/s.

It should be noted that the theoretical hydraulic conductivity (K-value) of the sandy soils may range from 1.0×10^{-5} m/s to 1.0×10^{-6} m/s.

10.0. CONSTRUCTION DEWATERING REQUIREMENTS

Construction dewatering is intended to lower the groundwater levels in the excavation area in order to ensure a dry working condition.

The requirements for construction dewatering generally depend on the site's soil and groundwater conditions including soil type, soil permeability or hydraulic conductivity, local groundwater levels, and the design of the proposed development such as the foundation and/or basement elevation, as well as the size of proposed structure, etc.

10.1 Proposed Development and Anticipated Excavation

As mentioned earlier, the Property covering an area of about 1,660 m² (0.16 hectares) was proposed to be developed into a 15-storey residential apartment building with part of commercial use, accommodate 127 dwelling units. The proposed building will consist of one level underground parking and three (3) levels of above ground parking. Commercial spaces are being provided in the eastern half of the building.

Based building sectional plan (Figure 5-2) made available by the Client, the finished main floor elevation is at 234.38 mAMSL, the underground level elevation is at 231.38 mAMSL and the lower loading level elevation, which appears to be similar to footing elevation, is at 227.68 mAMSL,

For construction of the footing/foundation and loading level, the excavation may extend to the elevation of 227. 23 mAMSL (227.68 minus 0.45 m below the loading level or footing for the placement of granular materials and construction of concrete slab).

Based on the soil stratigraphy revealed at the Site, the excavation will cut through the fill material and into the sandy soil.

10.2 Dewatering Requirements

As discussed, the excavation may extend to the elevation of 227. 23 mAMSL. Based on the groundwater monitoring completed at the monitoring wells (MW2, MW3, BH201M and BH202M), the measured

groundwater elevations ranged from 221.93 mAMSL to 222.28 mAMSL, which are well below the final excavation elevation of 227.23 mAMSL for the footing as well as lower loading level. Therefore, groundwater control will not be required for the proposed development either for temporary construction dewatering or for long-term drainage discharge. Therefore, PTTW or EASR registration are not required.

11.0. ASSESSMENT OF POTENTIAL IMPACTS

As discussed, there is no construction dewatering, either short-term or long-term due to the prevailing deep-water table conditions. The potential impacts due to the Site development were assessed as follows.

11.1 Natural Features

As discussed, no natural features including a wetland, a pond or a creek are located on the Site. The nearest water body is located at about 160 m southeast of the Site and therefore, there should be no impact on the local natural features, due to the site development.

11.2 Water Supply Wells near the Site

Given that no dewatering will be required for completion of the proposed development, impacts on the local water wells (private or public) will not be anticipated to be associated with the dewatering activity, although the Site is located within the Barrie Water Supply Wells # 11, 12 and 14 combined wellhead protection area.

11.3 Considerations on Drinking Water Vulnerability

Based on the MECP Source Protection Information Atlas, the Site is located within the Lakes Simcoe and Couchiching/Blake River Source Protection Area (Figure 6-3), and vulnerable areas are identified to be associated with at the site development.

It is understood that the following South Georgian Bay Lake Simcoe Source Protection Plan policies apply to the proposed development: RLU-1, DNAPL-1, Salt (ICA)-2, LUP-2.

11.3.1 Well Head Protection Area

The proposed development lies within the 2- year Time of Travel (TOT) capture zone, i.e. Well Head Protection Area, WHPA-B (Figure 6-3), which is related to the Barrie Water Supply Wells #11, 12 and 14. Time of travel is important because it is an indication of how quickly a contaminant can move from a WHPA into a municipal well.

Use and/or storage of chemicals on Site may result in contamination in soil and/or groundwater due to inadvertent release on the Property, and potentially would result in contamination in the source of groundwater for the municipal wells.

Policies: RLU-1, DNAPL-1, and Salt(ICA)-2 should be considered to be applied during the design and construction of the proposed development, which restrict storage and handling of road salt, snow, fuels, dense nonaqueous phase liquid (DNAPL) and/or organic solvent on Site.

11.3.2 Issue Contributing Area – Chloride and Sodium

The Site is located in an issue contributing area for chloride and sodium, associated with water supply Well# 11, 12 and 14. As such, the Site is susceptible to contamination in soil and groundwater due to chloride and sodium. Therefore, storage and/or application of de-icing salt material would pose a potential impact at the Site, because chloride and sodium are typical components of de-icing salt.

Policies: RLU-1 and Salt (ICA)-2 should be considered to be applied during the design and construction of the proposed development.

11.3.3 Significant Groundwater Recharge Area

The Site is located in a Significant Groundwater Recharge Area with a vulnerable score of 6. Significant Groundwater Recharge Areas are areas on the landscape that are characterized by porous soils, such as sand or gravel, which allows water to seep easily into the ground and flow to an aquifer. A recharge area is considered significant when it helps maintain the water level in an aquifer that supplies a community or private residence with drinking water.

Given that the Site is located in an urbanized area, the Site and its neighbouring properties would be relying on the City's water supply. The proposed development may reduce the pervious area at the Site, which result in decreased infiltration into subsurface or decrease in groundwater recharge.

However, considering that the municipal water wells are usually constructed in deep aquifers and no dewatering is required, the impact on the groundwater recharge may not be considered.

11.3.4 Highly Vulnerable Aquifer

The Site is located in a Highly Vulnerable Aquifer area with a vulnerable score of 6. An aquifer is an area underground that is highly saturated with water – enough water that it can be withdrawn for human use. A Highly Vulnerable Aquifer is one that is particularly susceptible to contamination because of its location near the ground's surface or where the types of materials in the ground around it are highly permeable.

Based on the site condition, the shallow groundwater at the Site is susceptible to contamination. Considerations should be taken into as in Section 11.3.1 and 11.3.2.

11.3.5 Wellhead Protection Area – Q (Water Quantity)

The Site is identified to be an area of a Wellhead Protection Area – Q (Water Quantity), with low stress level. Any WHPA-Q areas where significant or moderate drinking water stress has been identified is an area where significant drinking water quantity threat activities can occur. Within these areas, future activities which take water without returning it to the same source or which reduce recharge to the aquifer are significant water quantity threats.

As discussed, no dewatering is required for the proposed development. Therefore, no concerns on Wellhead Protection Area – Q (Water Quantity) would be considered due to the proposed development.

12.0. WATER BALANCE

A preliminary water balance for the Site was calculated for both pre-development and post-development conditions in order to assess the change in overall rate of infiltration.

12.1 **Site Condition**

The Site is currently occupied by a parking lot, a landscaped area with trees and a private drive lane. There are no creeks, ponds or wetlands located on the Subject Property.

It is understood that a residential development has been proposed consisting of construction of a 15-storey residential building with one (1) level of underground level and 3-levels of above ground parking.

Based on the design information, the development area at the Site can be generally categorized into three (3) types as paved area, roof area, and landscape area as shown in Figures 12-1 and 12-2. A summary of the surface areas of the development is listed in Table 12-1.

Pre-Development Post- Development Type of Land Coverage Area (m²) Area (m²) Paved Area 1260 558 1102 **Building Roof Area** 0 400 Landscape/Vegetated Area 0 Total (m²) 1660 1660

Table 12-1: Pre-and Post-Development Site Conditions

12.2 **Site Level Water Balance**

Based on the Thornthwaite and Mather methodology (1957), the water balance is an accounting of water in the hydrologic cycle. Precipitation (P) falls as rain and snow. It can run off towards lakes and streams (R), infiltrate to the groundwater table (I), or evaporate from ground or evapotranspiration by vegetation (ET). When long-term average values of P, R, I, and ET are used, there is minimal or no net change to groundwater storage (ΔS).

Project: SP20-666-30 Vitmont Holdings (Barrie) Inc.

The annual water budget can be expressed as:

$$P = ET + R + I + \Delta S$$

Where:

P = Precipitation (mm/year)

ET = Evapotranspiration (mm/year)

R = Run-off (mm/year)

I = Infiltration (mm/year)

 ΔS = Change in groundwater storage (taken as zero) (mm/year)

12.3 Climatic Data

The climatic data including monthly average temperature and precipitation were obtained from Environment Canada, for Shanty Bay weather station (Climate Identifier: 6117684) located at about 4 km distance from the Site.

The data were available between the years 1973 to 2006 i.e. 33 years. Temporal variations of mean annual temperature and precipitation are shown in Figures 12-3 and 12-4.

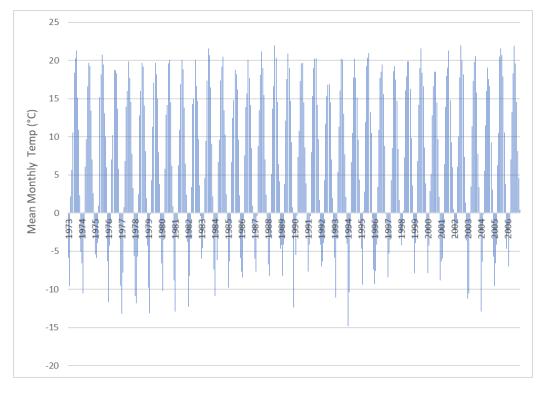


Figure 12-3: Mean Annual Temperature at the Site

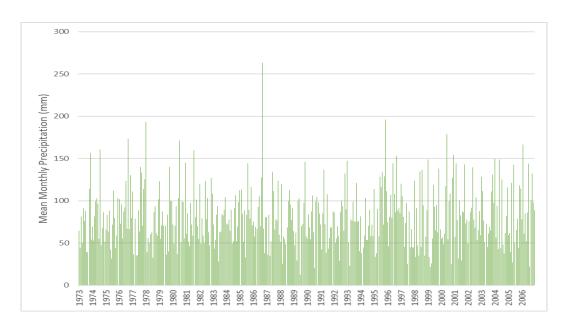


Figure 12-4: Mean Annual Precipitation at the Site

Average monthly variations of both temperature and precipitation were calculated for the period from 1973 to 2006 (33 years) and is presented below in Figure 12-5. The highest average temperature was recorded in the month of August, while the highest precipitation was in the month of November.

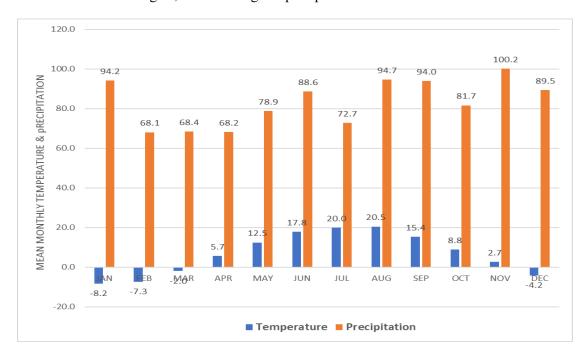


Figure 12-5: Mean Monthly Average Temperature and Precipitation at the Site

Based on the data for the precipitation and temperature, actual evapotranspiration was estimated to be about 531 mm/annum using the USGS Thornthwaite Monthly Water Balance software (Appendix E), and the average annual precipitation was recorded to be 999 mm/annum.

12.4 Infiltration and Runoff

As mentioned above, the actual evapotranspiration was estimated to be 531 mm/annum. Given the average annual precipitation of 999 mm/annum, there is a water surplus of 468 (=999-531) mm/annum occurring at the Site, which can either infiltrate into subsurface or go as run-off.

The rate of infiltration at a site is expected to vary, based on a number of factors to be considered in any infiltration model. To partition the available water surpluses into infiltration and surface run-off, the Ministry of Environment, Conservation and Parks (MECP) infiltration factor was used. The MECP Storm Water Management Planning and Design Manual (2003) methodology for calculating total infiltration based on topography, soil type and land cover was used, and a corresponding run-off component was calculated for the soil moisture storage conditions.

The calculation of infiltration and runoff in the stages of pre-development and post-development is provided in Appendix D, and are presented in Tables 12-2 to 12-5, below.

Table 12-2: Annual Pre-Development Water Balance

Land	d Use	Area (m²)	Precipitation (m³)	Evapotranspiration (m3)	Infiltration (m³)	Run-off (m³)	
Impervious	Paved Area	1260	1259	126	0	1133	
Areas	Roof Area	0	0	0	0	0	
Pervious	Landscape						
Areas	Area	400	400	212	140	47	
		1,660	1,658	338	140	1,180	
Assuming no infiltration occurring in paved and roof areas, and 10% of precipitation to be evaporated from paved and roof areas.							

Table 12-3: Annual Post-Development Water Balance

Land	d Use	Area (m²)	Precipitation (m³)	Evapotranspiration (m3)	Infiltration (m³)	Run-off (m³)
Impervious	Paved Area	558	557	56	0	502
Areas	Roof Area	1102	1,101	110	0	991
Pervious	Landscape					
Areas	Area	0	0	0	0	0
		1,660	1,658	166	0	1,493

Table 12-4: Comparison of Pre- and Post Development Water Balance Components

	Precipitation (m³)	Evapotranspiration (m3)	Infiltration (m³)	Run-off (m³)
Pre-Development	1,658	338	140	1,180
Post-Development	1,658	166	0	1,493
Change in Volume		-172	-140	313
Change in %			-100	27

Table 12-5: Requirement for Infiltration of Roof Run-off

Volume of Pre-Development Infiltration (m³/annum)	140
Volume of Post-Development Infiltration (m³/annum)	0
Deficit from Pre to Post Development Infiltration (m³/annum)	140
Percentage of Roof Runoff required to match the pre-development infiltration (%)	14

12.5 Summary of Water Balance Calculation

Based on the above calculations, a summary of water balance could be provided as below:

- 1) There is a net increase in run-off at the Site of about 313 m³/annum, from 1,180 m³/annum to 1,493 m³/annum. This increase is a result of the development of the Site with more impervious areas such as roof and paved areas, and reduction in pervious areas.
- 2) Without implementation of mitigation measures, there is a net deficit of about 140 m³ /annum (or 100% decrease) in the post-development infiltration on a yearly basis.
- 3) There is a volume of 991 m³/annum collected from the general roof area, which can be used for the enhanced infiltration for the purpose of implementing the Low Impact Development (LID) measures, if applicable. Based on the estimation, diversion of 14% of the general roof water for infiltration would maintain a balanced infiltration after the development.

12.6 Discussions on LID Measures

It is known that low impact development (LID) practices have received increasing attention as these strategies attempt to capture the runoff and mimic the natural hydrologic cycle.

The City of Barrie has introduced an Infiltration LID Screening Process to guide the selection and implementation of LID measures.

In general, there are two primary categories of LIDs. The first promotes the infiltration of stormwater close to the source. These infiltration type LIDs are preferred when hydrogeological and physical conditions are optimal and allow for their emplacement. The second captures and slowly releases the water to the surface water system through the process of storage and filtration. Storage and filtration type LIDs are to be considered when conditions do not permit infiltration LIDs to be implemented. As it is discussed, the Site is located in an area categorized as WHPA-B and Issue Contributing Area - Chloride and Sodium. According to the LID Screening Process, water source from the paved area (driveway and/or walkway) is not permitted for use of infiltration, based LID practices. In other words, the LID measures such as permeable pavers or other open infiltration facility may not be allowed.

Given the proposed design, there is little or no space available for the implementation of LID measures. However, as SIRATI is not providing any design of LID facilities, it would be beneficial to consult with design engineers for the LID design recommendations.

13.0. CONCLUSIONS AND RECOMMENDATIONS

This report was prepared by SIRATI in support of a proposed mix-use residential/commercial development at the Site located at 79 Collier Street, Barrie, Ontario. Based on the hydrogeological investigation conducted on the Property, the following conclusions and recommendations are presented:

- The Site is located within the Barrie Creeks subwatershed of Simcoe Watershed within the Lakes Simcoe and Couchiching/Black River Source Protection Area. No creeks or waterbodies are present at the Site.
- Topographically, the Site slopes generally to the south, with the elevations ranging from approximately 234.6 mAMSL in the north/northeast to about 230.4 mAMSL at the southwest corner. The nearest water body is Kempenfelt Bay of Lake Simcoe, which is located about 160 m southeast of the Site.
- The Site is located in the Sand Plain area in the Simcoe Lowlands physiographic region, covered by foreshore-basinal deposits consisting mainly of sand and silt with varying amounts of gravel and underlain by the bedrock of the Middle Ordovician Simcoe Group consisting primarily of limestone.
- The soil stratigraphy revealed at the Site generally consisted of topsoil or asphalt pavement structure overlying the fill materials, underlain by cohesionless soils consisting predominantly of sand. No bedrock was encountered on the Site to the maximum explored depth of 15.7 mbgs.
- Groundwater levels measured recently in the monitoring wells ranged in depth from 8.87 mbgs to 9.82 mbgs, and the elevations ranged from 221.93 mAMSL to 222.28 mAMSL. The groundwater flow was inferred to be to the southwestwards.
- Based on the soil and groundwater conditions and the proposed development design, short-term construction dewatering and long-term sub-drain discharge are not expected at the Site. Therefore, PTTW or EASR registration are not required
- No significant impact due to the proposed development would be anticipated with regards to the natural environmental features or water wells near the development Site.
- However, the proposed development lies within the 2- year Time of Travel (TOT) capture zone (WHPA-B) of Barrie Water Supply Well #s 11, 12 and 14 with moderate intrinsic vulnerability score between 6 and 8, and hence, the Lake Simcoe Source Protection Plan policies are applicable to the Site.
- As per City of Barrie Risk Management Plan within the wellhead protection areas, the road salt application best management practices should be adhered to in order to reduce any impacts to the local groundwater supply.

- As the subject property is within the Wellhead Protection Area B, WHPA-Q1, and HVA area, it is recommended to conduct and submit a Source Water Impact Assessment and Mitigation Plan (SWIAMP).
- Water balance assessment indicated a net deficit of 140 m³/annum (or 100% decrease) in the post-development infiltration (changed from 140 m³/annum to zero), due to the fact that landscape areas were not proposed in the post-development scenario. This The deficit of 140 m³/annum is considered insignificant.
- As per City of Barrie's LID guideline, infiltration based LID practices (such as permeable pavers) is not permitted. Given the proposed design, there is little or no space available for the implementation of LID measures.

14.0. SELECTED BIBLIOGRAPHY

of Northern Development, Mines and Forestry; Bedrock Geology; Ontario Ministry http://www.mndmf.gov.on.ca/mines/ogs earth e.asp; 2010

Construction Dewatering and Groundwater Control: New Methods and Applications, Third Edition. J. P. Powers, A. B. Corwin, Paul C. Schmall and W. E. Kaeck Copy Right © 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-47943-7

Dewatering and Groundwater Control, Technical Manual No. 5-818-5, Air Force Manual No. 88-5, Chapter 6, Navy Manual No. P-418, Departments of the Army, The Navy, and The Air Force, November 1983

Freeze, R. A. and Cherry, J. A., 1979, Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey

Groundwater Lowering in Construction: A Practical Guide To Dewatering. 2nd Edition. Boca Raton: CRC Press, 2013. Print.

Ministry of Natural Resources, Ontario Geologic Survey, 1984, The Physiography of Southern Ontario, Third Edition, L. J. Chapman and D. F. Putnam

Ontario Geological Survey, Industrial Minerals Report 38, by D.F. Hewitt, S.E. Yundt, 1971

Ontario Geologic Survey, Preliminary Map P 2204, Quaternary Geology of Toronto and Surrounding Area, Sharp D.R., 1980

Physiography of Southern Ontario; Ontario Ministry of Northern Development, Mines and Forestry; http://www.mndmf.gov.on.ca/mines/ogs earth e.asp., 2010.

Source Protection Information Atlas, Ministry of the Environment, Conservation and Parks

Surficial Geology of Southern Ontario; Ontario Ministry of Northern Development, Mines and Forestry; http://www.mndmf.gov.on.ca/mines/ogs earth e.asp; 2010

Credit Valley Conservation & Toronto Region Conservation Authority (CVC & TRCA), 2010, Low Impact Development Stormwater Management Planning and Design Guide

CITY OF BARRIE, Infiltration Low Impact Development Screening Process (undated)

15.0. LIMITATIONS AND USE OF THE REPORT

This report was produced for the sole use of Vitmont Holdings (Barrie) Inc. (the Client), for the property located at 79 Collier Street, in the City of Barrie, Ontario and may not be relied upon by any other person or entity without the written authorization of Sirati & Partners Consultants Ltd. (SIRATI). The conclusions presented in this report are professional opinions based on the historical and current records search, visual observations and limited information provided by persons knowledgeable about past and current activities on this site. As such, SIRATI cannot be held responsible for environmental conditions at the Property that was not apparent from the available information. No investigation method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce the possibility to an acceptable level.

Professional judgement was exercised in gathering and analyzing data and formulation of recommendations using current industry guidelines and standards. Similar to all professional persons rendering advice, SIRATI cannot act as absolute insurer of the conclusion we have reached. No additional warranty or representation, expressed or implied, is included or intended in this report other than stated herein the report.

The assessment should not be considered a comprehensive audit that eliminates all risks of encountering environmental problems. The information presented herein this report is primarily based on information collected during the hydrogeological study based on the condition of the Property at the time of site inspection/drilling followed by a review of historical data, as appended to this report.

In assessing the environmental setting of the Property, SIRATI has solely relied upon information supplied by others in good faith and has therefore assumed that the information supplied is factual and accurate. We accept no responsibility for any inaccurate information, misrepresentation or for any deficiency of the information supplied by any third party.

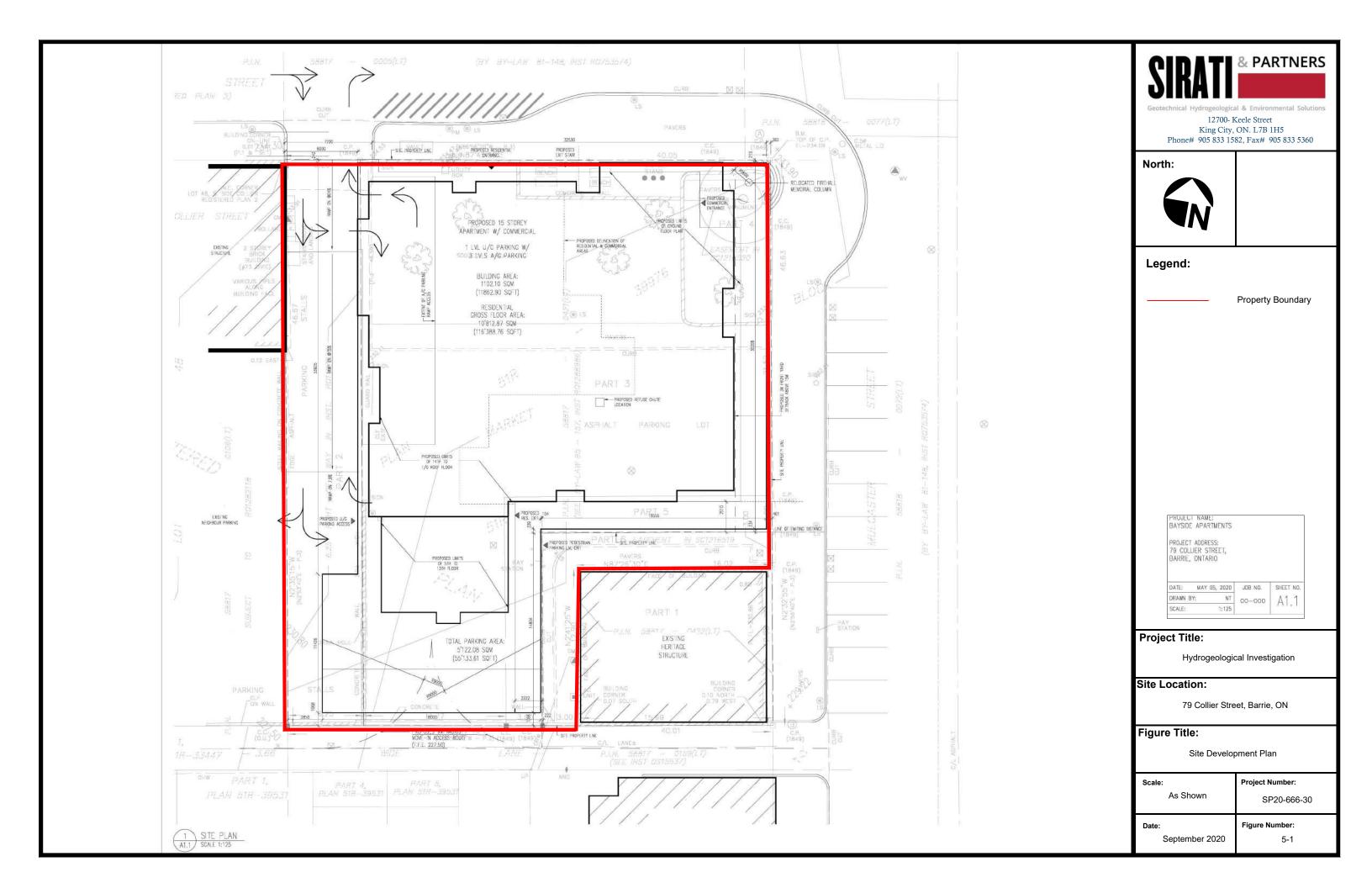
The scope of services performed in the execution of this investigation may not be appropriate to satisfy third parties. SIRATI accepts no responsibility for damages if any, suffered by any third party as a result of decisions made or action taken based on this report. Any use, copying or distribution of the report in whole or in part is not permitted without the express written permission of SIRATI and use of findings, conclusions and recommendations represented in this report, is at the sole risk of third parties.

In the event that during future work new information regarding the environmental condition of the Property is encountered, or in the event that the outstanding responses from the regulatory agencies indicate outstanding issues on file with respect to the Property, SIRATI should be notified in order that we may re-evaluate the findings of this assessment and provide amendments, as required.

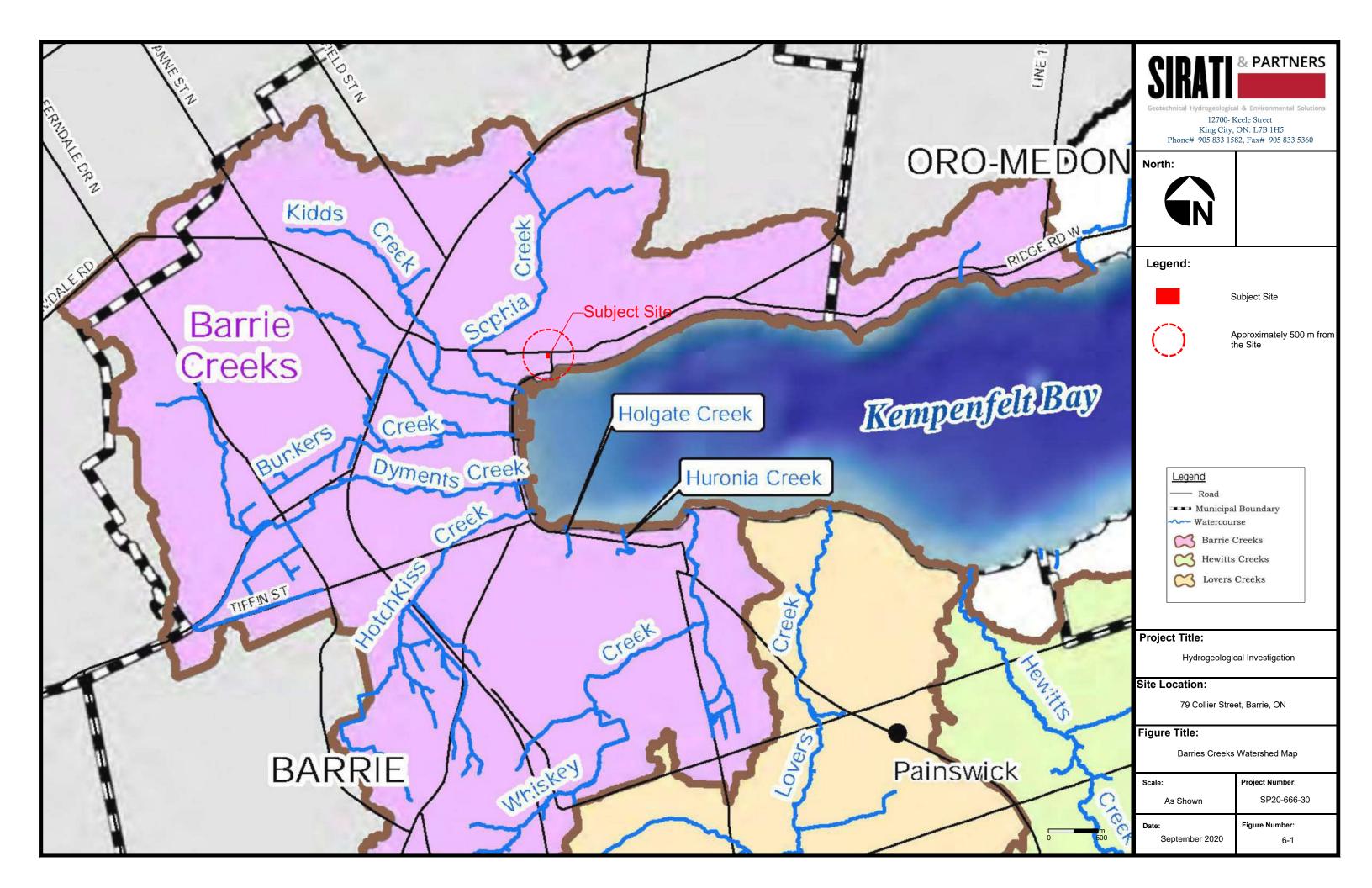
16.0. SIGNATURES

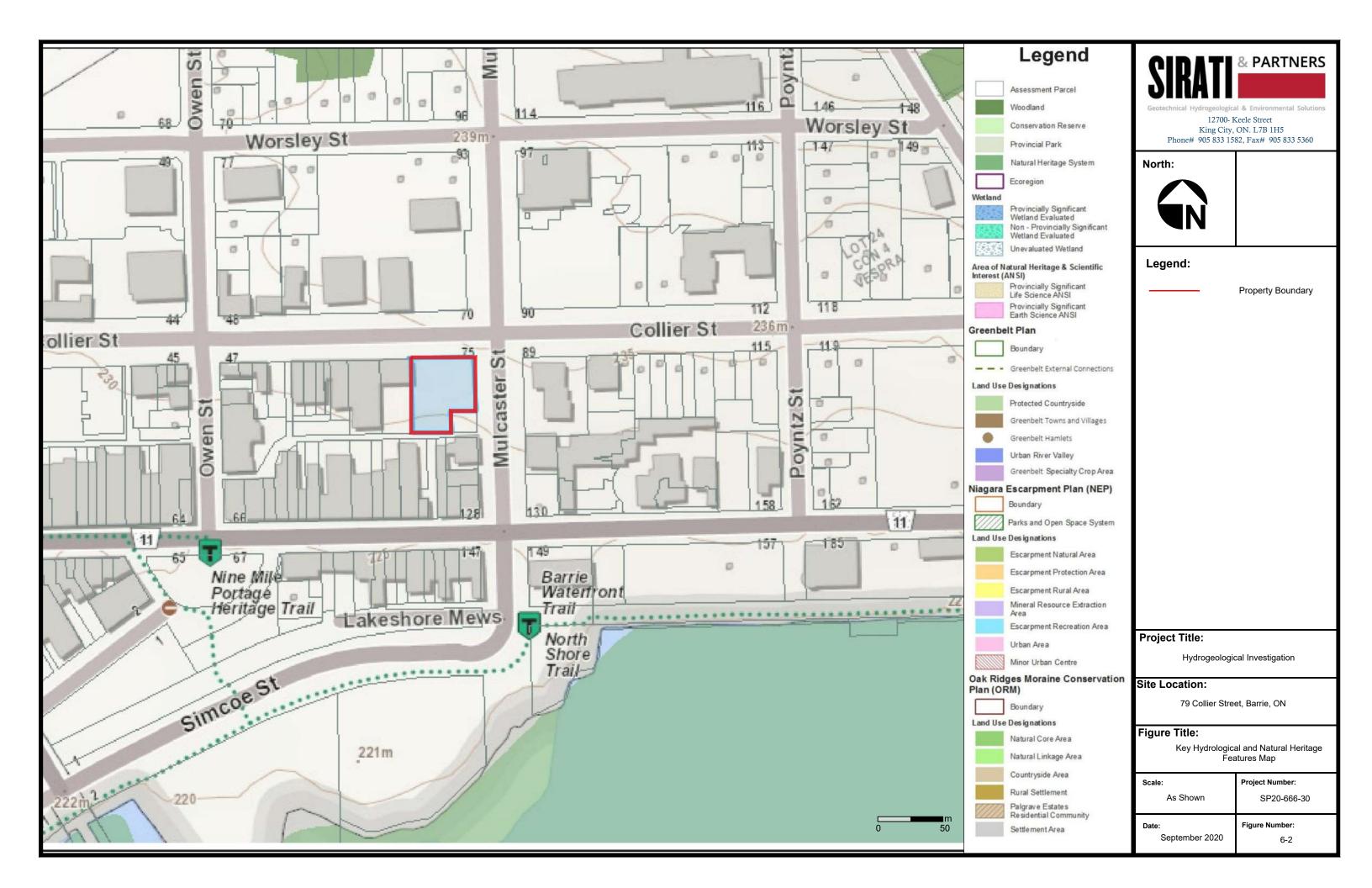
Should you have any questions regarding the information presented or limitation set in this report, please do not hesitate to contact our office.

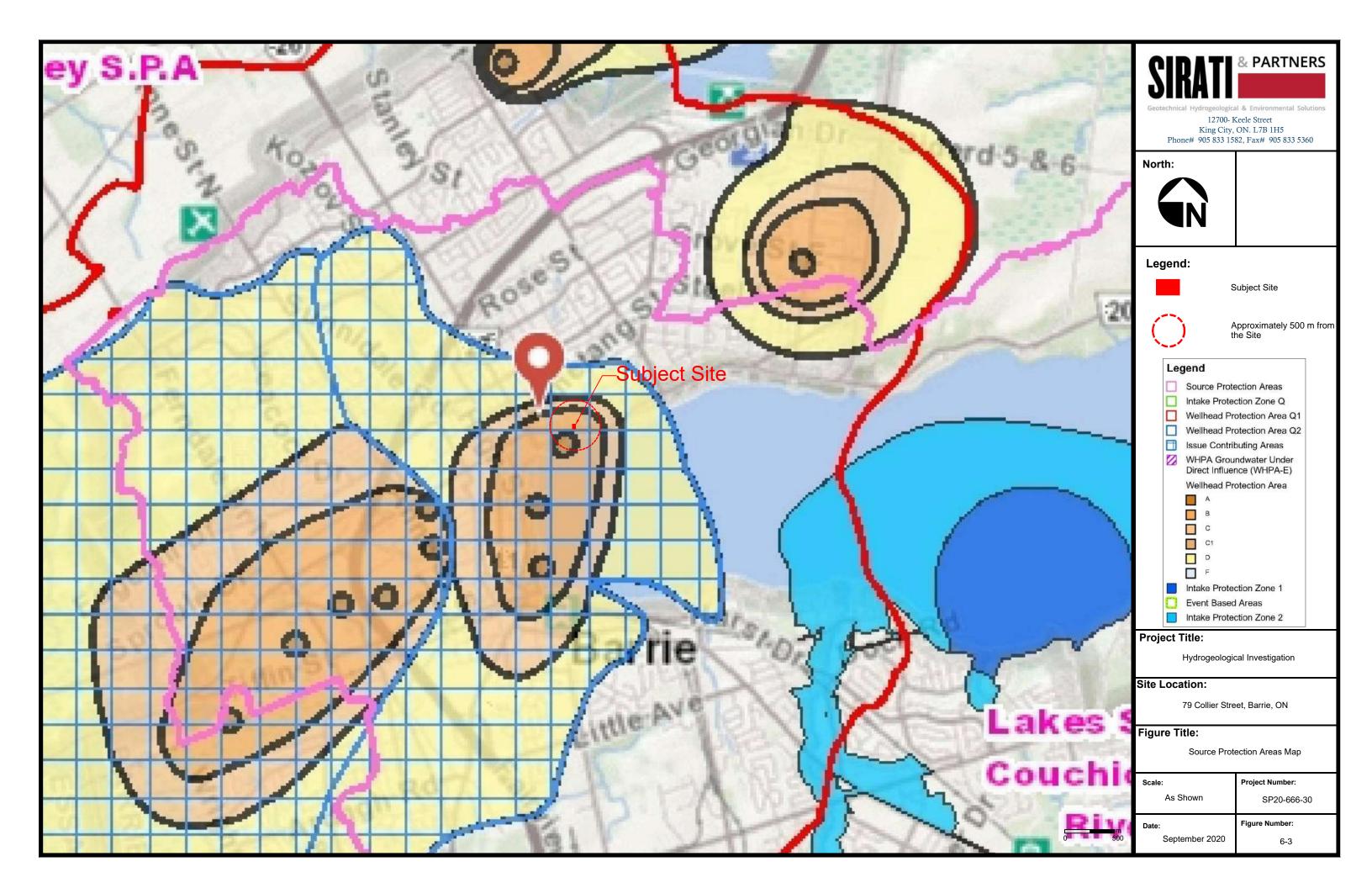
Yours truly,

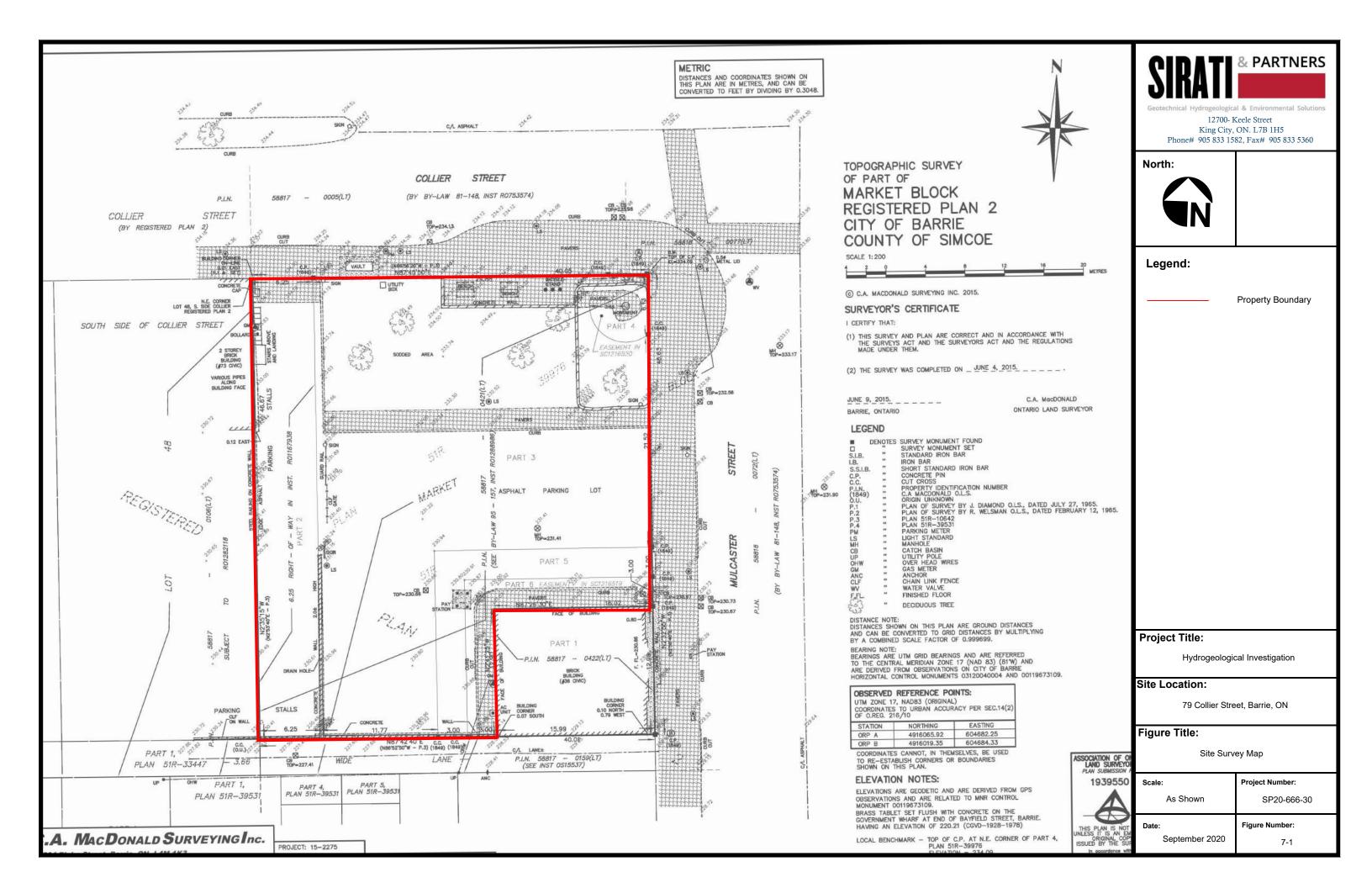

Sirati and Partners Consultants Ltd.

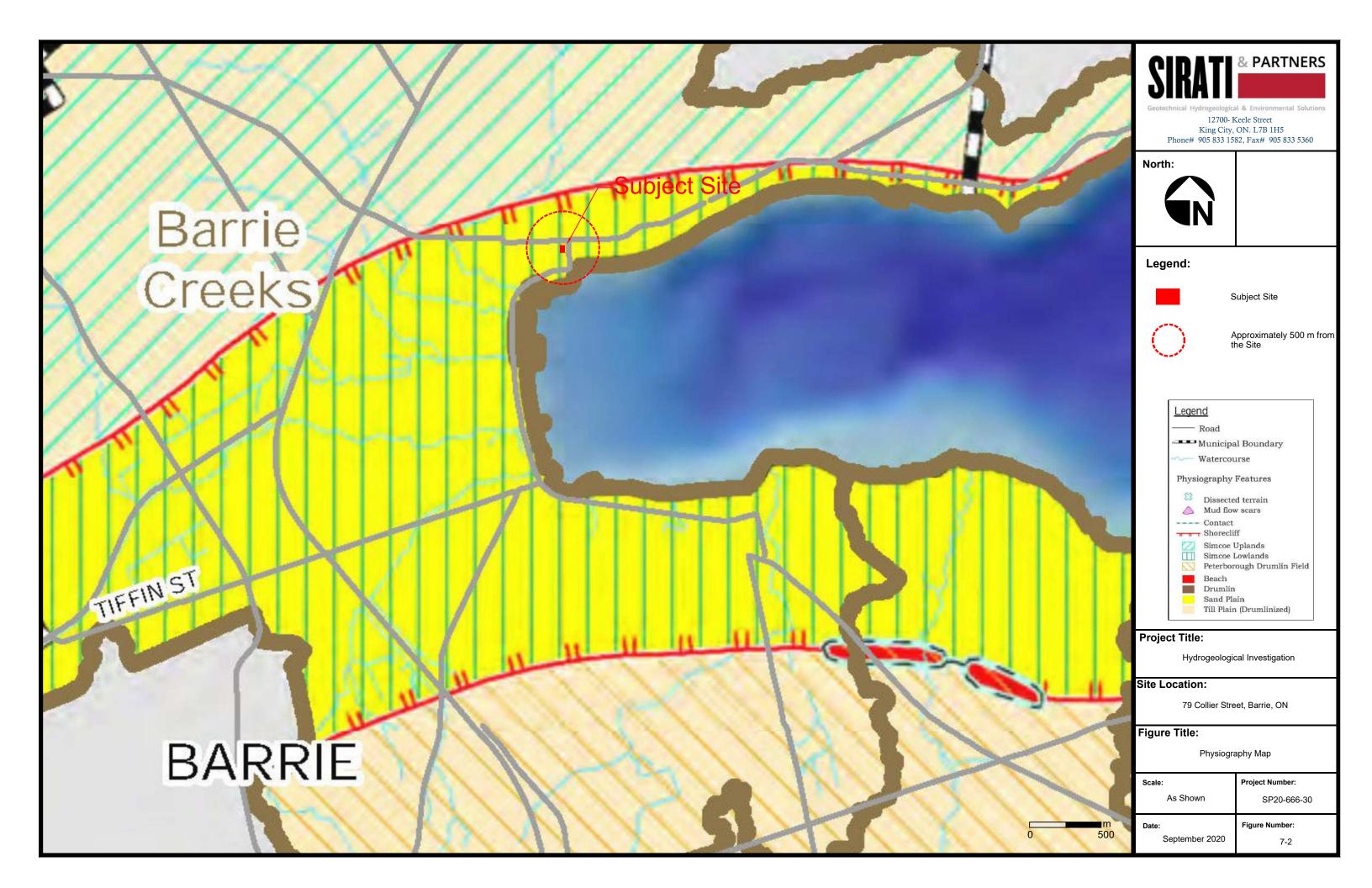

Sudhakar Kurli, M.Sc., P. Geo. Hydrogeologist/Project Manager Bujing Guan, M. A.Sc., P. Geo. Senior Hydrogeologist/Environmental Specialist

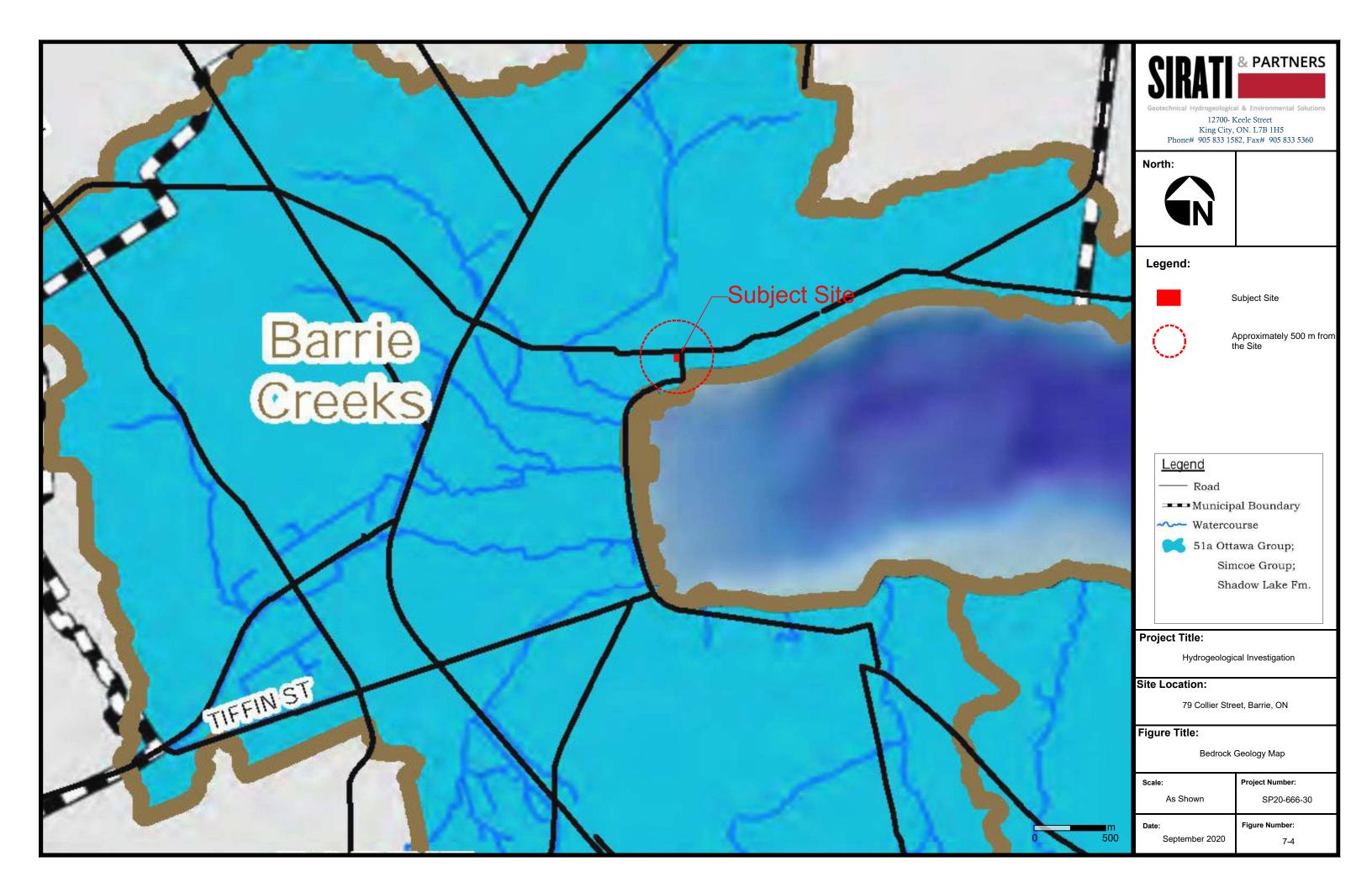

FIGURES

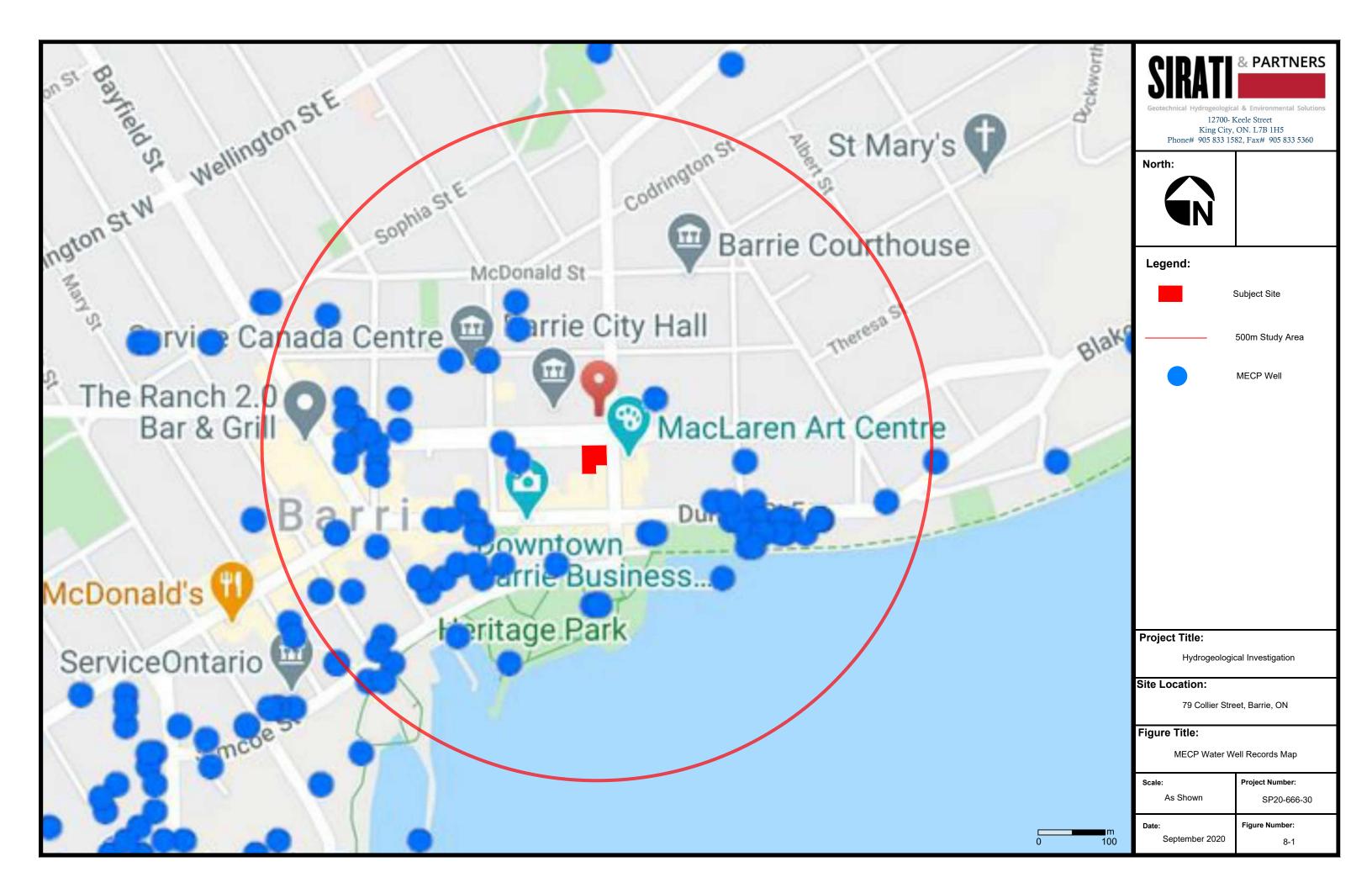


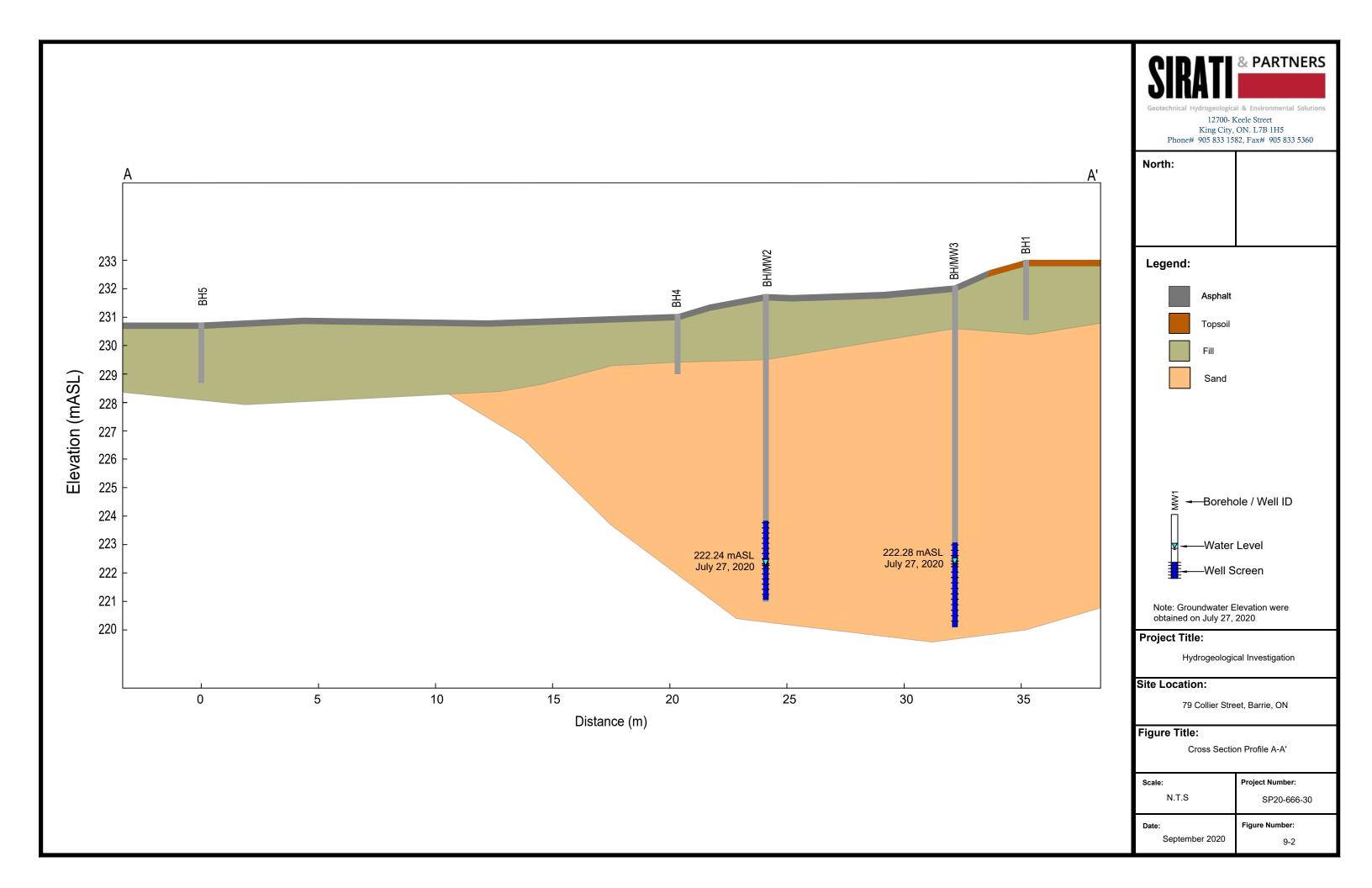


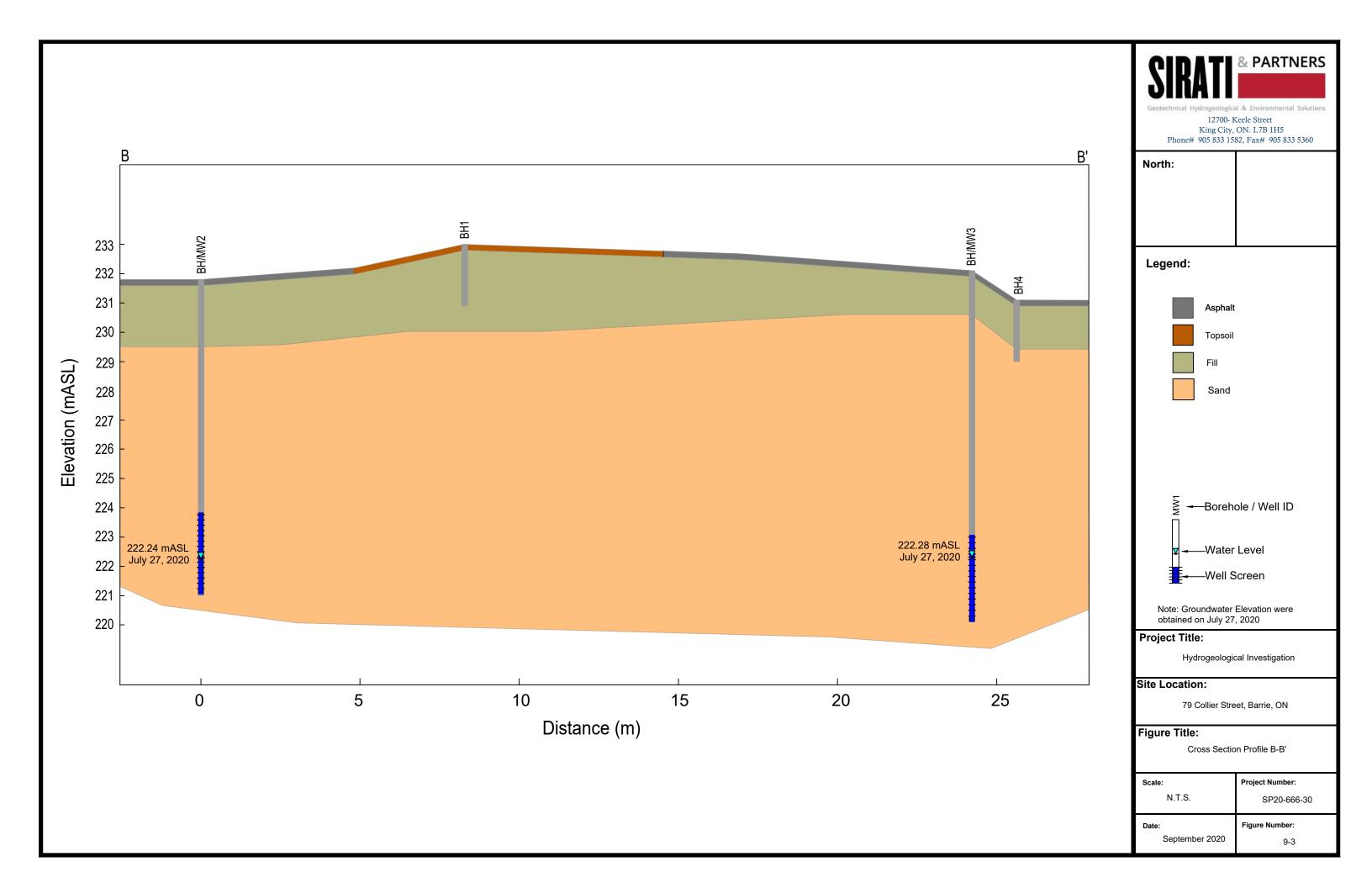


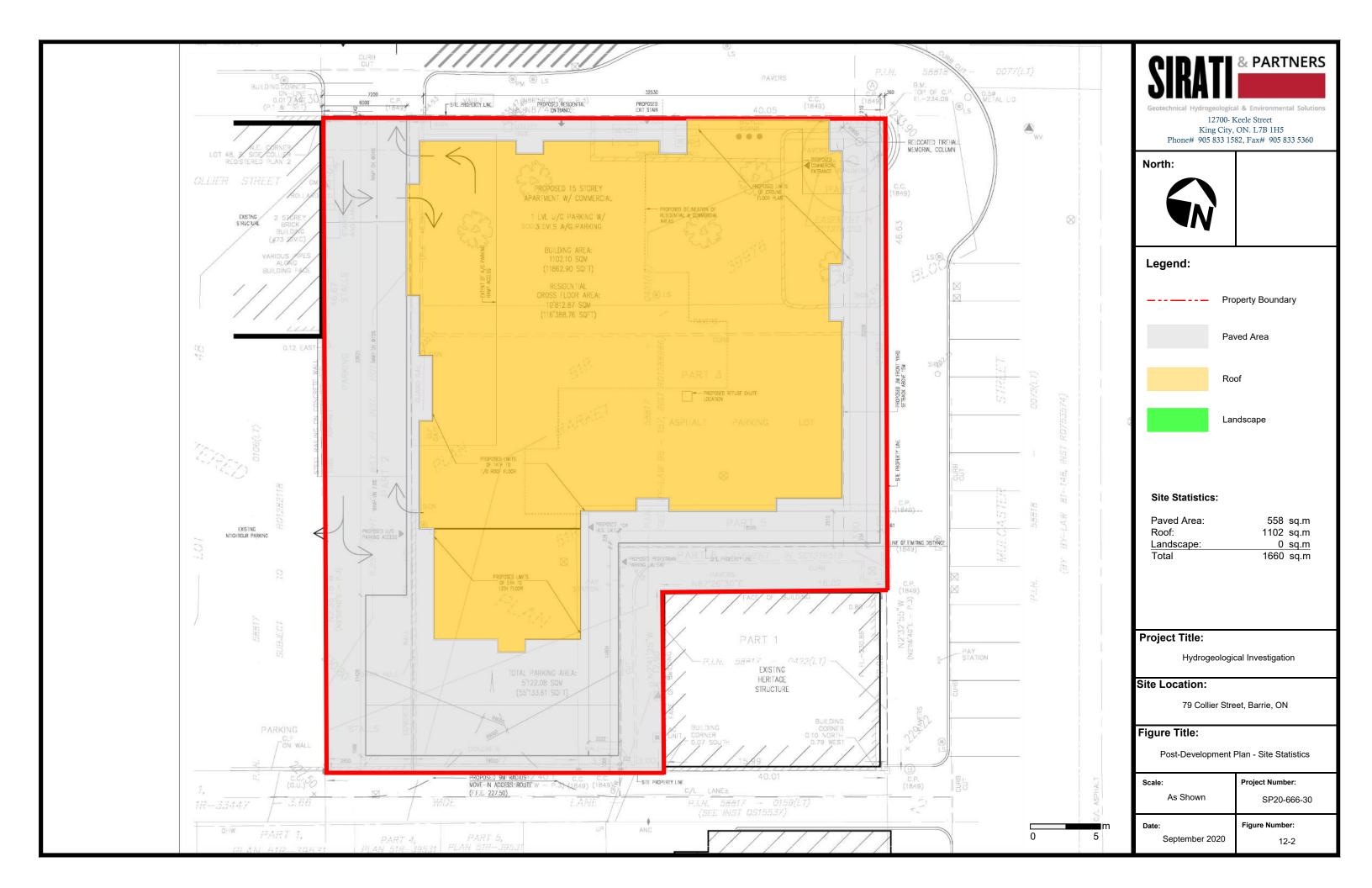


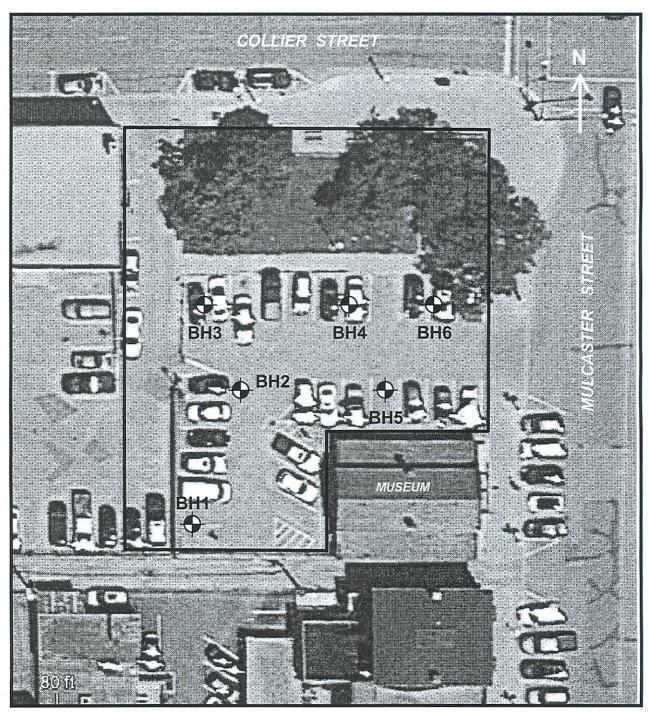











APPENDICES

APPENDIX A1

Ref. No. 6862-16-02 Enclosure 1

BOREHOLE LOCATION PLAN

Borehole No: 1

Enclosure No: 2

Client: Edgecon Inc.

Project: Proposed Condominium

Method : Auger

Location: 36 Mulcaster Street, Barrie, ON

Diameter: 110 mm

Datum Elevation: Local

Date: March 29, 2016

		SUBSURFACE PROFILE			SA	AMPL	E			
Elevation m	Depth m	Description	Symbol	Water	Number	Type	N-value	Standard Penetration Test blows/300mm 20 40 60 80	Moisture Content, %	Remarks
99.88	0-	Ground Surface	0000							
	2-1-1-3-1-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Asphalt 75 mm Granular Base 250 mm			2	SS SS SS	17 8 3 (0		
	2-	FILL Gravelly well graded sand, cinders, brick			3	55	3 (
	=	fragments and organics in places, dark grey to dark brown, moist, very loose to			4	AS	14	0		
95.88	3	compact			5	SS	8	O	•	
75.00	5-1	FINE SAND Loose, fine sand, trace to some silt, brown, moist to wet moist wet			6	SS	4 (D		
92.88	6-1-1-1			/el	7	SS	4 (Þ	•	
91.38	8=	GRAVELLY SAND Very dense, well graded sand with fine to medium gravel, brown, wet		dry to cave in level	8	SS	100+			
89.88	9-1	SANDY SILT TILL Dense, trace fine gravel, some seams of fine sand, brownish grey, moist		dry	9	SS	38	0	•	cave in at 9 m
87.23	11-	FINE SAND Very dense, fine sand, some silt, some gravel at the bottom, grey, wet			10	SS	96			
	13-	End of Borehole	1							

V.A. WOOD ASSOCIATES LIMITED

Disk:

Borehole No: 2

Enclosure No: 3

Client: Edgecon Inc.

Project: Proposed Condominium

Method : Auger

Location: 36 Mulcaster Street, Barrie, ON

Diameter: 110 mm

Datum Elevation: Local

Date: March 28, 2016

		SUBSURFACE PROFILE			S.	AMPL	E						
Elevation m	Depth m	Description	Symbol	Water	Number	Type	N-value	blo	Standard enetration Test ows/300mm 0 40 60 80	Con	oisture itent, 9	%	Remarks
99.96	0	Ground Surface											
		Asphalt 75 mm Granular Base 325 mm FILL			1	SS	15	0					Borehole open and dry on completion
98.56	1-	Gravelly sand, trace brick fragments, dark grey, moist, compact			2	SS	9	0		•	100000000000000000000000000000000000000		
97.86	2-	FILL Fine to medium sand, trace topsoil, brown, moist, loose		Y	3	ss	4 (D					
		SAND		D R	4	SS	14	0		•			
96.46	3-	Compact, fine sand, trace silt, brown, damp to moist			5	ss	18	C)				
	5	End of Borehole											

V.A. WOOD ASSOCIATES LIMITED

Disk:

Borehole No: 3

Enclosure No: 4

Client: Edgecon Inc.

Project: Proposed Condominium

Method : Auger

Location: 36 Mulcaster Street, Barrie, ON

Diameter: 110 mm

Datum Elevation: Local

Date: March 28, 2016

		SUBSURFACE PROFILE			S	AMPL	E			
Elevation m	Depth m	Description	Symbol	Water	Number	Type	N-value	Standard Penetration Test blows/300mm 20 40 60 80	Moisture Content, %	Remarks
100.74	0-	Ground Surface	XXX							
		Asphalt 75 mm Granular Base 275 mm FILL Gravelly well graded sand, trace brick			1	ss	29		•	Borehole open and dry on completion
99.34	1-	fragments, dark grey, moist, compact then loose			2	SS	8			
	2				3	SS	24		•	
		SAND Compact to dense, fine to medium sand,		R Y	4	SS	44			
	3-	trace silt and fine gravel, brown, damp to moist		Q	5	ss	45		•	
96.74										
	4-	FINE SAND								
	5-	Compact, trace silt, greyish brown, moist then wet			6	SS	30			
		moist wet								
94.19	6-				7	ss	17		•	
	7-	End of Borehole								
	8-									

V.A. WOOD ASSOCIATES LIMITED

Disk:

Borehole No: 4

Enclosure No: 5

Client: Edgecon Inc.

Project: Proposed Condominium

Method : Auger

Location: 36 Mulcaster Street, Barrie, ON

Diameter: 110 mm

Datum Elevation : Local

Date: March 30, 2016

		SUBSURFACE PROFILE			S	AMPL	E					
Elevation m	Depth m	Description	Symbol	Water	Number	Type	N-value	Pe	tandard enetration Test ws/300mm 40 60 80	Con	oisture tent, %	
00.61	0-	Ground Surface										
	-	Asphalt 75 mm Granular Base 225 mm FILL			1	ss	8					Borehole open and dry on completion
99.21	1-	Fine sand, then gravelly sand, dark brown, moist, loose then compact			2	ss	15	0		•		
98.51	2-	SAND Dense, fine to medium sand, trace fine gravel, brown, damp		R Y	3	ss	42	The state of the s	0			-
		SAND		D 1	4	ss	38			•		
97.11	3-	Compact to dense, fine sand, trace silt, brown, damp			5	ss	25	C)			
	5	End of Borehole										_

V.A. WOOD ASSOCIATES LIMITED

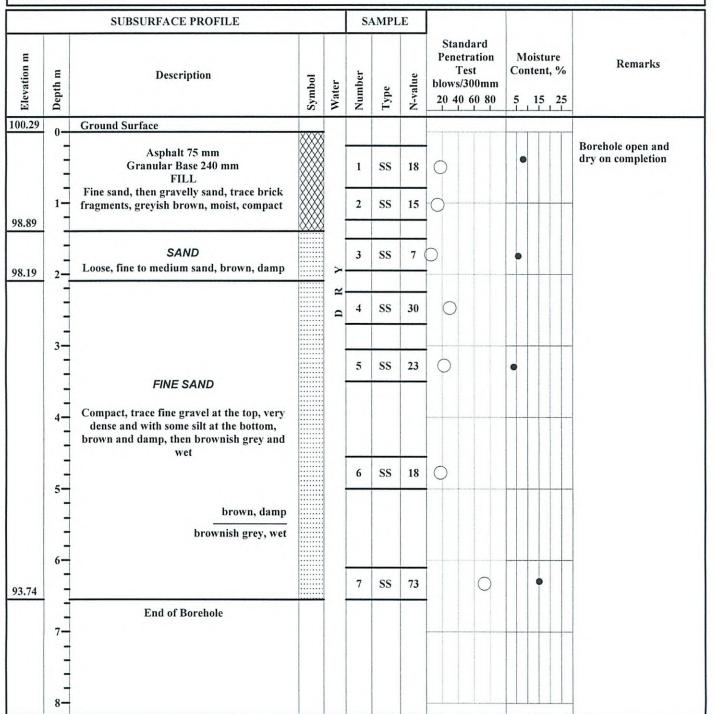
Disk:

Borehole No: 5

Enclosure No: 6

Client: Edgecon Inc.

Project: Proposed Condominium


Method : Auger

Location: 36 Mulcaster Street, Barrie, ON

Diameter: 110 mm

Datum Elevation: Local

Date: March 30, 2016

V.A. WOOD ASSOCIATES LIMITED

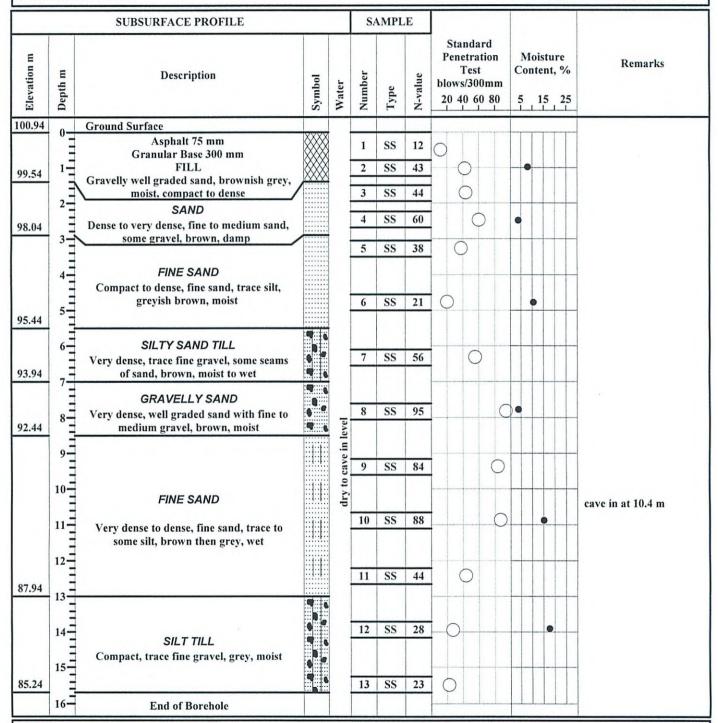
Disk:

Borehole No: 6

Enclosure No: 7

Client: Edgecon Inc.

Project: Proposed Condominium

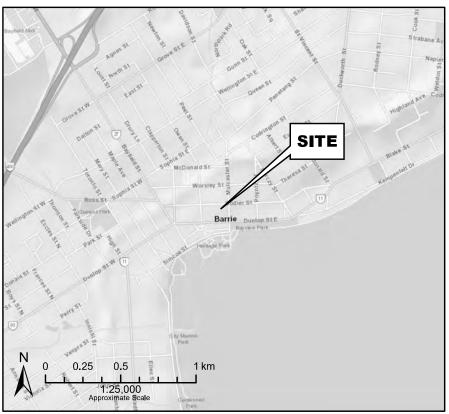

Method: Auger

Location: 36 Mulcaster Street, Barrie, ON

Diameter: 110 mm

Datum Elevation: Local

Date: March 30, 2016


V.A. WOOD ASSOCIATES LIMITED

Disk:

APPENDIX A2

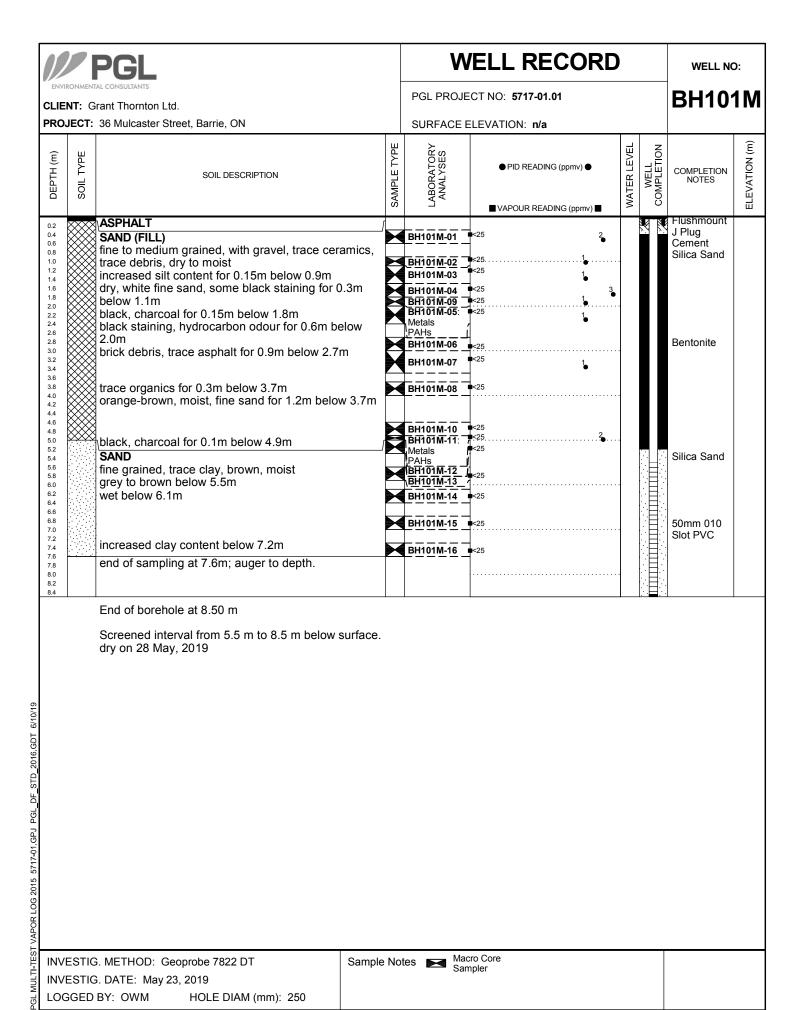
Site Boundary (Approximate)

Borehole

Monitoring Well

N 0 5 10 20 m
1:500
Approximate Scale

Parcel: Approximate Image: ESRI Base Imagery

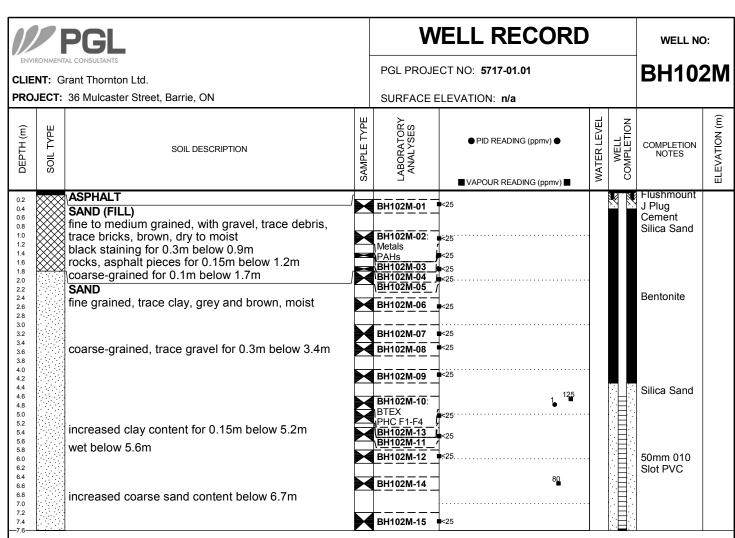

SITE LOCATION AND INVESTIGATION LOCATIONS

36 Mulcaster Street, Barrie, ON

GRANT THORNTON LTD.

FILE NO.: Date: Dwg N

FIGURE



INVESTIG. METHOD: Geoprobe 7822 DT

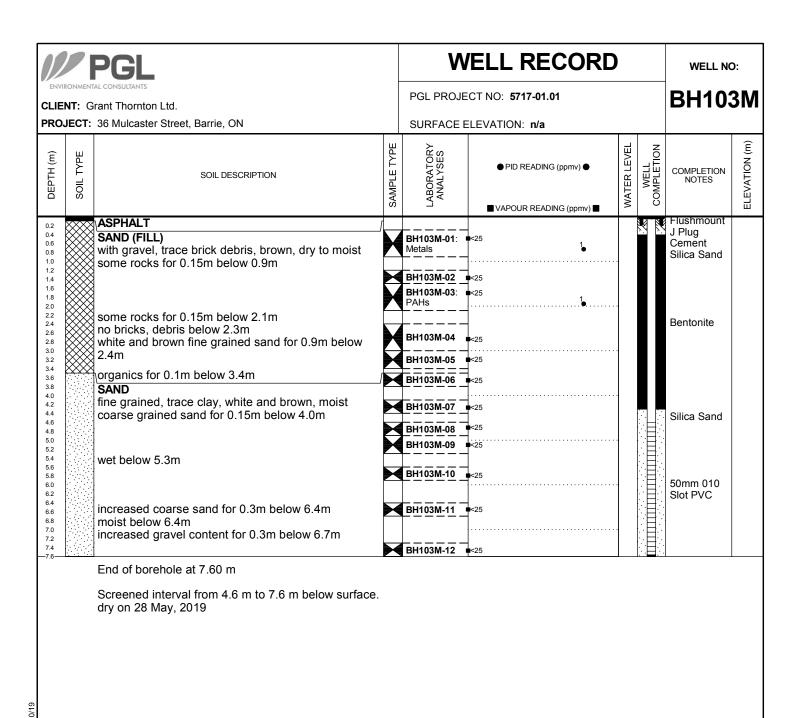
INVESTIG. DATE: May 23, 2019

LOGGED BY: OWM HOLE DIAM (mm): 250

Page 1 of 1

End of borehole at 7.60 m

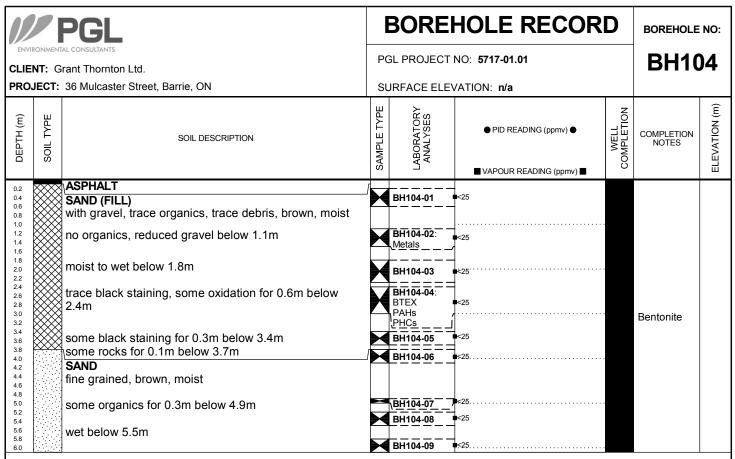
Screened interval from 4.6 m to 7.6 m below surface. dry on 28 May, 2019 $\,$


PGL MULTI-TEST VAPOR LOG 2015 5717-01.GPJ PGL_DF_STD_2016.GDT 6/10/19

INVESTIG. METHOD: Geoprobe 7822 DT

INVESTIG. DATE: May 23, 2019

LOGGED BY: OWM HOLE DIAM (mm): 150


Sample Notes Macro Core Sampler

PGL MULTI-TEST VAPOR LOG 2015 5717-01.GPJ PGL_DF_STD_2016.GDT 6/10/19

INVESTIG. METHOD: Geoprobe 7822 DT INVESTIG. DATE: May 23, 2019

LOGGED BY: OWM HOLE DIAM (mm): 150

End of borehole at 6.10 m

PGL MULTI-TEST VAPOR LOG 2015 5717-01.GPJ PGL_DF_STD_2016.GDT 6/10/19

INVESTIG. METHOD: Geoprobe 7822 DT

INVESTIG. DATE: May 23, 2019

LOGGED BY: OWM HOLE DIAM (mm): 50

Sample Notes Macro Core Sampler

	1/		PGL		W	ELL RECORD)		WELL NO	D:
			al consultants rant Thornton Ltd.		PGL PROJE	ECT NO: 5717-01.01			BH20 ²	1M
			36 Mulcaster Street, Barrie, ON		SURFACE E	ELEVATION: n/a				
	DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ● ■ VAPOUR READING (ppmv) ■	WATER LEVEL	WELL	COMPLETION NOTES	ELEVATION (m)
	0.2		Auger to 7.6m; samples below this depth only			VALOUTALE ENTO (PPINV)			Flushmount J Plug	
	0.4 0.6 0.8 1.0 1.2		Stratigraphy per BH101M						J Plug Cement Silica Sand	
	1.6 1.8 2.0 2.2 2.4 2.6 2.8									
	3.0 3.2 3.4 3.6 3.8 4.0									
	4.2 4.4 4.6 4.8 5.0 5.2									
	5.4 5.6 5.8 6.0 6.2 6.4								Bentonite	
	6.6 6.8 7.0 7.2 7.4 7.6									
	7.8 8.0 8.2 8.4 8.6 8.8		SAND fine grained, some gravel, trace clay, grey and brown, moist no gravel, reduced clay contents below 7.9m	×		<25 		, -		
	9.0 9.2 9.4 9.6 9.8		moist to wet below 8.8m some clay fragments below 9.1m CLAY some silt, trace fine sand, grey and brown, mois		BH201M-04	<25				
/19	10.0 10.2 10.4 10.6 10.8 11.0		SAND fine grained, trace clay, grey and brown, moist to saturated below 10.7m	o wet	BH201M-06 BH201M-07	-25 3 <u>0</u>			· Silica Sand	
2016 GDT	11.4 11.6 11.8 12.0 12.2		grey below 11.9m	X	BH201M-08 BH201M-09	<25 1 <25			50mm 010 Slot PVC	
DF STD	12.6 12.8 13.0 13.2 13.4				BH201M-10 BH201M-11	115	-			
1.GPJ			End of borehole at 13.70 m						1	
PGL MULTI-TEST VAPOR LOG 2015 5717-01.GPJ PGL			Screened interval from 10.7 m to 13.7 m below surface. GW 8.70 mbgs (6/3/2019)							
-TEST VA	INVI	ESTIG	6. METHOD: Geoprobe 7822 DT S	Sample No		cro Core				
PGL MULT			6. DATE: May 28, 2019 BY: OWM HOLE DIAM (mm): 250		Jan					

		PGL		W	ELL RECORD)		WELL NO	D :
		al consultants Frant Thornton Ltd.		PGL PROJE	ECT NO: 5717-01.01			BH202	2M
		36 Mulcaster Street, Barrie, ON		SURFACE I	ELEVATION: n/a				
DEPTH (m)	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	LABORATORY ANALYSES	● PID READING (ppmv) ● ■ VAPOUR READING (ppmv) ■	WATER LEVEL	WELL	COMPLETION NOTES	ELEVATION (m)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 2.3 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 6.8 7.0 7.2 7.4 7.8 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8		Auger to 10.7m; samples below this depth only	у			■		Flushmount J Plug Cement Silica Sand	
10.2 10.4 10.6 10.8 11.0 11.2 11.4		SAND fine grained, some clay, brown, saturated		BH202M-01 BH202M-02	50			Silica Sand	
11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2		grey below 11.9m increased clay content below 12.2m		BH202M-03 BH202M-04	<25 <25 <25			50mm 010 Slot PVC	
INV	ESTIG	End of borehole at 13.70 m Screened interval from 10.7 m to 13.7 m below surface. GW 8.75 mbgs (6/3/2019) G. METHOD: Geoprobe 7822 DT G. DATE: May 28, 2019 BY: OWM HOLE DIAM (mm): 250	w Sample No	utes ⋈ Mar	cro Core				

APPENDIX A3

LOG OF BOREHOLE BH 1

PROJECT: Hydrogeological and Environmental Investigation Method: Hollow Stem Auger

CLIENT: Vitmont Holdings (Barrie) Inc.

ENCL NO.: 2

REF. NO.: SP20-666-20

Diameter: 200 mm

	IT: Vitmont Holdings (Barrie) Inc. ECT LOCATION: 79 Collier Street, ON							Diameter: 20 Date: Jul-16										
. 1100	SOIL PROFILE		,s	AMPL	.ES			DYNAMIC CON RESISTANCE	NE PEN	ETRATION	l							
П	OOIL I NOT ILL	Τ	\vdash	. uvii L		GROUND WATER CONDITIONS					100	PLASTI LIMIT	C MOIS	URAL	LIQUID LIMIT	POCKET PEN. (Cu) (kPa)	T W T	REMARKS AND
(m)		STRATA PLOT			- 일	WAT	z	20 40		1		W _P	CON	TENT v	W _L	ET PE (kPa)	LUNI'	GRAIN SIZE
EPTH	DESCRIPTION	IA P	H		BLOWS 0.3 m	QN OE	ELEVATION	SHEAR STR	NED	IHI(KP _{F∰}) 8Se+	D VANE nsitivity (REI	, -	7		—	(Cu)	IURAI (KN	DISTRIBUTIO (%)
		TRA	NUMBER	TYPE	į.	ROL	LEV/	QUICK TR		X FIEL	O VANE nsitivity (NAT)		TER CC		Γ(%)	ш.	¥.	
233.0 23 2.9	TOPSOIL: 150 mm thick	.74 1 ^N .	Z	Ĺ	-	00	Е	20 40) 6	J 80	100	1	0 2	0 3	30			GR SA SI
0.2	FILL: sandy silt, dark brown, brick	\overline{X}	1	SS				-										
	debris, some stone	\bowtie		00				-										
		\otimes						-										
	sand, brick debris	\bowtie					222	-										
		\otimes	2	SS			232	-										
		\bowtie						-										
	piece of gravel and some stones,	\otimes						-										SS2 -
	white/grey	\otimes	3	SS				-										PHCs/VOCs
230.9		\bowtie					231	-										
2.1	END OF BOREHOLE:																	
	Note:																	

LOG OF BOREHOLE MW 2 SIRATI & PARTNERS

Method: Hollow Stem Auger

REF. NO.: SP20-666-20

ENCL NO.: 3

PROJECT: Hydrogeological and Environmental Investigation CLIENT: Vitmont Holdings (Barrie) Inc.

Diameter: 200 mm

	SOIL PROFILE		S	AMPL	ES			DYNAMIC CO RESISTANCE	INE PEN PLOT	NE I KATIO	UN			_ NATI	JRAI			_	REMARKS
, ,]		Τ.				GROUND WATER CONDITIONS			10 6		_	0	PLASTIC LIMIT	MOIS	TURE	LIQUID LIMIT	Ä.	NATURAL UNIT WT (kN/m³)	AND
(m)		STRATA PLOT			SI E	WAI	z	SUEAD ST	DENC.	TH /kDa	- 1			V		\mathbf{W}_{L}	POCKET PEN. (Cu) (kPa)	LUN /m³)	GRAIN SIZI
LEV PTH	DESCRIPTION	ΙŁ	NUMBER		BLOWS 0.3 m		ELEVATION	SHEAR ST	INED	۱⊓ (۲۳ _{۴۹} ۱ +	ELD VA Sensitiv	NE ity (REM) —			—	(Cu)	FA RN SN	DISTRIBUTIO
		RA]	JMB	TYPE	_ ml_	S	₩	QUICK To 20	RIAXIAL	X FI	IELD VAN	E (NAT)	WAT	ER CO			_	¥	(%)
31.8		S	Ŋ		þ	P S	ᆸ	20 4	10 6	0 80	10	(diveri)	1) 2	0 3	30			GR SA SI
3 9. 0	ASPHALT: 70 mm thick	\times	1	UGE	-														
	FILL: sand, some stone, trace silt, brown	\otimes	1	SS				-											
	2.5	\otimes	1																
		\otimes					004												
	pieces of brick	\otimes					231	-											
		\times	2	SS				-											
		\otimes]					-											
		\times																	
		\otimes																	
		\times	3	SS			230												
		\times						-											
29.5	CAND	ĮXX						_											
2.3	SAND: brown, moist							-											
			4	SS				-											
							229	-											
	coarse gravel, white/grey		\vdash					-											
			5	SS				_											
]	00				-											
			\vdash																
	brown, moist		H				228												
	,		6	SS															
			0	33															
			\vdash																
			\vdash																
			7	SS			227												
			'	33															
								-											
			8	SS															
							226												
	very moist, coarse sand																		
			9	SS				-											
								F											
							225												
	white/grey, dry																		
			10	SS				[
								-											
	some gravel		H			1:1		F											
	Some graver		[]	66			224												
			11	SS		目	: [
			\vdash			目	:.	-											
	brown, moist		Н			目		-											
	DIOWII, IIIOISL			0.5		::目:													
			12	SS		ΙĐ	223												
			Ш					-											
	End of spoon sampling						:.	-											
								-											
						: 	W. L. 2	222.3 m											
			[_]			ΙĦ	Jul 27,	2020											
		1.	13/	UGEF	Γ.	ıН	∵ 222	ŀ							1	1		1	

LOG OF BOREHOLE MW 2

REF. NO.: SP20-666-20 Method: Hollow Stem Auger ENCL NO.: 3

PROJECT: Hydrogeological and Environmental Investigation

	NT: Vitmont Holdings (Barrie) Inc.							Diameter: 200 mm					
PROJ	ECT LOCATION: 79 Collier Street, ON		_			ı	_	Date: Jul-15-2020	JETRATION	1			
(m)	SOIL PROFILE		S	AMPL		TER		DYNAMIC CONE PEN RESISTANCE PLOT 20 40 6		PLASTIC NATURAL LIQUII LIMIT CONTENT LIMI	EN CE	LM LIZ	REMARKS AND
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEAR STRENG O UNCONFINED QUICK TRIAXIAL 20 40 6	TH (kPa) + & Sensitivity (RE		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRAIN SIZE DISTRIBUTIO (%) GR SA SI (
- 204.4	SAND: brown, moist(Continued)			•				-					
221.1 10.7	END OF BOREHOLE:					<u>. '⊢- '</u>					\vdash		
10.7	Note: 1. Monitoring well was installed upon completion of drilling. 2. Monitoring well was covered with flush mount well cover protection. 3. Groundwater level observation(s): Date: Depth (m): July 16, 2020 9.48 July 27, 2020 9.51												

SIRATI & PARTINERS LOG OF BOREHOLE MW 3

PROJECT: Hydrogeological and Environmental Investigation Method: Hollow Stem Auger

CLIENT: Vitmont Holdings (Barrie) Inc.

ENCL NO.: 4

REF. NO.: SP20-666-20

Diameter: 200 mm

	ECT LOCATION: 79 Collier Street, ON		Ι.	:			1	Date: Jul-15	NE PF	NETRATION						г -	_	1
	SOIL PROFILE		5	SAMPL	ES.	~		DYNAMIC COI RESISTANCE	PLOT			PLAST	IC .NAT	URAL	LIQUID LIMIT W _L T (%)		₽	REMARKS
m)						GROUND WATER		20 4					IC NATI MOIS CON	TURE	LIMIT	a EN	Ĭ,	AND
LEV_		STRATA PLOT			BLOWS 0.3 m	W SNC	Z	SHEAR STE	RENG	TH (kPa)	VANE	W _P	\	w	W_L	P.S.	A N	GRAIN SIZI
PTH	DESCRIPTION	Ĭ E	NUMBER		0.3		ELEVATION	O UNCONFI	INED	+ & Sen	sitivity (REI	0	(•	80	통송	(%)
		₹	₹	TYPE	ž	20 Z		QUICK TR 20 4	RIAXIAL	X FIELD	VANE		TER CC	ONTEN	T (%)	"	≨	(70)
32.1		တ	ž			<u>0</u> 0			0 6	0 80	100	1	0 2	20 :	30		<u> </u>	GR SA SI
3 2.0 0.1	ASPHALT: 100 mm thick		/	UGE	┞──		232	2								1		
	FILL: sandy silt, some cobbles, trace stone, trace clay	\otimes	1	SS				-										
	auso stone, auso stuy							F										
		\otimes						-										
	more stones and cobbles	\times						F										
		\otimes	2	ss			23	1								-		
		\times						<u> </u>										
30.6								<u> </u>										
1.5	SAND: trace stone, white/brown,]					- I										
	moist		3	SS				-										
							00/	-										
			\Box				230	Υ <u>-</u>										
								-										
			4	ss				F										
			1					ļ										
								ţ										
			.]				229	9								1		
			5	SS				<u> </u>										
								-										
								F										
	fine sand, dark gery, very moist							F										
			6	ss			228	8								-		
			1					-										
								†										
								-										
			7	SS				<u> </u>										
			'				227	7										
			-				221	' }										
								F										
			8	SS				F										
			1					F										
								_ [-										
							226	6								1		
			9	ss				†										
			1					<u>L</u>										
			\vdash					-										
	trace gravel, moist		 					Ł										
	9		10	SS			225	5								1		
			1 '0	33				[-										
			!					-										
								F										
			1	l .				1										
			11	SS				4								-		
			11	SS			224				1		1					
			11	SS			224	-										
			11	SS			224	-										
							224	-										
			11				: 224	-										
							· .	-										
	End of spoon sampling						222	-										SS13 -
	End of spoon sampling			SS			· .	-								-		SS13 - PHC/VOC
	End of spoon sampling		12	SS			· .	-								_		SS13 - PHC/VOC

LOG OF BOREHOLE MW 3

REF. NO.: SP20-666-20 PROJECT: Hydrogeological and Environmental Investigation Method: Hollow Stem Auger ENCL NO.: 4

	T: Vitmont Holdings (Barrie) Inc.		,					Diameter: 2						NCL IN	J T		
PROJE	ECT LOCATION: 79 Collier Street, ON							Date: Jul-1	5-2020)							
	SOIL PROFILE		S	SAMPL	ES	ER		DYNAMIC CO RESISTANCE			100	PLASTIC MOI	TURAL STURE	LIQUID LIMIT	z	TWT	REMARKS AND
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEAR STI	INED	TH (kPa) _{D \} + & Sensi	itivity (REN	W _P WATER C	ONTENT O O O O O O O O O O O O O	LIQUID LIMIT W _L ————————————————————————————————————	POCKET PE (Cu) (kPa)	NATURAL UNI (kN/m³)	GRAIN SIZE DISTRIBUTION (%) GR SA SI C
	SAND: trace gravel, white/brown, moist(Continued)			\ UGEF			Jul 27, 221	2020									
219.9 12.2	END OF BOREHOLE:		-				220								┝		
	Note: 1. Monitoring well was installed upon completion of drilling. 2. Monitoring well was covered with flush mount well cover protection. 3. Groundwater level observation(s): Date: Depth (m): July 16, 2020 9.88 July 27, 2020 9.82																

LOG OF BOREHOLE BH 4

REF. NO.: SP20-666-20

ENCL NO.: 5

PROJECT: Hydrogeological and Environmental Investigation Method: Hollow Stem Auger

FRUJE	ECT LOCATION: 79 Collier Street, ON	ı						Date: Jul-1	5-2020)									
	SOIL PROFILE		s	AMPL	ES			DYNAMIC CO RESISTANCE	NE PEN	NETRA	TION								DEMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	20 4 SHEAR ST O UNCONF • QUICK TI	PO 6 RENG INED	0 8 TH (kl	30 10	ANE vity (REM	WA	TER CO	w DNTEN	LIQUID LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	REMARKS AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI
231.1	ASPHALT: 100 mm thick	- 0,	_	UGE			231												GIT OA OI
23 0.0 0.1	FILL: sand, some stone, trace gravel, brown		1	SS			231												SS1 - M&I
	piece of brick		2	SS			230												
229.4	SAND:	<u> </u>	3	SS				- - - - -											SS3 - PHC/VOC, PAH, PCB
229.0							229	-											
2.1	END OF BOREHOLE:						223												
	Note:																		

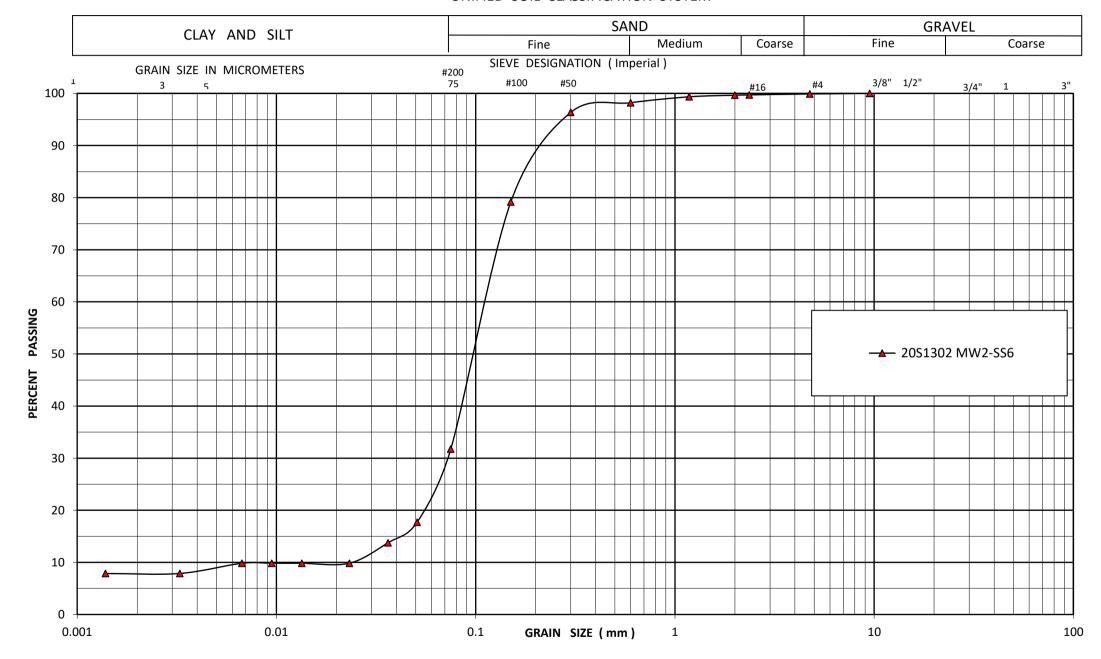
LOG OF BOREHOLE BH 5

PROJECT: Hydrogeological and Environmental Investigation Method: Hollow Stem Auger

ENCL NO.: 6

REF. NO.: SP20-666-20

PROJECT LOCATION: 79 Collier Street, ON SOIL PROFILE SAMPLES								Date: Jul-16-2020 DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC NATURAL HOURD IS REMARKS											
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT			"N" BLOWS O.3 m	GROUND WATER CONDITIONS		20 40 60 80 100 SHEAR STRENGTH (kPa) VANE O UNCONFINED + & Sensitivity (REI				ANE vity (REM	W _P W W _L M)			LIQUID LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	REMARKS AND GRAIN SIZE DISTRIBUTION (%)
230.8				TYPE				QUICK TF20 4	RIAXIAL 10 6	. X 60 8	FIELD VA & Sensitivi 30 10	NE ty (NAT) 00				30			GR SA SI (
23 0 .8	ASPHALT: 80 mm thick			UGE				-											OIT OIT OI
0.1	FILL: sand, some stone, some asphalt, gravel, dark brown		1	SS				- - - -											
			2	SS			230	-											
	some organics, dark brown		3	SS			229												SS3 - M&I, PHC/VOC, PAH
228.7	END OF BOREHOLE:	\times	_					-											
2.1	END OF BOREHOLE:																		
	Note:																		
																1		l	1
																1		l	
																		l	
																		l	
																		1	
																		1	
																		1	
																		l	
																		1	
																		1	
																		1	
																		1	
																		l	
- 1		1														1			
						'													

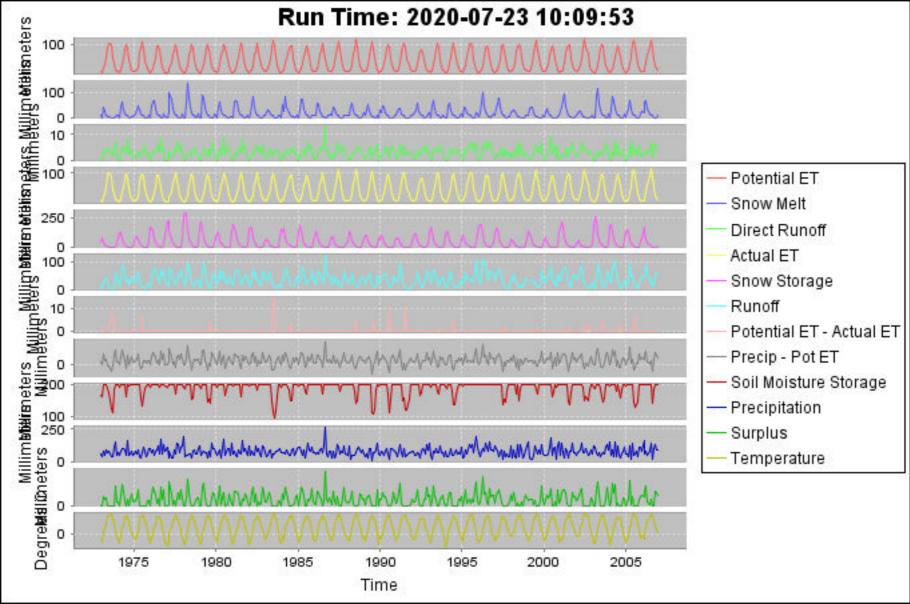

APPENDIX B

GRAIN SIZE DISTRIBUTION

UNIFIED SOIL CLASSIFICATION SYSTEM

Project No.

Figure No.


Date

: SP20-666-00

21 August 2020

APPENDIX C

				Soil			Snow		
Date	PET	P	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
======	=======	=======	=======	=======	======	======	=======	======	======
Jan-73	10.4	64.5	15.9	165.9	10.4	0	37.2	0	13.7
Feb-73	8.6	44.2	-6.2	160.8	7.6	1.1	78.8	0	6.4
Mar-73	23.7	81.5	86.6	200	23.7	0	46.3	47.4	30.6
Apr-73	34	49.8	36.4	200	34	0	23.2	36.4	34.1
May-73		91.4	43.9	200	54.5	0	11.6	43.9	42.3
Jun-73	91.3	76.2	-13.2	186.8	91.3	0	5.8	0	22.7
Jul-73	103	87.6		173.8	102.1	0.9	0	0	13.8
Aug-73		39.4	-60.1	121.6	89.7	7.9	0	0	6.7
Sep-73	54.3	38.9	-17.4	111	47.5	6.8	0	0	4.3
Oct-73	36.1	113.8		183	36.1	0	0	0	6.9
Nov-73	17.2	156.5	125.7	200	17.2	0	6.3	108.7	62.2
Dec-73	10.3	54.1	16.1	200	10.3	0		16.1	36.5
Jan-74	9.9	69.1	17.7	200	9.9	0	73.7	17.7	27.5
Feb-74	8.2	52.8	-8.2	191.8		0	126.5	0	13.3
Mar-74	17	81.3	65	200	17	0	123.7	56.9	37.2
Apr-74	34.9	99.6	121.6	200	34.9	0	61.9	121.6	83.3
May-74		102.9	77.1	200	51.5	0	30.9	77.1	82.9
Jun-74	81.7	96.5	25.4	200	81.7	0	15.5	25.4	56.4
Jul-74	99.2	55.1	-39.1	160.9	99.2	0	7.7	0	28.5
Aug-74		161	74.5	200	86.2	0	0	35.4	38.6
Sep-74		47.8	-3.5	196.5	48.9	0	0	0	17.7
Oct-74	28.3 17.6	67.8	36.1	200	28.3	0	0	32.6	27.3
Nov-74 Dec-74	17.8	86.1 51.3	64.4 23.7	200 200	17.6 12.8	0	13.3	64.4 23.7	48.3 35.5
Jan-75	10.7	66	20.8	200	10.7	0	46.7	20.8	
Feb-75	10.7	82.8	29.4	200	10.7	0	87.9	29.4	29.7
Mar-75	16.2	63.8	39.6		16.2	0	94.4	39.6	
Apr-75									
May-75		42.2	-0.2	199.8		0		05.4	
Jun-75		31.5				0.1	16.1	0	
Jul-75		71.6		132.1		6.7	8		
Aug-75		112	27.2			0.7			
Sep-75		79.8		187.1		0	0		5.9
Oct-75		43.9		194.7	34.1	0	0		
Nov-75		58.7		200	21.7	0	0		17.8
Dec-75		103.1	28	200		0		28	
Jan-76	7.2	101.6	-7.2	192.8		0	165.7	0	10.7
Feb-76	12	72.6	62	200	12	0	162.8	54.7	34.3
Mar-76	18.8	95.5	102.2	200	18.8	0	134.2	102.2	70.5
Apr-76	36.9	55.6	83	200	36.9	0	67.1	83	78
May-76	53.2	87.1	63.1	200	53.2	0	33.6	63.1	73.5
Jun-76	93.1	91.9	11	200	93.1	0	16.8	11	44.7
Jul-76	93.3	123.4	32.4	200	93.3	0	8.4	32.4	42.4
Aug-76	81	67.1	-8.8	191.2	81	0	0	0	21.5

				Soil			Snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
======	=======	=======	=======	=======	======	=======	=======	======	======
Sep-76	49.8	173.2	114.7	200	49.8	0	0	105.9	70.7
Oct-76	26.3	66.5	36.9	200	26.3	0	0	36.9	52.8
Nov-76	14.1	130.3	84.6	200	14.1	0	27.1	84.6	71.5
Dec-76	7.9	79.5	-3.1	196.9	7.9	0	101.6	0	33.7
Jan-77	6.6	111.2	-6.6	190.4	6.5		212.8	0	
Feb-77	9.7	36.6	16.2	200	9.7		223.3	6.7	
Mar-77	21.7	78.4	135.4	200	21.7		141.4	135.4	
Apr-77	36.4	34.9	67.4	200	36.4		70.7	67.4	
May-77	67.3	35.4	1.7	200	67.3		35.3	1.7	
Jun-77	78.7	88.9	23.4	200	78.7		17.7	23.4	
Jul-77	100.5	63.5	-31.3	168.7	100.5		8.8	0	
Aug-77	78 52.7	140.2	73.7	200	78 52.7		0	32.7 73.7	
Sep-77 Oct-77	52.7 29.8	133 70.2		200 200	52.7		0	36.9	
Nov-77	18.4	113.8	36.9 89.8	200	29.8 18.4		0	89.8	
Dec-77	10.4	125.7	43.4	200	10.4		70.2	43.4	
Jan-78	7.6	193	-7.6	192.4	7.6		263.2	43.4	
Feb-78	7.5	38.8	-7.5	185.2	7.0		302	0	
Mar-78	14.5	55.8	57.5	200	14.5		284.8	42.7	
Apr-78	27.9	50.8	152.7	200	27.9		152.6	152.7	
May-78	62.5	60	70.8	200	62.5		76.3	70.8	
Jun-78	78.7	62.6	18.9	200	78.7	0	38.2	18.9	52.9
Jul-78	99.2	32.8	-49	151	99.2	0	19.1	0	26.5
Aug-78	85.6	87	6.6	157.6	85.6	0	9.5	0	16.8
Sep-78	51.1	93.4	47.2	200	51.1	0	0	4.8	13.3
Oct-78	30.3	61.8	28.4	200	30.3		0	28.4	
Nov-78	16.8		39.5	200	16.8		0	39.5	
Dec-78	10.9	101.6							
Jan-79	8.1	123.3	-5.1	194.9				0	
Feb-79		55			6.8				
Mar-79	20.4	71	117.5	200				105.6	
Apr-79	31.2	87.2	127.3	200			75.6		
May-79 Jun-79	56.9 84.3	70.4 70.3	47.8 1.4	200 200	56.9 84.3		37.8 18.9	47.8 1.4	
Jun-79 Jul-79	99.2	70.3		144.4				0	
Aug-79		83.4	-55.6 8.2	152.6				0	
Sep-79	54			140.3				0	
Oct-79	30.1	140	102.9	200			0	43.1	
Nov-79	18.9	99.2	75.3	200			0	75.3	
Dec-79	12.2	99.8		200			30.6		
Jan-80	9.9	71.8		200				18.3	
Feb-80	8.3	49	-8.3	191.7				0	!
Mar-80	16.6	70.2	54.6	200	16.6			46.3	33.6
Apr-80	34.2	93.4	114.2	200	34.2	0	59.8	114.2	77.7

				Soil			Snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
======	=======	=======	=======	=======	======	=======	=======	======	======
May-80	62.9	36.8	2	200	62.9	0	29.9	2	39.4
Jun-80	70.4	103.2	42.6	200	70.4	0	14.9	42.6	45.2
Jul-80	98.6	171.6	71.9	200	98.6	0	7.5	71.9	64.5
Aug-80	90.5	51.2	-34.4	165.6	90.5		0	0	
Sep-80	52.4	99.2	41.9	200	52.4		0	7.5	
Oct-80	26.9	98.6	66.7	200	26.9		0	66.7	
Nov-80	15.8	55.6	31.6	200	15.8		5.9	31.6	
Dec-80	8.2	144.8	10.4	200	8.2		131.4	10.4	
Jan-81	6.7	61 85.2	-6.7	193.3	6.7		192.4	0	
Feb-81 Mar-81	12.9 19.4	51.6	89.6 77.9	200 200	12.9 19.4		172.9 125.4	82.9 77.9	
Apr-81	35.3	46.4	71.5	200	35.3		62.7	71.5	
May-81	55.5	97.6	68.6	200	55.5		31.4	68.6	
Jun-81	83.2	71.8	0.7	200	83.2		15.7	0.7	
Jul-81	101.7	58.6	-38.2	161.8	101.7		7.8	0.7	
Aug-81	84	159.8	75.6	200	84		0	37.4	
Sep-81	50.1	80.4	26.2	200	50.1	0	0	26.2	30.8
Oct-81	27.5	101.4	68.9	200	27.5	0	0	68.9	52.9
Nov-81	17.4	70	49.4	200	17.4	0	0	49.4	51.9
Dec-81	11.2	55	20	200	11.2	0	22.5	20	35.6
Jan-82	7	120	-7	193	7	0	142.5	0	17.1
Feb-82	9.4	49	9.4	200	9.4		172.4	2.4	
Mar-82	16.7	79	73.1	200	16.7		159.5	73.1	
Apr-82	29.5	58.8	106.1	200	29.5		79.8	106.1	
May-82	68.6	50.2	19	200	68.6		39.9	19	
Jun-82 Jul-82	74	123.2	-17.6	200	74 101.7		19.9	63	
Aug-82	101.7 73.3	78 103.4		182.4 200	73.3		10	0 17.2	
Sep-82	53	62.8	6.7	200	53		0	6.7	
Oct-82	33.5			200			0		
Nov-82	18.7	126.8		200	18.7		0	101.8	
Dec-82	13.8	108.4		200	13.8		19.3	71.4	
Jan-83	10.3	72	20.8		10.3		59.1	20.8	
Feb-83	11.8	43.2	22.1	200	11.8	0	67.6	22.1	33.2
Mar-83	19.8	53.4	44.9	200	19.8	0	54.4	44.9	40.5
Apr-83	31.8	83.6			31.8		27.2	74.8	
May-83	50.9						13.6	51.8	
Jun-83	85.9	28.2	-52.3	147.7	85.9		6.8	0	
Jul-83	111.6	62.8		114.4	99.8			0	
Aug-83	94	63.6		95.2	79.6		0	0	
Sep-83	59.3	84.4	20.9	116.1	59.3		0	0	
Oct-83	32.3	82.4	46		32.3		0	20.0	
Nov-83	17.1	89 104.4	67.8	200	17.1		75.0		
Dec-83	9	104.4	18.6	200	9	0	75.8	18.6	18.2

				Soil			Snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
======	=======	=======	=======	======	======	======	======	======	======
Jan-84	7.6	72.6	-7.6	192.4	7.6	0	148.4	0	8.6
Feb-84	13.1	72	72	200	13.1	0	133.4	64.4	38.4
Mar-84	14.1	77.4	33.9	200	14.1		161.7	33.9	
Apr-84	36.2	64.8	106.2	200	36.2		80.9	106.2	
May-84	51.2	89.4	74.1	200	51.2		40.4	74.1	
Jun-84	85.9	49.8	-18.3	181.7	85.9		20.2	0	
Jul-84	96.2	52.2	-36.5	148.5	92.8		10.1	0	
Aug-84	92.8	91	-1.3	147.5	92.5		5.1	0	
Sep-84	49.2	106.8	57.3	200	49.2		0	4.8	
Oct-84	34.7	51.8	14.5	200	34.7		0	14.5	
Nov-84 Dec-84	17.5 13.2	69.2 98.6	48.5 59.8	200 200	17.5 13.2		22.3	48.5 59.8	
Jan-85	8.1	112.6	-5.5	194.5	8.1		132.2	39.8	
Feb-85	10.6	113.4	49.2	200	10.6		184.3	43.6	
Mar-85	19	84.2	102	200	19		144.9	102	
Apr-85	36.2	51.6	85.2	200	36.2		72.4	85.2	
May-85	61.3	88.4	58.9	200	61.3		36.2	58.9	
Jun-85	73.1	33.2	-23.4	176.6	73.1		18.1	0	
Jul-85	93.8	83.4	-5.6	171.7	93.2	0.7	9.1	0	21.1
Aug-85	80.5	144.2	65.6	200	80.5	0	0	37.2	34.3
Sep-85	58.2	89.4	26.8	200	58.2	0	0	26.8	31.4
Oct-85	33.3	78.8	41.6	200	33.3		0	41.6	
Nov-85	17.2	116.4	93.8	200	17.2		0	93.8	
Dec-85	9.8	71	18.5	200	9.8		41.5	18.5	
Jan-86	9.3	75	12	200	9.3		94.6	12	
Feb-86	9.3	58	6.1	200	9.3		136.9	6.1	
Mar-86	19.8	68.8	81	200	19.8		102.5	81	
Apr-86					38.3			76	
May-86 Jun-86		92.6 105	46.7 35.3	200 200	66.9 77.3			46.7 35.3	
Jul-86			-28.8	171.2	101.7			33.3	
Aug-86		128		200	78		0.4	21.2	
Sep-86		263.2	198.6	200	51.4		0	198.6	
Oct-86		66.8	32.4	200	31.1		0	32.4	
Nov-86	15.9	38	20.5		15.9				
Dec-86		80.6	41.8		12.3			41.8	
Jan-87	10.3	80.4	24.8	200	10.3	0	68.3	24.8	35.5
Feb-87	9.7	36.4	4.8	200	9.7	0	89.9	4.8	19.9
Mar-87	20.2	83.6	78	200	20.2	0	72.3	78	51.8
Apr-87	41.3	34.4		200	41.3		36.1	27.6	
May-87	65.2	52	2.2	200	65.2			2.2	
Jun-87	89.7	134	46.7	200	89.7				
Jul-87	108.9	111.6	6.2	200	108.9				
Aug-87	84.6	66	-21.9	178.1	84.6	0	0	0	13.2

				Soil			Snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
======	=======	=======	=======	=======	======	======	=======	======	======
Sep-87	55.7	78.2	18.6	196.7	55.7	0	0	0	8.9
Oct-87	28.3	76.8	44.6	200	28.3	0	0	41.4	27
Nov-87	17.4	123.6	100.5	200	17.4	0	0	100.5	67.6
Dec-87	12.9	59.8	30	200	12.9	0	15.1	30	47.8
Jan-88	9.8	51.4	8.9	200	9.8	0	47.1	8.9	28.1
Feb-88	9.4	119.6	16.1	200	9.4	0	140.3	16.1	22.6
Mar-88	17.2	25.2	35.5	200	17.2	0	112.2	35.5	
Apr-88	32.8	57.2	77.6	200	32.8		56.1	77.6	
May-88	66.1	54.4	13.7	200	66.1	0	28	13.7	
Jun-88	81.7	48.8	-21.3	178.7	81.7		14	0	
Jul-88	114.4	68.6	-42.2	140.9	109.9	4.5	7	0	
Aug-88	92.2	99.8	9.6	150.5	92.2		0	0	
Sep-88	52.7	113	54.7	200	52.7		0	5.2	
Oct-88	27.3	95.4	63.3	200	27.3		0	63.3	
Nov-88	19.4	77	53.7	200	19.4		0	53.7	
Dec-88 Jan-89	10.6 11.5	91.8 64	35.2 32.5	200 200	10.6 11.5		44.2 62.8	35.2 32.5	
Feb-89	9.4	47.2	32.5	200	9.4	0	96.6	32.5	
Mar-89	16	62	39.2	200	16		102	39.2	
Apr-89	30.3	29.4	48.7	200	30.3		51	48.7	
May-89	59.8	100	60.7	200	59.8		25.5	60.7	54.9
Jun-89	86.9	102.6	23.3	200	86.9	0	12.8	23.3	
Jul-89	106.9	12.2	-88.9	111.1	106.9		6.4	0	
Aug-89	84.6	69.9	-11.8	104.5	79.3	5.2	0	0	
Sep-89	53	72.4	15.8	120.3	53	0	0	0	8.2
Oct-89	32.7	97.6	60.1	180.4	32.7	0	0	0	7.2
Nov-89	15.7	145.8	107.9	200	15.7	0	16.3	88.2	51.2
Dec-89	6.6	58	-6.6	193.4	6.6	0	74.3	0	22.6
Jan-90	12.8	55.4	44.7	200	12.8		70.7	38.1	
Feb-90	11.1	84					104.9		
Mar-90	20.3	68.4	72.1	200			78.4	72.1	
Apr-90	37.8			200			39.2	53.1	
May-90	55.2	87.2	47.3	200	55.2		19.6	47.3	
Jun-90	85.3	106		200	85.3		9.8	25.2	
Jul-90	98.6	62.8	-29.1	170.9			0	0	
Aug-90 Sep-90	88.3 52.4	20.8 99.2	-68.6 41.9	112.3 154.2	78.3 52.4		0	0	
Oct-90	31.3	104		200			0	21.7	
Nov-90	19	97.8		200			0	73.9	
Dec-90	12.3	85	44.8	200			25.4	44.8	
Jan-91	9.3	71.6	9.8	200			77.3	9.8	
Feb-91	12.1	42.2	28	200			78.4	28	
Mar-91	20.2	85	75	200	20.2		65.2	75	
Apr-91	39.3			200					

				Soil			Snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
======	=======	=======	=======	=======	======	=======	=======	=======	======
May-91	72.9	72.4	12.1	200	72.9	0	16.3	12.1	53.3
Jun-91	94.8	38.6	-50	150	94.8	0	8.2	0	26.8
Jul-91	102.3	107.4	7.8	157.9	102.3	0	0	0	17.8
Aug-91	91.7	43.4	-50.4	118	81	10.6	0	0	8.4
Sep-91	51.4	56	1.8	119.9	51.4	0	0	0	5.9
Oct-91	33.5	68.6	31.7	151.5	33.5	0	0	0	5
Nov-91	16.6	68.4	48.8	200	16.6	0	0	0.3	3.9
Dec-91	11	87.2	36.5	200	11	0	37.8	36.5	20.7
Jan-92	9.7	86.2	20.6	200	9.7	0	92.7	20.6	
Feb-92	10.6	50.6	20.8	200	10.6	0	111.3	20.8	20.9
Mar-92	16.2	55.6	40.4	200	16.2	0	109	40.4	31.6
Apr-92	31.2	69.8	89.6	200	31.2	0	54.5	89.6	
May-92	58.4	58.2	24.2	200	58.4	0	27.2	24.2	45
Jun-92	75.4	28.8	-34.4	165.6	75.4	0	13.6	0	22.5
Jul-92	82.9	87	6.6	172.2	82.9	0	6.8	0	
Aug-92	74.2	100.2	27.8	199.9	74.2	0	0	0	
Sep-92	52.4	93.8	36.8	200	52.4	0	0	36.7	25.7
Oct-92	28.3	64.4	32.9	200	28.3	0	0	32.9	30.1
Nov-92	16.9	132.4	102.4	200	16.9	0	7.1	102.4	70.6
Dec-92	12	89.6	47.8	200	12	0	34.5	47.8	
Jan-93	10.4	147.4	55.2	200	10.4	0	114	55.2	58
Feb-93	7.9 16.7	51	-7.9	192.1	7.9	0	165	0	27.8
Mar-93 Apr-93	33.4	23.2 78.2	38 107.3	200 200	16.7 33.4	0	132.8 66.4	30.2 107.3	29.6 72.1
May-93	56.9	76.2	48.9	200	56.9	0	33.2	48.9	
Jun-93	79.2	99	31.4	200	79.2	0	16.6	31.4	49.9
Jul-93	102.3	75.8	-22	178	102.3	0	8.3	0	26.3
Aug-93							0.5	_	4.5
Sep-93		121	67.2	200	47.7	0	0	35.8	
Oct-93						0	0		
Nov-93	17	76.4	55.9			0	0	55.9	
Dec-93	11.1	40.4	11.2	200		0	17.2	11.2	
Jan-94	6		-6			0	98.5	0	
Feb-94	8.2	38.2	-8.2	186.1	8	0.2	136.7	0	
Mar-94	17.7	44.6		200		0	112.1	36.3	22.9
Apr-94	36.2	58.8		200	36.2	0	56.1	75.7	51.6
May-94	54.2		71.9	200	54.2	0	28	71.9	
Jun-94	88	53.6	-23.1	176.9	88	0	14	0	32.8
Jul-94	102.3	53.6	-44.4	137.6	97.2	5.1	7	0	17.7
Aug-94	78	70.2	-4.3	134.7	76.7	1.3	0	0	11
Sep-94	54.3	89.4	30.6	165.2	54.3	0	0	0	8.2
Oct-94	33.3	58.4	22.2	187.4	33.3	0	0	0	4.8
Nov-94	19.6	72	48.8	200	19.6	0	0	36.2	22.6
Dec-94	12.9	58	28.7	200	12.9	0	14.6	28.7	25.7

				Soil			Snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
======	=======	=======	=======	======	======	======	=======	======	======
Jan-95	11.1	113.8	48.5	200	11.1	0	66.5	48.5	38.4
Feb-95	8.7	33.6	-5.1	194.9	8.7	0	96.4	0	18.2
Mar-95	20.9	38	47.1	200	20.9		64.9	42	31.5
Apr-95	28.4	90.2	86.9	200	28.4	0	35.4	86.9	
May-95	59.1	58	13.7	200	59.1		17.7	13.7	
Jun-95	96.6	128.6	34.4	200	96.6		8.9	34.4	
Jul-95	103.6	115.8	15.2	200	103.6		0	15.2	
Aug-95	95.7	133.8	31.4	200	95.7	0	0	31.4	
Sep-95	48.3	71.6	19.7	200	48.3		0	19.7	
Oct-95	35.2	129	87.4	200	35.2		0	87.4	
Nov-95 Dec-95	14.3 9	196 111.6	136.5 24.3	200 200	14.3 9		38.3 115.6	136.5 24.3	
Jan-96	8.4	74.6	0.3	200	8.4	0	181.4	0.3	
Feb-96	9.8	46.2	17.9	200	9.8		199.5	17.9	
Mar-96	16	81.2	72.4	200	16		190.4	72.4	
Apr-96	29.5	107	167.3	200	29.5		95.2	167.3	
May-96	55.5	79.8	67.9	200	55.5		47.6	67.9	
Jun-96	87.5	144.4	73.5	200	87.5		23.8	73.5	
Jul-96	92.1	108.2	22.6	200	92.1		11.9	22.6	57
Aug-96	87.2	86.8	1.2	200	87.2	0	5.9	1.2	30.7
Sep-96	56.1	152.8	95.1	200	56.1	0	0	95.1	68.4
Oct-96	31.7	88.2	52.1	200	31.7	0	0	52.1	60.8
Nov-96	14.9	91.2	58.3	200	14.9	0	14.6	58.3	
Dec-96	13	85.2	53.8	200	13		30.3	53.8	
Jan-97	8.9	120.4	13.1	200	8.9		128	13.1	
Feb-97	11.3	105.6	58.9	200	11.3		161.6	58.9	
Mar-97	16.6		70.6	200	16.6		153.4	70.6	
Apr-97	31.2							88.6	
May-97 Jun-97	47.9 92.5	74 97.4		200 200	47.9 92.5		38.4 19.2	60.8 19.2	
Jun-97 Jul-97	96.8	25	-63.5	136.5	96.8		9.6	19.2	
Aug-97	77.1	87.4	15.6	150.5	77.1		9.0	0	
Sep-97	53	44.6	-10.6	144			0	0	
Oct-97	30.9	66.6	32.4	176.4	30.9		0	0	
Nov-97	16.6	44.6	26	200			0	2.4	
Dec-97	12.2	45		200	12.2		14.1	17.5	
Jan-98	11.5	123.4	57.9	200			65.4	57.9	
Feb-98	13.5	33.6	27.6	200	13.5	0	57	27.6	31.7
Mar-98	21.1	91.2	76.1	200	21.1	0	47.5	76.1	56.9
Apr-98	37.6	47	30.8	200	37.6	0	23.8	30.8	44.5
May-98	76.7	35	-31.5	168.5	76.7		11.9	0	22.8
Jun-98	88.6	134.8	45.4	200			5.9	13.9	24.2
Jul-98	100.5	45.2	-51.6	148.4	100.5		0	0	
Aug-98	89.4	136.6	40.3	188.8	89.4	0	0	0	11.2

				Soil			Snow		
Date	PET	P	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
======	=======	=======	=======	=======	======	=======	=======	======	======
Sep-98	58.5	94.4	31.1	200	58.5	0	0	19.9	16.9
Oct-98	33.7	35.2	-0.2	199.8	33.7	0	0	0	7.8
Nov-98	18.7	57.2	35.6	200	18.7	0	0	35.4	23.6
Dec-98	13.6	88.8	54.7	200	13.6		17.4	54.7	
Jan-99	9.1	148.8	24.4	200	9.1		131.4	24.4	
Feb-99	12.3	33	36.3	200	12.3		115	36.3	
Mar-99	18.5	21.4	32	200	18.5		85.3	32	
Apr-99	36.4	26	30.9	200	36.4		42.6	30.9	
May-99	68.1	55.4	5.8	200	68.1		21.3	5.8	
Jun-99	94.8	118.8	28.7	200	94.8		10.7	28.7	
Jul-99	111.6	92.4	-18.5	181.5	111.6		5.3	0	
Aug-99	81.5	65.2	-14.2	168.6	80.2		0	0	
Sep-99	59.6	94.8	30.4	199	59.6		0	0	
Oct-99	31.3	62.8	28.4	200	31.3		0	27.4	
Nov-99	19	138.2 66	112.2	200	19 12		_	112.2	
Dec-99 Jan-00	9.1	55	30.6 4.5	200 200	9.1		21.6 62.6	30.6 4.5	
Feb-00	12	56.8	31.5	200	12		74.7	31.5	
Mar-00	24.7	48.8	57.1	200	24.7		39.2	57.1	
Apr-00	32.8	60.8	44.6	200	32.8		19.6	44.6	
May-00	62.5	117.4	58.9	200	62.5		9.8	58.9	
Jun-00	81.7	179	98.2	200	81.7		0	98.2	
Jul-00	92.1	54.4	-40.4	159.6	92.1	0	0	0	40.1
Aug-00	82	99.4	12.4	172	82	0	0	0	23.7
Sep-00	52.4	108.4	50.6	200	52.4	0	0	22.6	26.1
Oct-00	33.5	24.8	-9.9	190.1	33.5	0	0	0	11.6
Nov-00	17	127.6	98.5	200	17		6.3	88.6	
Dec-00	8.2	154.6	11.7	200			140.3	11.7	31.2
Jan-01	10.1	57.4		200	10.1		156.5	30.4	
Feb-01	10.8						218.7	69.2	
Mar-01	17.3	77.2		200			186.7	89.9	
Apr-01	35.5	31.6					93.4	87.8	
May-01	66.9	100.4	75.2	200	66.9		46.7	75.2	
Jun-01	89.1	82.4	12.5	200			23.3	12.5	
Jul-01	95.6 97.5	29.2	-56.2 -8.7	143.8			11.7	0	
Aug-01 Sep-01	53.3	87.4 86.2		137.6 172			5.8 0	0	
Oct-01	32.7	142.8		200	32.7		0	75	
Nov-01	21.7	73.2		200			0	47.8	
Dec-01	14.6	77.6		200			9.9	50	
Jan-02	13.1	49.2	23.5	200			21	23.5	
Feb-02	12.8	75.6		200			43.8	38.2	
Mar-02	19	86.8	58.4	200	19		50.4	58.4	
Apr-02	34.9							77.5	

				Soil			Snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
======	=======	=======	=======	=======	======	======	=======	=======	======
May-02	52.5	139.6	92.7	200	52.5	0	12.6	92.7	84.6
Jun-02	88	77.6	-8	192	88	0	6.3	0	42.7
Jul-02	114.4	68.2	-43.3	150.4	112.7	1.7	0	0	22.8
Aug-02	90	104.2	9	159.4	90	0	0	0	14.9
Sep-02	65.9	53.6	-14.9	147.5	62.8	3	0	0	7.5
Oct-02	29	65.2	32.9	180.4	29	0	0	0	5.7
Nov-02	16.3	88	60.7	200	16.3	0	7.2	41.1	25.6
Dec-02	11.4	59.2	24.8	200	11.4	0	28.8	24.8	24.7
Jan-03	7.4	128.2	-7.4	192.6	7.4	0	157	0	11.7
Feb-03	8.2	111.6	-8.2	184.7	7.9	0.3	268.6	0	5.8
Mar-03	17.3	76.6	102.8	200	17.3	0	223.1	87.5	48.7
Apr-03	29.7	51.2	130.5	200	29.7	0	111.5	130.5	91.1
May-03	57.3	73	67.8	200	57.3	0	55.8	67.8	81.9
Jun-03	85.3	45.4	-14.3	185.7	85.3	0	27.9	0	41.4
Jul-03	99.8	61	-27.9	159.7	97.8	2	13.9	0	22.6
Aug-03	93.4	68.8	-21.1	142.9	89.2	4.2	7	0	13.2
Sep-03	56.8	65.2	12.2	155.1	56.8	0	0	0	8.1
Oct-03	29.8	111	75.7	200	29.8	0	0	30.8	23.4
Nov-03	18.5	131	106	200	18.5	0	0	106	68.5
Dec-03	12.1	97.4	51.4	200	12.1	0	31.2	51.4	59.4
Jan-04	6.7	149.6	-6.7	193.3	6.7	0	180.8	0	28.3
Feb-04	10.5	56.6	34.1	200	10.5	0	192	27.4	28.6
Mar-04	20.4	94.2	125.4	200	20.4	0	136.9	125.4	80.1
Apr-04	33.6	43	75.7	200	33.6	0	68.5	75.7	78.3
May-04	57.6	148.6	117.8	200	57.6	0	34.2	117.8	104.4
Jun-04	78.7	44	-19.8	180.2	78.7	0	17.1	0	50.7
Jul-04	95.6	124.8	31.5	200	95.6		8.6	11.7	
Aug-04	77.5	48	-23.4	176.6	77.5	0	0	0	17.5
Sep-04	60	37.4	-24.5	155	57.1	2.9	0	0	9.4
Oct-04	32.7	61.6	25.9	180.9	32.7		0		
Nov-04	18.1	81.8		200			0		
Dec-04	10			200			65.6	38.2	32
Jan-05	8.2	59.2	-4.7	195.3			121.2	0	
Feb-05	10.4	61.8					145.8		
Mar-05	16	39.4					130.5		
Apr-05	35.3		144.9	200	35.3		65.3		
May-05	54.2	26.8	3.9	200			32.6		
Jun-05	104		47.5	200			16.3		
Jul-05	111.6	50.4	-55.6		111.6		8.2	0	
Aug-05	94		-23.9	127.2			0		
Sep-05	64.6	78.6	10	137.2			0	0	
Oct-05	35.4	44	6.4	143.6	35.4	0	0		
Nov-05	18.9	118.2	93.4	200			0	37	
Dec-05	10.6	114.6	46.5	200	10.6	0	55.2	46.5	35.5

				Soil			Snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
======	=======	=======	=======	=======	======	=======	=======	=======	======
Jan-06	12.8	78.2	54.3	200	12.8	0	64.1	54.3	46
Feb-06	10.1	166.6	47.3	200	10.1	0	171.4	47.3	47.4
Mar-06	18.8	61	80	200	18.8	0	131.6	80	64.7
Apr-06	36.9	85	109.6	200	36.9	0	65.8	109.6	90.5
May-06	64.4	52.2	18	200	64.4	0	32.9	18	54.7
Jun-06	90.8	85.8	7.2	200	90.8	0	16.4	7.2	33.9
Jul-06	113.7	143.8	31.1	200	113.7	0	8.2	31.1	37.6
Aug-06	87.8	22.2	-58.5	141.5	87.8	0	0	0	16.3
Sep-06	52.7	100.2	42.5	184	52.7	0	0	0	12.6
Oct-06	30.3	132.4	95.5	200	30.3	0	0	79.5	50.2
Nov-06	19.9	97.8	73	200	19.9	0	0	73	63.2
Dec-06	14.5	88.8	59	200	14.5	0	11.8	59	62.1
	535	999	425	2346	531	4	551	427	465

DETAILED WATER BALANCE CALCULATIONS

79 Collier Street, City of Barrie

1 Climate Information

Precipitation	999 mm/a
Actual Evapotranspiration	531 mm/a
Water Surplus	468 mm/a

2 Infiltration Rates

Table 2 Approach - Infiltration factors

Topography: Flat to rolling Land	0.25
Soil Type: predominantly open sandy loam	0.4
Cover: Open Land	0.1
Total	0.75

Infiltration (0.75 x 468) 351 mm/a Run-off (468-351) 117 mm/a

Table 3 Approach - Typical Recharge Rates

Coarse Sand and Gravel	>250	mm/a
Fine to medium sand	200-250	mm/a
Silty sand to sandy silt	150-200	mm/a
Silt	125-150	mm/a
Clayey Silt	100- 125	mm/a
Clay	<100	mm/a

Site development area is underlain predominantly by sandy soils

Based on the above, the recharge rate is typically 200-250 mm/a

3 Pre-Development Property Statistics	ha	m2
Paved Area	0.126	1260
Roof Area	0	0
Landscape Area	0.04	400
Total	0.166	1660

4 Post-Development Property Statistics	ha	m2
Paved Area	0.0558	558
Total Building Roof Area	0.1102	1102
Landscape Area	0	0
Total Land Area	0.166	1660

5. Annual Pre-Development Water Balance

Land	d Use	Area (m²)	Precipitation (m³)	Evapotranspiration (m3)	Infiltration (m³)	Run-off (m³)
	Paved Area	1260	1259	126	0	1133
Impervious Areas	Roof Area	0	0	0	0	0
Pervious Areas	Landscape Area	400	400	212	140	47
		1,660	1,658	338	140	1,180
Assuming no infiltration occurring in payed and roof areas, and 10% of precipitation to be evaporated from payed and roof areas.						

6. Annual Post-Development Water Balance

Land	d Use	Area (m²)	Precipitation (m³)	Evapotranspiration (m3)	Infiltration (m³)	Run-off (m³)
	Paved Area	558	557	56	0	502
Impervious Areas	Roof Area	1102	1,101	110	0	991
Pervious Areas	Landscape Area	0	0	0	0	0
		1,660	1,658	166	0	1,493
Assuming no infiltration occurring in paved and roof areas, 10% of precipitation to be evaporated from paved and general roof areas.						

7. Comparision of Pre- and Post -Development

	Precipitation (m³)	Evapotranspiration (m3)	Infiltration (m³)	Run-off (m³)
Pre-Development	1,658	338	140	1,180
Post-Development	1,658	166	0	1,493
Change in Volume		-172	-140	313
Change in %			-100	27

8. Requirement for Infiltration of Roof Run-off

Volume of Pre-Development Infiltration (m³/annum)	140
Volume of Post-Development Infiltration (m³/annum)	0
Deficit from Pre to Post Development Infiltration (m³/annum)	140
Percentage of Roof Runoff required to match the pre-development infiltration (%)	14