

Enhancing our communities

Bayside Apartments, Barrie

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

Vitmont Holdings (Barrie) Inc.

Document Control

File: Prepared by:

Tatham Engineering Limited

41 King Street, Unit 4

Date: Barrie, Ontario L4N 6B5

January 13, 2021

420373

T 705-733-9037 **tathameng.com**

Prepared for:

Vitmont Holdings (Barrie) Inc.

100 Caster Avenue

Woodbridge, Ontario L4L 5Y9

Authored by:	Reviewed by:
D. J. REID 100225660 January 13, 2021	N.A. MILINGTON 100190121 ROY 13/21 ROY 13/21 ROY 13/21
DIRI	Jich Nilling
David Reid, B.Eng., P.Eng.	Nick Millington, P.Eng.
Intermediate Engineer	Senior Engineer, Project Manager

Disclaimer	Copyright
The information contained in this document is solely for the use of the Client identified on the cover sheet for the purpose for which it has been prepared and Tatham Engineering Limited undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.	This document may not be used for any purpose other than that provided in the contract between the Owner/Client and the Engineer nor may any section or element of this document be removed, reproduced, electronically stored or transmitted in any form without the express written consent of Tatham Engineering Limited.

Issue	Date	Description
1	September 4, 2020	Issued for Site Plan Approval
2	January 13, 2021	Site Plan Approval (2 nd Submission)

Document Contents

1	Intro	oduction1
1.1	. :	Site Description & Surrounding Land Use1
1.2		Objectives2
1.3		Guidelines & Background Information2
1.4	.	Proposed Development2
2	Wat	er Supply & Distribution3
2.1	. 1	Existing Water System3
2.2		Proposed Water System3
2.3		Proposed Residential Design flows
2.4	.	Fire Protection4
3	Sani	itary Sewer Collection5
3.1	. :	Sanitary System5
4	Stor	mwater Management 6
4.1	. 1	Design Criteria6
4.2	: 1	Existing Conditions7
4.3		Proposed Conditions7
4.4	. !	SWM Facility Maintenance10
5	Silta	ition & Erosion Control Plan11
6	Grad	ding & Landscaping12
7	Utili	ties13
8	Sum	ımary14
8.1		Water Supply & Distribution14
8.2	:	Sanitary Sewer Collection14

8.4	Siltation & Erosion Control	14
8.5	Grading & Landscaping	14
8.6	Utilities	14
Tables		
Table	1: Pre-Development Peak Flow Rates	7
Table	2: Post Development Peak Flow Rates to Mulcaster Street	٤
Table	3: Post Development Peak Flow Rates to West Outlet	<u>c</u>
Table	4: Phosphorous Loading Summary	10
Figure	es es	
Figure	e 1: Site Location Plan	1

Appendices

Appendix A: Municipal Infrastructure Record Documents

Appendix B: Water Demand Calculations

Appendix C: Sanitary Sewage Design Calculations
Appendix D: Stormwater Management Calculations

Appendix E: Phosphorous Budget Calculations

Appendix F: Drawings

1 Introduction

Tatham Engineering Limited (Tatham) has been retained by Vitmont Holdings (Barrie) Inc. to prepare a Functional Servicing and Stormwater Management (FSR/SWM) Report in support of a Site Plan Approval (SPA) application for the Bayside Apartments project, which is a proposed mixed-use development located at 79 Collier Street in the City of Barrie (City).

1.1 SITE DESCRIPTION & SURROUNDING LAND USE

The site is located at the southwest corner of the existing signalized intersection of Collier Street and Mulcaster Street and is bound by Collier Street to the north, Mulcaster Street to the east, an existing laneway to the south and an existing commercial development to the west. The location of the property is illustrated on the Site Location Plan (Figure 1), below. Under existing conditions, the site consists of parking and landscaped areas with an existing heritage structure located to the southeast corner of the site. The total site area is approximately 0.16 ha.

The subject site is located within the Lake Simcoe Region Conservation Authority (LSRCA) watershed but is not located within the LSRCA regulated area.

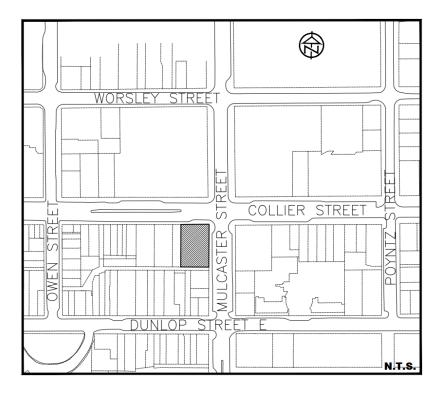


Figure 1: Site Location Plan

1.2 OBJECTIVES

The objective of this report is to present an overall servicing strategy to demonstrate that the proposed development can be serviced appropriately. This report will also document the SWM strategy for the site, demonstrating that the proposed development will not adversely affect local surface water conditions.

1.3 GUIDELINES & BACKGROUND INFORMATION

This report was prepared in accordance with local and provincial guidelines, including the following publications:

- The Ministry of the Environment, Conservation and Parks (MECP, formerly known as Ministry
 of Environment) <u>Stormwater Management Practices Planning and Design Manual</u> (2003);
- The Ministry of the Environment, Conservation and Parks (MECP, formerly known as Ministry
 of Environment) <u>Lake Simcoe Protection Plan</u> (LSPP) (2009);
- Lake Simcoe Region Conservation Authority (LSRCA) <u>Technical Guidelines for SWM</u> <u>Submissions</u> (2016);
- Lake Simcoe Region Conservation Authority (LSRCA) <u>Phosphorous Offsetting Policy</u> (2019);
- City of Barrie <u>Storm Drainage and Stormwater Management Policies and Design Guidelines</u>
 (2009);
- City of Barrie <u>Sanitary Sewage Collection System Policies and Design Guideline</u> (2017); and;
- City of Barrie Engineering Department <u>Water Transmission and Distribution Policies and</u> Design Guidelines (2017).

Information relating to existing topography, ground cover and drainage patterns was obtained through a review of relevant background studies, available plans, base mapping and topographic survey.

1.4 PROPOSED DEVELOPMENT

The proposed development consists of a 17-storey mixed-use building with commercial and amenity areas, underground and above ground parking areas and 136 residential units. Access will be provided from Collier Street.

The proposed development will be serviced by municipal water, sanitary and storm systems. Improvements along the site frontage will be implemented as shown on the site plan and engineering drawings. All existing water and sanitary services to the property will be permanently capped/cut off at the main to the satisfaction of the City of Barrie.

2 Water Supply & Distribution

2.1 EXISTING WATER SYSTEM

The site is located in the downtown area of the City, which is fully serviced by the municipal water system. There is an existing 300 mm dia. watermain in Collier Street and a 150 mm dia. watermain in Mulcaster Street which provide water supply and fire protection for the area including the subject property. There is one existing fire hydrant located at the southeast corner of the intersection of Collier Street and Mulcaster Street.

Relevant municipal record documents are provided in Appendix A.

2.2 PROPOSED WATER SYSTEM

The proposed development will be serviced with a 150 mm dia. domestic water service and a dedicated 200 mm dia. fire service provided to the building connected from the existing 300 mm dia. watermain on Collier Street. An additional fire hydrant will also be provided on Collier Street. Additional details are provided on the Site Servicing Plan (Drawing SS-1) provided in Appendix F.

2.3 PROPOSED RESIDENTIAL DESIGN FLOWS

The estimated population for the proposed development is 227 persons (applying the high density unit population factor of 1.67 people per unit) as per the City's engineering standards. Demands generated by the commercial areas were calculated by applying a rate of 28 m³/ha/day for 404 m² of commercial area. Water system demands were estimated by applying Maximum Day Factor and Peak Rate factors from Table 3-1 of the MOE Design Guidelines for Drinking Water Systems. Detailed calculations are provided in Appendix B.

The estimated water system demands are:

- Average Day Demand Residential (ADD): 227 persons x 225 L/person/day = 51,102 L/day
 = 0.59 L/s;
- Average Day Demand Commercial (ADD): 404 m² x 28 m³/ha/day = 1,131 L/day =0.01 L/s;
- Maximum Daily Demand (MDD) Residential + Commercial: 52,233 L/day x 2.75 = 143,641
 L/day = 1.66 L/s; and
- Peak Hourly Demand (PHD) Residential + Commercial: 52,233 L/day x 4.13 = 215,723 L/day
 = 2.50 L/s

2.4 FIRE PROTECTION

Firefighting water demands have been estimated for the building using the Water Supply Public Fire Protection (1999) prepared by Fire Underwriters Survey (FUS). The required fire flow has been estimated at 133 L/s. Detailed calculations are provided in Appendix B.

A fire hydrant flow test was conducted using two nearby fire hydrants located on Collier Street as documented in Appendix B. Applying the equation provided in section 4.3.2. of the City's <u>Water Transmission and Distribution Policies and Design Guidelines</u>, the estimated fire flow available at 20 psi is 2,307 USgpm (145.4 L/s), which is greater than the required maximum water demand of 134.66 L/s (MDD + fire flow).

Details of the internal sprinkler system and demands calculated by the mechanical engineering consultant have not yet been provided. Therefore, should the mechanical engineering consultant require additional information, or should the firefighting requirements change, our assessment will be updated accordingly.

3 Sanitary Sewer Collection

3.1 SANITARY SYSTEM

The downtown area of Barrie is serviced with a municipal sanitary sewer collection system that conveys flows to the Barrie Wastewater Treatment Facility (WWTF) located at the west end of Kempenfelt Bay on Lake Simcoe.

There is an existing 250 mm dia. sanitary sewer located in Mulcaster Street which collects and conveys flows south to Dunlop Street. The existing pipe has a full flow capacity of 144.43 L/s. No existing sanitary sewers are located within Collier Street along the frontage of the subject site. Municipal record documents are provided in Appendix A, for reference.

The proposed development will discharge sanitary sewage to an existing sanitary maintenance hole on Mulcaster Street via a new 250 mm dia. sanitary sewer. An additional sanitary maintenance hole will also be constructed between the main and the building to provide a sampling location, as per City standards and is depicted on Drawing SS-1.

The full flow capacity of the 250 mm dia. sanitary service lateral is 84.09 L/s which can accommodate the design peak flow of 2.47 L/s from the proposed development as per calculations provided below. Sanitary flows generated by the commercial areas were calculated using the minimum average design flow rate of 28 m³/ha/day based on a commercial area of 404 m². Peak Hour Flow was determined after applying a calculated peaking hour factor using the Harmon formula as per City of Barrie standards.

Estimated sanitary design flows:

- Average Day Design Flow (Residential): 1.67 ppu x 136 units = 227 persons x 225 L/cap/day
 = 51,102 L/day = 0.59 L/s; and
- Average Day Design Flow (Commercial): 404 m² x 28 m³/ha/day = 1,131 L/day = 0.01 L/s and;
- Peak Hour Flow (incl. infiltration and commercial) = 210,816 L/day = 2.44 L/s

Therefore, there is satisfactory capacity in the proposed service connection. It is anticipated the City will input the sanitary flows generated from the proposed development into its SewerCAD model to confirm there is satisfactory overall capacity in its sanitary sewer network. Based on our previous work in the area, it is understood that the capacity in the existing downstream infrastructure is sufficient to accommodate the proposed development.

Additional details are provided in Appendix C.

4 Stormwater Management

4.1 DESIGN CRITERIA

This SWM plan is subject to the review and approval of the City of Barrie and the Lake Simcoe Region Conservation Authority (LSRCA). Applicable SWM design criteria for the proposed development are presented below.

4.1.1 Stormwater Quality Control

Typically, water quality controls must be provided to satisfy the *MECP SWM Practices Planning and Design Manual*. This corresponds to providing Enhanced Protection Level water quality protection of 80% long-term suspended solids removal. However, as the majority of runoff from the site is generated from the rooftops, which is considered to be clean, water quality controls are not required.

4.1.2 Stormwater Quantity Control

The City requires that post-development peak flow rates be controlled to pre-development levels at any given outlet location to ensure no adverse impacts for downstream landowners. As such, water quantity controls will be provided to attenuate post-development peak flow rates to pre-development levels. In addition, as stormwater runoff generated from the site will discharge directly into the Mulcaster Street storm sewer, post-development peak flows will be controlled to the 5-year pre-development peak flow rate.

4.1.3 Water Balance

As the development area is over 500 m², the proposed development is categorized as a "major development" under the LSPP, which requires that best efforts be demonstrated towards maintaining pre-development infiltration rates in the post-development scenario through the completion of a water balance assessment.

Based on the impervious nature of the existing and proposed conditions site, we assume a water balance will not be required, or will be completed by others.

4.1.4 Phosphorous Budget

The proposed development will also be subject to the Lake Simcoe Phosphorous Offsetting Policy (LSPOP), which requires all major development to control 100% of the phosphorous generated from the site. Any remaining phosphorous load that cannot be controlled/removed will require a cash contribution for off-site mitigation.

4.2 EXISTING CONDITIONS

Under existing conditions, the 0.16 ha site drains to two distinct outlets. The western portion of the proposed site drains southwest via overland flow to the existing parking lot behind the neighbouring property (Catchment 102). The remaining area is conveyed east via catchbasins and storm sewers to the existing storm sewer in Mulcaster Street (Catchments 101 + 103). Existing drainage patterns are shown on Drawing DP-1.

The rational method has been used to calculate peak flow rates under pre-development conditions. The results are summarized in Table 1 while detailed calculations are provided in Appendix D.

Table 1: Pre-Development Peak Flow Rates

DESIGN STORM	EAST TO MULCASTER STREET (m³/s)	WEST OUTLET (m³/s)
2-Year	0.05	0.01
5-Year	0.07	0.02
10-Year	0.08	0.02
25-Year	0.09	0.02
50-Year	0.11	0.03
100-Year	0.12	0.03

4.3 PROPOSED CONDITIONS

Under proposed conditions, the total impervious area of the site increases from 0.12 ha to 0.16 ha and has been modeled as two separate Catchments (201 and 202), each with a runoff coefficient of 0.95. Catchment 201 consists of 0.14 ha of predominately rooftop area. Runoff generated from Catchment 201 will be collected internally and will discharge to the existing Mulcaster storm sewer. Catchment 202 consists of 0.02 ha of impervious area. Runoff generated from Catchment 202 will continue to drain uncontrolled to the neighbouring parking lot, as per existing conditions.

Proposed drainage patterns are shown on Drawing DP-2 provided in Appendix F.

4.3.1 Water Quantity

As the majority of site generated runoff (Catchment 201) will discharge to the existing storm sewer network, the modified rational method was used to quantify the storage volume required to control the post-development peak flow rates to 5-year pre-development release rate (i.e., existing peak flow contributing to the existing storm sewer system). A summary of the post-development peak flow rates and storage volumes are provided in Table 2. Detailed calculations are provided in Appendix D.

Table 2: Post Development Peak Flow Rates to Mulcaster Street

DESIGN STORM	CATCHMENT 201 (UNCONTROLLED) (m³/s)	CATCHMENT 201 (CONTROLLED) (m³/s)	STORAGE VOLUME REQUIRED (m³)
2-Year	0.06	0.05 (0.05)	3.8
5-Year	0.08	0.06 (0.06)	5.0
10-Year	0.09	0.06 (0.07)	7.6
25-Year	0.11	0.06 (0.09)	13.6
50-Year	0.13	0.06 (0.11)	17.3
100-Year	0.13	0.06 (0.12)	21.0

Note: Values presented in italics denote existing condition peak flow rates.

As shown, a maximum storage volume of 21.0 m³ is required to control post-development flow rates from the 100-year storm to the 5-year pre-development release rate (0.06 m³/s). The required storage will be provided by a cistern located within the building. Collected runoff (not including greywater) will be controlled to the maximum permissible release rate (0.06 m³/s) via an orifice plate or pump which will be designed by the mechanical engineering consultant and reviewed by Tatham to ensure the cistern meets the design criteria.

Attenuated peak flow rates will discharge via a 300 mm storm sewer connection to the existing Mulcaster Street storm sewer, as depicted on Drawing SS-1. A Storm sewer design sheet has been prepared for the proposed storm sewer connection and is provided in Appendix D.

Runoff generated from the western portion of the proposed development which includes the access ramp (Catchment 202) will flow uncontrolled towards the west outlet. As shown in Table 3, post-development peak flow rates contributing to this outlet are equal to or less than predevelopment peak flow rates for all storm events. Detailed calculations are provided in Appendix D.

Table 3: Post Development Peak Flow Rates to West Outlet

DESIGN STORM	EXISTING CONDITIONS CATCHMENT 102 (m³/s)	PROPOSED CONDITIONS CATCHMENT 202 (m³/s)
2-Year	0.01	0.01
5-Year	0.02	0.01
10-Year	0.02	0.01
25-Year	0.02	0.02
50-Year	0.03	0.02
100-Year	0.03	0.02

4.3.2 Water Quality

As previously mentioned, water quality controls for the proposed development are not required as the vast majority of the runoff from the site is generated from the rooftops and is considered clean.

4.3.3 Water Balance

As previously mentioned, it is assumed the existing conditions annual infiltration volume is negligible due to the level of impervious land cover across the property. As the subject property is to be constructed with zero setbacks, there is no opportunity to provide infiltration-based controls on the site.

4.3.4 Phosphorous Budget

In order to comply with LSPOP requirements, a phosphorous budget for the site has been completed using the Low Impact Development Treatment Train Tool (LID TTT) developed by the LSRCA, Credit Valley Conservation (CVC) and the Toronto and Region Conservation Authority (TRCA). Based on our previous discussions with the LSRCA, it is understood that based on the lack of available space on the site due to the zero setback, high-density development, implementation of phosphorous reduction controls will not be enforced. Rather, the site will be required to pay an offsetting fee.

Existing Conditions

Under existing conditions, the site has been modelled using one land use category (impervious) for the purpose of the phosphorous budget calculations. A total of 0.16 ha been modelled as impervious area.

Applying the relevant loading rates, the pre-development phosphorous load is 0.28 kg/year.

Proposed Conditions

Under proposed conditions, the site has been modelled as two land use categories (rooftop and impervious). A total of 0.02 ha has been modelled as impervious area while 0.14 ha has been modelled as rooftop.

Applying the relevant loading rate, the post-development phosphorous load is 0.13 kg/year.

A summary of the phosphorous loading rates for each scenario is provided in Table 3 below. Additional details and outputs are provided in Appendix E. As shown, phosphorous loading reduces under proposed conditions as the majority of land use is rooftop which produces relatively clean runoff and lower phosphorous levels.

Table 4: Phosphorous Loading Summary

SCENARIO	AREA	PHOSPHOROUS LOADING (kg/year)
Pre-Development	0.16	0.28
Post-Development	0.16	0.13

4.4 **SWM FACILITY MAINTENANCE**

Ongoing maintenance of SWM facilities is necessary to ensure continued effectiveness. The cistern and rooftop drains should be inspected regularly and particularly after large rainfall events to ensure the system and all of its component parts are functioning properly and are in good repair.

5 Siltation & Erosion Control Plan

Siltation and erosion controls will be implemented for all construction activities, including earthworks, material stockpiling, pavement construction and grading operations. Details of the sedimentation and erosion control plan are included on Drawing RM-1 and are summarized as follows:

- heavy duty silt control fences will be erected to control sediment movement to abutting properties and the Mulcaster and Collier Street right-of-way;
- a stone mud mat will be installed at the construction entrance from Mulcaster; and
- regular inspection of control measures will be implemented and repairs made as necessary during construction.

Grading & Landscaping 6

The grading of the proposed development will match to the existing grades along the limits of the development. The site will be graded to suit the existing boundary conditions on the boulevard to the north and the existing service road to the south. Refer to the Site Grading Plan (Drawing SG-1) provided in Appendix F for additional details.

Utilities

All utilities (electrical, gas, telecommunications) are available from Collier Street and can be provided to the proposed development.

8 Summary

8.1 **WATER SUPPLY & DISTRIBUTION**

The site will be serviced with a 150 mm dia, domestic water service and a dedicated 200 mm dia. fire service from the existing 300 mm dia. watermain on Collier Street.

8.2 SANITARY SEWER COLLECTION

The site will be serviced via a 250 mm dia. sanitary sewer lateral connected to the existing 250 mm dia. sanitary sewer located on Mulcaster Street.

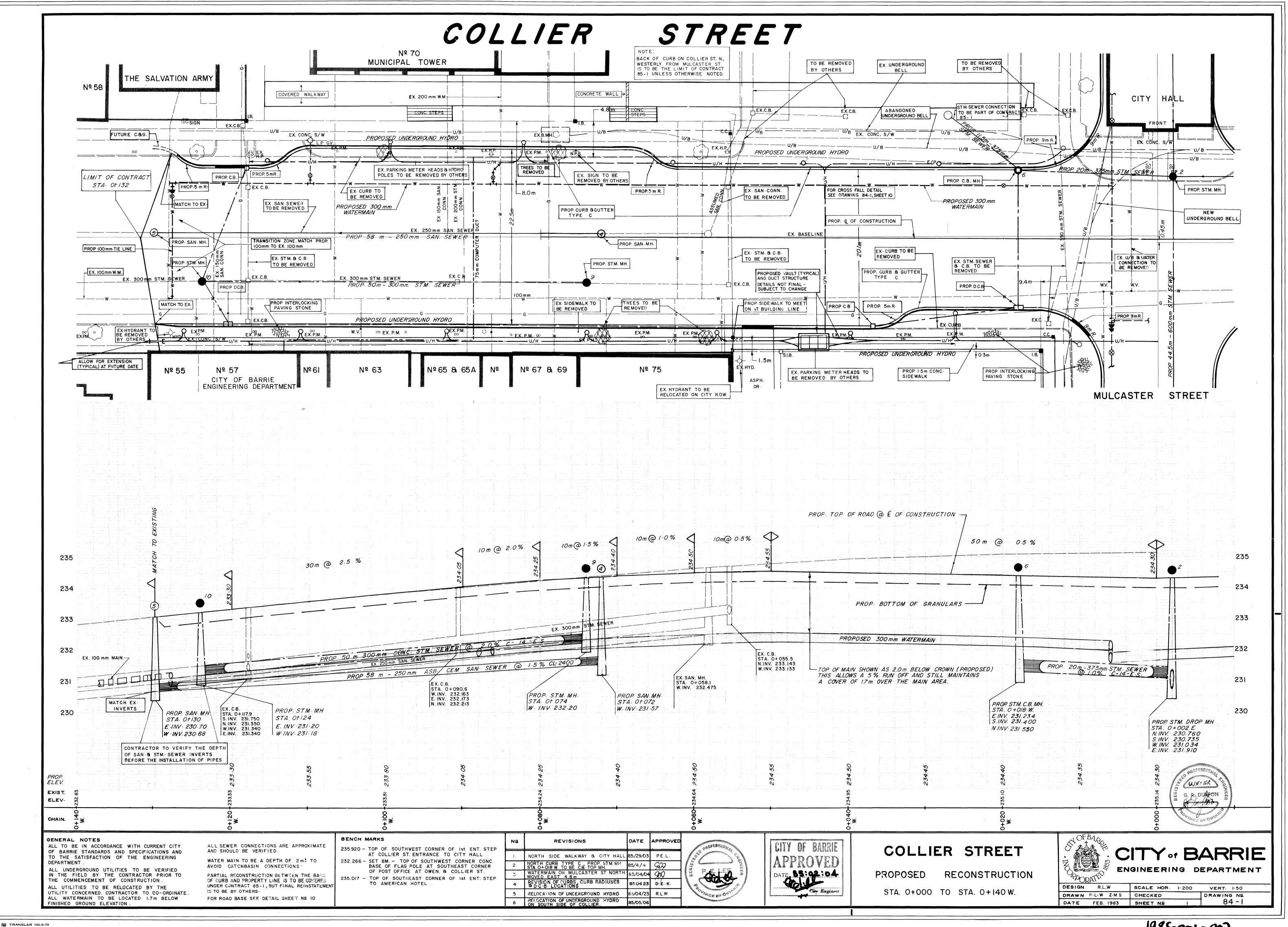
8.3 **SWM PLAN**

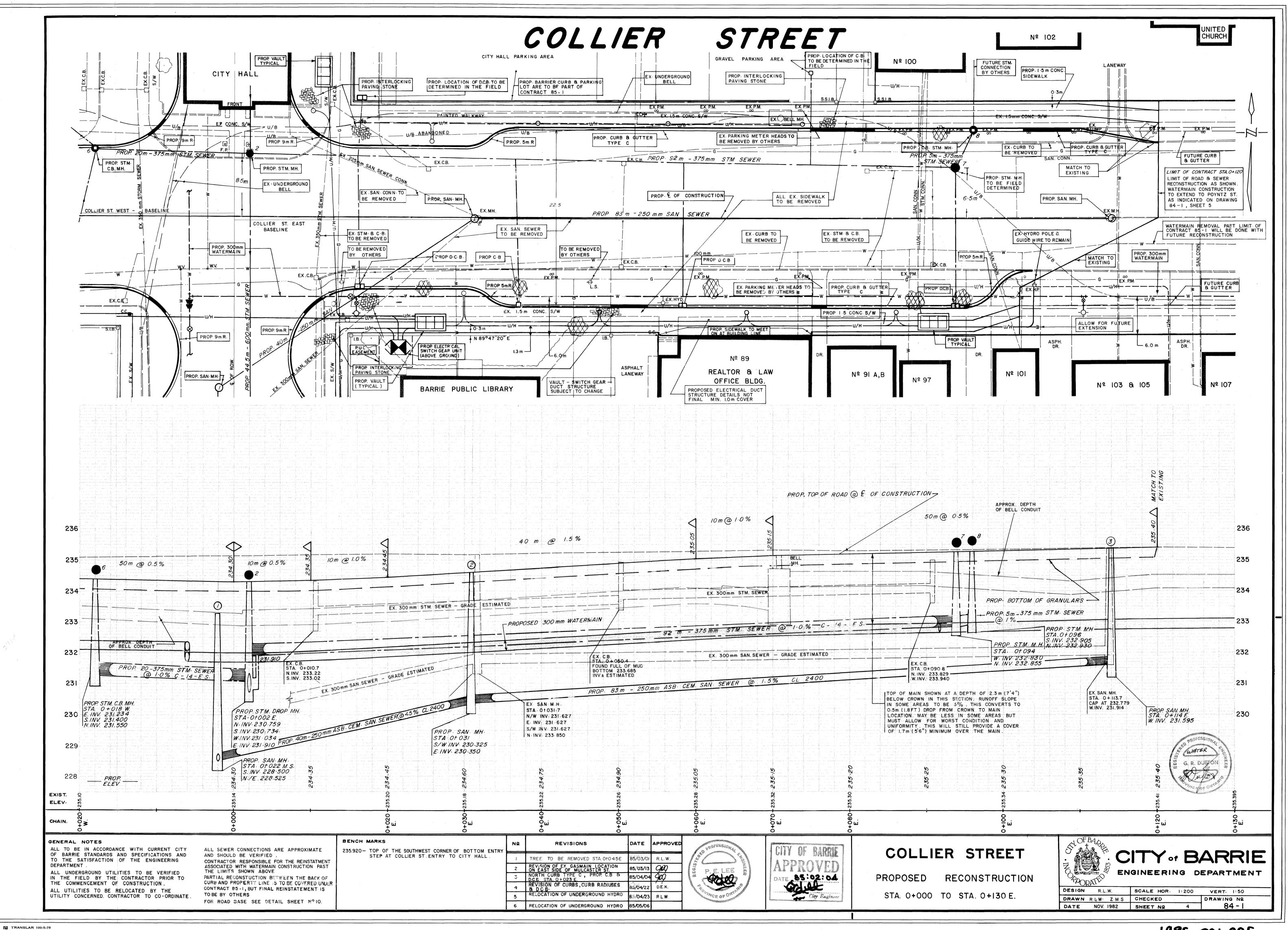
The proposed Stormwater Management Plan demonstrates the proposed development will not result in negative impacts with respect to stormwater management. Peak flows will be controlled to the existing 5-year flow rates by an orifice plate or pump which will be determined by the mechanical engineer. Water quantity controls to attenuate post development peak flow rates will be provided by a cistern. Controlled runoff from the cistern and be collected and conveyed via the new 300 mm dia. storm service connection then discharge into the existing 600 mm dia. storm sewer on Mulcaster street. Water quality controls are not required as the runoff generated from the site is from the rooftop and considered clean.

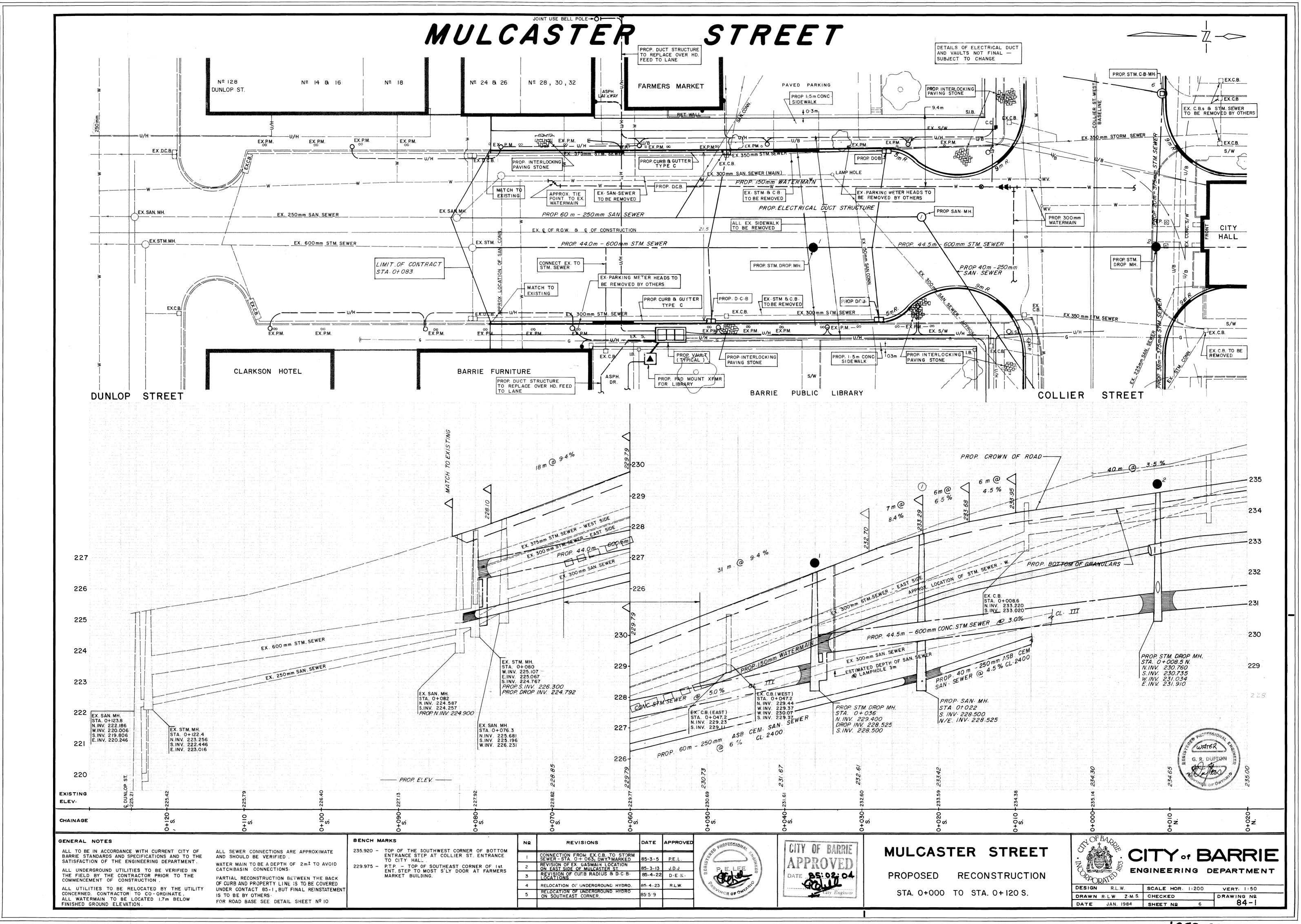
SILTATION & EROSION CONTROL 8.4

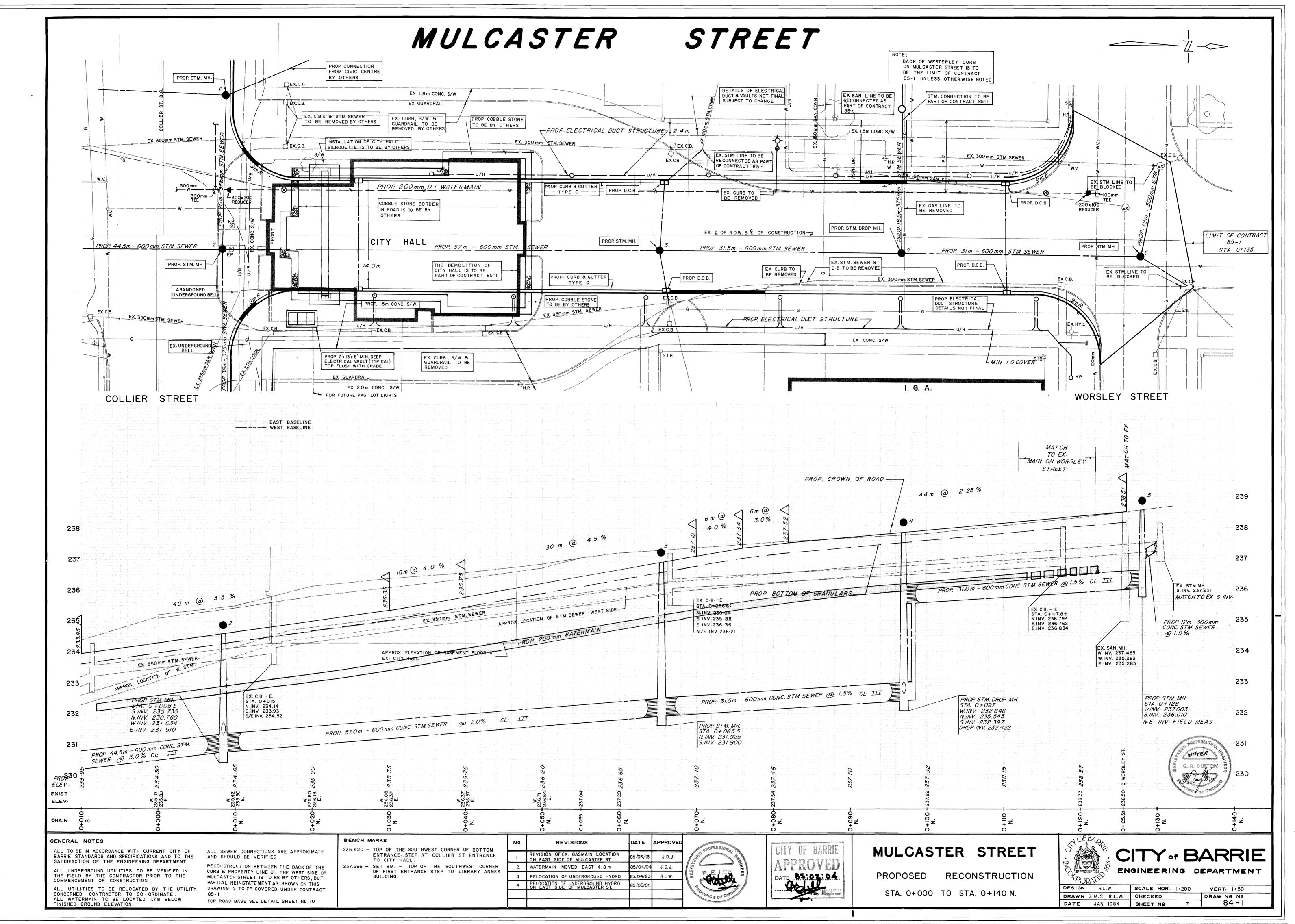
Siltation and erosion controls will be provided with the proper construction mitigation efforts.

8.5 **GRADING & LANDSCAPING**


The grading of the proposed development will match to existing perimeter grades along the limits of the development.


8.6 **UTILITIES**


All utilities (electrical, gas and telecommunications) are available from Collier Street and will be provided to the proposed development.



Appendix A: Municipal Infrastructure Record Documents

Appendix B: Water Demand Calculations

Project:	Bayside Apartments, Barrie	Date:	January 5, 2021
File No.:	420373	Designed:	DJR
Subject:	Water Demand Calculations	Checked	NM
Revisions:			

Bayside Apartments Mixed-Use Development

ential

Number of Units = 136 units Population per Unit = 1.67 ppu Population = 227 persons Domestic Water Demand = 225 L/person/day Average Daily Demand (Residential)= 51,102 L/day 0.59 L/s

Commercial

Commercial Area 404 m²

 $\begin{array}{lll} \mbox{Commercial Daily Water Demand} & 28 & \mbox{m}^3/\mbox{ha/day} \\ \mbox{Average Daily Demand (Commercial)} & 1,131.20 & \mbox{L/day} \end{array}$

0.01 L/s

Total Average Daily Demand (Residential 52,233 L/day

+ Commercial) = 0.60 L/s

Maximum Day Factor = 2.75 From MOE Design Guidelines for Drinking Water Systems - Table 3-1
Peak Rate Factor = 4.13 From MOE Design Guidelines for Drinking Water Systems - Table 3-1

Maximum Daily Demand = 143,641 L/day

 1.66
 L/s

 Peak Hourly Demand =
 215,723
 L/day

Project:	79 Collier Street	Date:	January 5, 2021
File No.:	420373	Designed:	DJR
Subject:	Preliminary Fire Flow Calculations	Checked	NM
Revisions:			

Fire Underwriters Survey Fire Flow Calculations Long Method

Calculation Based on 1999 Publication "Water Supply for Public Fire Protection" by Fire Underwriters Survey (FUS).

Step	Description	Term		Options	Multiplier Associated with Option	Choose	Value used	Unit		Fire Flow (min)
					Framing Material					
		Coefficient	Wood Frame	9	1.5					
1	Frame Use for	related to	Ordinary Construction		1	Fire resistive				
	Construction of Unit	type of		tible construction	0.8	construction	8.0	-	١	I/A
		construction (C)		construction (< 2 hrs)	0.7	(> 2 hrs)				
		(C)	Fire resistive	construction (> 2 hrs)	0.6 Floor Space Area					
	Type of Housing (if		C: 1 E ::		1 1	1		1 1		
2	Tow House, enter		Single Family		1		0			
2	number of units per TH block)	Type of Housing	Townhouse , units	/ Apartment- inform # of	1		1	Units	١	I/A
			Other (Comr	m. Ind., etc.)	1		0			
2.1	Number of Storeys	Number of FI	loors / Storey	s in the unit (do not inclu	de basement)		17	Storeys	١	√A
		Largest Floor	r Area				1102			
		Ground FI	oor Area =	Square Feet (ft2)	0.093			1		
3 Floor Area		or + 25% of 2	Square Metres (m ²)	1	Square	1378	m ²	1	√A	
			ly adjoining ors	Hectares (ha)	10000	metres	1070			
4	Required Fire Flow without Reductions or Increases	Required Fire C x A ^{0.5})	Required Fire Flows without Reductions or Increases per FUS): (FF= 220 x $\rm C \times A^{0.5}$)					L/min		7,000
5	Factors Affecting Burning		Reductions / Increases Due to Factors Affecting Burning							
		0	Non-combustible -0.25							
		Occupancy content	Limited com	bustible	-0.15					
5.1	Combustibility of	hazard	Combustible		0.00	Limited	-0.15	N/A	0	(1,050)
	Building Contents	reduction or	Free burning		0.15	combustible				,,,,,,
		surcharge	Rapid burnin		0.25	-				
			<u>'</u>	tomatic sprinkler		Automatic				
5.2	Reduction Due to	Sprinkler	protection		-0.3	Sprinkler	-0.3	N/A	0	(2,100)
	Presence of Sprinklers	reduction	None		0	System				
		Exposure	North Side		20.1-30	0.1				
	Separation Distance	distance	East Side		3.1-10	0.2				
5.3	Between Units	between	South Side		3.1-10	0.2	0.7	m	0	4,165
	units		West Side		3.1-10	0.2				
	1	1		Required Fire Flow, round	ded to nearest 1000 L/r	min. with max/	min limit	s applied:	0	8,000
	I		. 5 car	,	·	equired Fire Flo			0	133
6	Required Fire Flow,			R	Required Duration of Fire			nin (hrs):		2.25
	Duration and Volume			F	Required volume for Fire	e Flow of 8.	000 L/n	nin (m³):	1	,080

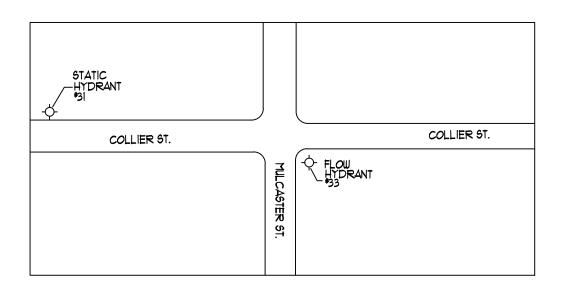
420373 - FUS.xlsFUS calcs Phase 1-2021-01-07 1 of 1

CITY OF BARRIE

Tatham File No. 420373

AVAILABLE FIRE FLOW AT 20 P.S.I.

TEST 1 QA =	QT (ha/ht) ^{0.5}	From City of Ba and Design Guid		er transmission and Distribution Policies age 4
			Value	
Where QA =	Flow at 20 P.S.I.			
QT =	Flow at Test		471	GPM from Fire Flow Test by Vipond
ha=	Pressure Drop Available	68-20 =	48	P.S.I.
ht =	Pressure Drop at Test	68-66 =	2	P.S.I.
	Q.A	x= 2,307.42	GPM	
		145.37	L/s	
			•	
TEST 2				
QA =	QT (ha/ht) ^{0.5}	From City of Ba	rrie "Wate	er transmission and Distribution Policies
		and Design Guid		
		· ·		
			Value	
Where QA =	Flow at 20 P.S.I.		Value	
OT -	Flow at Test		608	GPM from Fire Flow Test by Vipond
	Pressure Drop Available	68-20 =	48	P.S.I.
		68-64 =	40	P.S.I.
111 -	Pressure Drop at Test	00-04 -	4	F.J.I.
	QA	x= 2,106.17	GPM	


132.69

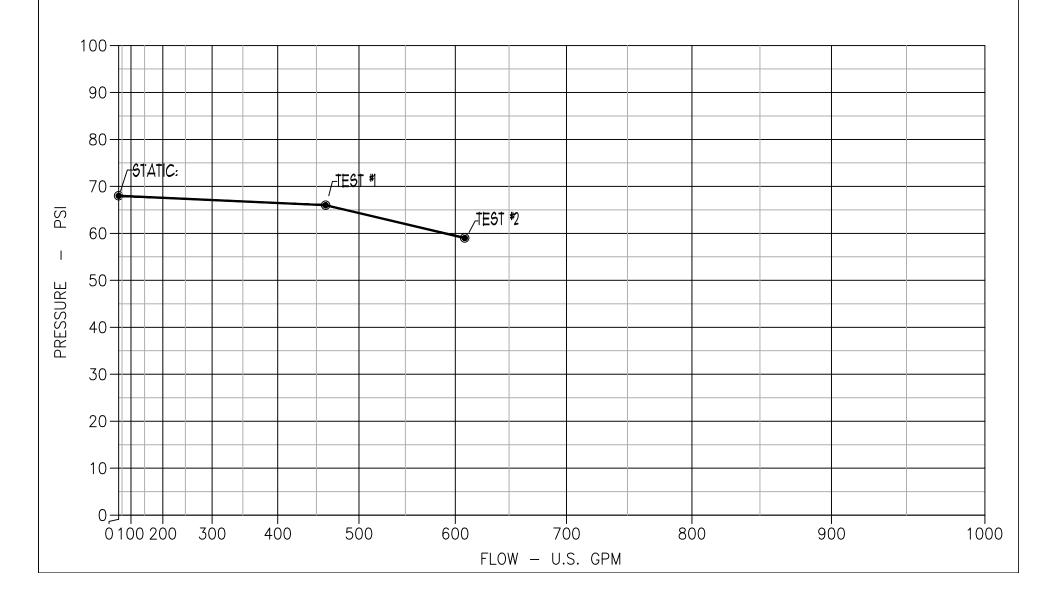
L/s

FLOW TEST RESULTS

DATE :	JUNE 16,2020	TIME :	10:30 AM
LOCATION :	MULCASTER STREET & COLLIER STREET		
	BARRIE		
	ONTARIO		
TEST BY:	VIPOND FIRE PROTECTION AND LOCAL PU	C	

STATIC PRESSURE: 68 PSI UNDERGROUND TYPE & SIZE: N/A

test No.	NO. OF NOZZLES	NOZZLE DIAMETER (INCHES)	DISCHARGE CO-EFFICIENT	RESIDUAL PRESSURE (PSI)	PITOT PRESSURE (PSI)	DISCHARGE (U.S.G.PM)
1	1	1 3/4"	Ø.995	66	28	471
2	2	2 1/2"	0.90	64	13	608


MULCASTER STREET	& COLLIER STREET	•	BY:	LEN K.
BARRIE			VIPOND OFFICE:	BARRIE
ONTARIO			TEST BY :	VIPOND & PUC
STATIC.	RESIDITAL.	El OIII.	DATE :	JUNE 26,2020

RESIDUAL: FLOW:

<u>66</u> PSI @ <u>471</u> GPM

<u>64</u> PSI @ <u>608</u> GPM <u>68</u> PSI TEST#1

TEST#2

Appendix C: Sanitary Sewage Design Calculations

SANITARY SEWER DESIGN SHEET

79 Collier Street

Location -Municipality -Project No. -Designed By -Barrie 420373 LB

Date -August 6, 2020

Revised By -DJR

Date -Checked -January 5, 2021 NM

FLOW CRITERIA

LAND USE		AVERAGE	PEAKING
		FLOW	FACTOR
RESIDENTIAL	225	L/cap/d	HARMON
COMMERCIAL	28	m³/ha/day	14
PEOPLE/UNIT (HIGH DENSITY)	1.67	cap/unit	$M = 1 + \frac{1}{4 + p^{0.5}}$
INFILTRATION	0.10	L/ha/s	4.6

												AVERA	AGE FLOW			PEA	K FLOW	/		PF	ROPOSE	SEWER		
LOCATION OF SECTION	AREA LABEL	FROM UPSTREAM	TO DOWNSTREAM	NUMBER OF UNITS	POPULATION	CUMULATIVE POP.	PEAKING FACTOR	COMMERCIAL AREA	SITE AREA	CUMULATIVE AREA	RESIDENTIAL	COMMERCIAL	INFILTRATION	TOTAL	RESIDENTIAL	COMMERCIAL	INFILTRATION	TOTAL	LENGTH	DIAMETER	GRADE	FULL FLOW CAP.	FULL FLOW VELOCITY	PEAK FLOW VELOCITY
		MH #	MH#	Ea.	CAP.	CAP.		ha	ha	ha	l/s	l/s	l/s	l/s	I/s	l/s	l/s	I/s	m	mm	%	I/s	m/s	m/s
Bayside Apartments	A1	N/A	Prop. SANMH	136	227	227	4.13	0.04	0.16	0.16	0.59	0.01	0.02	0.62	2.44	0.01	0.02	2.47	11.6	250	2.00%	84.09	1.71	0.76
Existing Sanitary Sewer (Based on Available As- Built Drawing 1985-001- 007)		EX. SANMH	EX. SANMH																	250	5.90%	144.43	2.94	0.00

Appendix D: Stormwater Management Calculations

Project:	79 Collier Street	Date:	September 2, 2020
File No.:	420373	Designed By:	LB
Subject:	Rational Method Design Calculations	Checked By:	NM

PRE DEVELOPMENT ANALYSIS

CATCHMENT 101

2 Year	0.78	
5 Year	0.78	
10 Year	0.78	
25 Year	0.85	$=C_5*1.10$
50 Year	0.93	$=C_5*1.20$
100 Year	0.97	$=C_5*1.25$

<u>Runoff Coefficient</u> (Municipal Standard)

<u>Peak Rainfall Intensity</u> (Municipal Standard - Barrie)

2 YR 5 YR 10 YR 25 YR 50 YR 100 YR

_							
Α	678.1	853.6	9/5.9	1146.3	1236.2	1	L426.4
В	4.70	4.70	4.699	4.92	4.70		5.273
С	0.781	0.766	0.76	0.757	0.751		0.759
2 Year		168.10	mm/hr		T_C	=	1.27
5 Year		217.35	mm/hr		T_C	=	1.27
10 Yea	r	251.16	mm/hr		T_C	=	1.27
25 Yea	r	288.47	mm/hr		T_C	=	1.27
50 Yea	r	323.30	mm/hr		T_C	=	1.27

100 Year 343.00 mm/hr $T_C = 1.27$

<u>Drainage Area</u> 0.120 ha

Peak Runoff Rate - Rational Method (Q=CiA/360)

2 Year	0.043	m^3/s
5 Year	0.056	m³/s
10 Year	0.065	m^3/s
25 Year	0.082	m^3/s
50 Year	0.100	m^3/s
100 Year	0.111	m^3/s

CATCHMENT 103

Runoff Coe	fficient	(Municipal Standard)				
2 Year	0.95					

5 Year	0.95	
10 Year	0.95	
25 Year	1.00	$=C_5*1.10$
50 Year	1.00	$=C_5*1.20$
100 Year	1.00	$=C_5*1.25$

<u>Peak Rainfall Intensity</u> (Municipal Standard - Barrie)

	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR
Α	678.1	853.6	975.9	1146.3	1236.2	1426.4
В	4.70	4.70	4.699	4.92	4.70	5.273
С	0.781	0.766	0.76	0.757	0.751	0.759

POST DEVELOPMENT ANALYSIS

CATCHMENT 201

2 Year	0.95	
5 Year	0.95	
10 Year	0.95	
25 Year	1.00	$=C_5*1.10$
50 Year	1.00	$=C_5*1.20$
100 Year	1.00	=C ₅ *1.25

<u>Runoff Coefficient</u> (Municipal Standard)

<u>Peak Rainfall Intensity</u> (Municipal Standard - Barrie) 2 YR 5 YR 10 YR 25 YR 50 YR 100 YR **A** 678.1 853.6 975.9 1146.3 1236.2 1426.4

	0/0.1	033.0	975.9	1140.5	1230.2		420.4
В	4.70	4.70	4.699	4.92	4.70	5	5.273
С	0.781	0.766	0.76	0.757	0.751	().759
2 Year		169.65	mm/hr		T_C	=	1.20
5 Year		219.33	mm/hr		T_C	=	1.20
10 Yea	ar	253.42	mm/hr		T_C	=	1.20
25 Yea	ar	290.97	mm/hr		T_C	=	1.20
50 Yea	ar	326.19	mm/hr		T_C	=	1.20
100 Ye	ear	345.81	mm/hr		T_C	=	1.20

<u>Drainage Area</u> 0.140 ha

<u>Peak Runoff Rate - Rational Method</u> (Q=CiA/360)

		Q _{TARG}			
2 Year	0.063	0.0483	0.014	m³/s	
5 Year	0.081	0.0625	0.019	m³/s	Q _{TARG} = sum of
10 Year	0.094	0.0625	0.031	m^3/s	existing 5-year peak
25 Year	0.113	0.0625	0.051	m^3/s	flow rates from
50 Year	0.127	0.0625	0.064	m^3/s	Catchment 101 and 103
100 Year	0.134	0.0625	0.072	m^3/s	

Required Storage Volumes

Dur.	2 YR	5 YR	10 YR	25 YR	50 YR	100 YR
5	3.8	5.0	7.6	11.9	14.6	16.8
10	2.2	3.2	7.1	13.6	17.3	21.0
15	-1.5	-1.4	3.3	11.3	15.8	20.5
20	-6.2	-7.3	-1.9	7.1	12.2	17.6
25	-11.4	-13.9	-8.0	1.9	7.4	13.4
30	-17.0	-21.0	-14.7	-4.0	1.8	8.3

	\top \wedge \top \square	Ι Λ Λ Λ	Project:	79 Collier Street	Date:	September 2, 2020
7/	TATHAM		File No.:	420373	Designed By:	LB
•	ENGINE	ERING	Subject:	Rational Method Design Calculations	Checked By:	NM
2 Year	186.60 mm/hr	$T_{C} = 0.52$				
5 Year	240.80 mm/hr	$T_{C} = 0.52$				
10 Year	278.03 mm/hr	$T_{C} = 0.52$				
25 Year	317.97 mm/hr	$T_{C} = 0.52$				
50 Year	357.47 mm/hr	$T_{C} = 0.52$				
100 Year	376.07 mm/hr	$T_{C} = 0.52$				
Drainage Ar	<u>ea</u> 0.010 ha : <u>Rate - Rational Method</u>	(Q=CiA/360)				
2 Year	$0.005 \text{ m}^3/\text{s}$					
5 Year	$0.006 \text{ m}^3/\text{s}$					
10 Year	$0.007 \text{ m}^3/\text{s}$					
25 Year	$0.009 \text{ m}^3/\text{s}$					
50 Year	$0.010 \text{ m}^3/\text{s}$					
100 Year	$0.010 \text{ m}^3/\text{s}$					

Project:	79 Collier Street	Date:	September 2, 2020
File No.:	420373	Designed By:	LB
Subject:	Rational Method Design Calculations	Checked By:	NM

POST DEVELOPMENT ANALYSIS

PRE DEVELOPMENT ANALYSIS

CA.	CATCHMENT 102 (TO EXISTING SERVICE ROAD)			CHMENT	7 202 (TO EXIS	TING SERV	/ICE [ROAD)
Runoff Coef	ficient (Municipal Standard)	Rung	off Coeff	<u>icient</u>	(Municipal Sta	andard)		
2 Year	0.95	2 Ye	ar	0.95				
5 Year	0.95	5 Ye	ar	0.95				
10 Year	0.95	10 Y	ear	0.95				
25 Year	1.00 = $C_5*1.10$	25 Y	ear	1.00	$=C_5*1.10$			
50 Year	1.00 = $C_5*1.20$	50 Y	ear	1.00	$=C_5*1.20$			
100 Year	1.00 = $C_5*1.25$	100 `	Year	1.00	=C ₅ *1.25			
Peak Rainfal	l Intensity (Municipal Standard -	Barrie) <u>Peak</u>	Rainfall	Intensit	<u>y</u> (Municipal	Standard -	Barr	ie)
2 YF	8 5 YR 10 YR 25 YR 50 YR 1	L00 YR	2 YR	5 YR	10 YR 25 YR	50 YR	10	00 YR
A 678.	1 853.6 975.9 1146.3 1236.2 1	1426.4 A	678.1	853.6	975.9 1146.3	1236.2	1.	426.4
B 4.70	4.70 4.699 4.92 4.70	5.273 E	4.70	4.70	4.699 4.92	4.70	5	5.273
C 0.78	1 0.766 0.76 0.757 0.751	0.759 C	0.78	0.766	0.76 0.757	0.751	C).759
2 Year	150.91 mm/hr $T_C =$	2.15 2 Ye	ar	145.57	mm/hr	T_C	=	2.47
5 Year	195.53 mm/hr $T_C =$	2.15 5 Ye	ar	188.74	mm/hr	T_C	=	2.47
10 Year	226.13 mm/hr $T_C =$	2.15 10 Y	ear	218.34	mm/hr	T_C	=	2.47
25 Year	260.76 mm/hr $T_C =$	2.15 25 Y	ear	252.08	mm/hr	T_C	=	2.47
50 Year	291.45 mm/hr $T_C =$	2.15 50 Y	ear	281.53	mm/hr	T_C	=	2.47
100 Year	311.55 mm/hr $T_C =$	2.15	Year	301.62	mm/hr	T_C	=	2.47
Drainage Ar	ea 0.030 ha	Drain	nage Are	0.0	20 ha			
-			-			(O C: A /3	700)	
Peak Runoff	Rate - Rational Method (Q=CiA/36	ou) <u>Peak</u>	Runott	Rate - R	ational Method	(Q=CIA/3	,60)	
2 Year	$0.012 \text{ m}^3/\text{s}$	2 Ye	ar	0.008	m^3/s			
5 Year	0.015 m ³ /s	5 Ye	ar	0.010				
10 Year	$0.018 \text{ m}^3/\text{s}$	10 Y	ear	0.012				
25 Year	$0.022 \text{ m}^3/\text{s}$	25 Y	ear	0.014	m^3/s			
50 Year	$0.024 \text{ m}^3/\text{s}$	50 Y	ear	0.016	m^3/s			
100 Year	$0.026 \text{ m}^3/\text{s}$	100	Year	0.017	m^3/s			

Project:	79 Collier Street	Date:	September 2, 2020
File No.:	420373	Designed By:	LB
Subject:	Rational Method Design Calculations	Checked By:	NM

RUNOFF COEFFICIENTS

CATCHMENT 101 (EXISTING CONDITION)

Land Use	RC	Area (ha)
Impervious Area	0.95	0.090
Lawn	0.25	0.030
	Total	0.120

Weighted RC 0.78

CATCHMENT 102 (EXISTING CONDITION)

RC Land Use Area (ha) Impervious Area 0.95 0.030

Weighted RC 0.95

CATCHMENT 103 (EXISTING CONDITION)

Land Use RC Area (ha) Impervious Area 0.95 0.0100

Weighted RC 0.95

CATCHMENT 201 (PROPOSED CONDITION)

RC Land Use Area (ha) Impervious Area 0.95 0.1400

Weighted RC 0.95

CATCHMENT 202 (PROPOSED CONDITION)

Land Use RC Area (ha) Impervious Area 0.95 0.0200

Weighted RC 0.95

TIME OF CONCENTRATION

CATCHMENT 101 (EXISTING CONDITION)

Slope = 13 % Length 30 m RC= 0.78 Area= 0.120 ha

Airport Method tc= 2.49 minutes Bransby Williams tc= 1.27 minutes

Method

tc= 1.27 minutes

CATCHMENT 102 (EXISTING CONDITION)

Slope = 9 % Length 41.2 m RC= 0.95 Area= 0.030 ha

Airport Method tc= 1.52 minutes Bransby Williams tc= 2.15 minutes

Method

tc= 2.15 minutes

CATCHMENT 103 (EXISTING CONDITION)

Slope = 0.5 % Length 5 m RC= 0.95 Area= 0.010 ha

Airport Method tc= 1.37 minutes Bransby Williams tc= 0.52 minutes

Method

0.52 minutes

CATCHMENT 201 (PROPOSED CONDITION)

Slope = 0.5 % Length 15 m RC= 0.95 Area= 0.140 ha

Airport Method 2.38 minutes Bransby Williams tc= 1.20 minutes

Method

tc= 1.20 minutes

CATCHMENT 202 (PROPOSED CONDITION)

Slope = 8.5 % Length 45 m RC= 0.95 Area= 0.020 ha

Airport Method tc= 1.62 minutes Bransby Williams tc= 2.47 minutes

Method

2.47 minutes

STORM SEWER DESIGN SHEET #1 - 5 YEAR

	IDF Curve C	oefficients	
Storm	Α	В	С
2 Year	-	-	
5 Year	853.600	4.700	0.766
25 Year	-	-	
100 Year	-	-	

Manning's Coefficient
CSP 0.024
Conc. 0.013
PVC 0.013

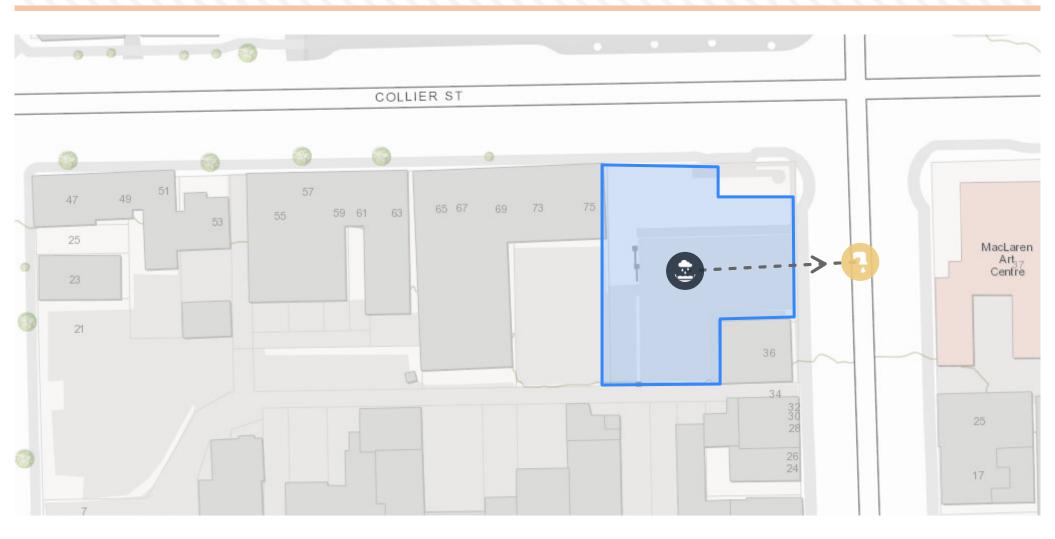
Project Name: Bayside Apartments, Barrie

Approved:

Project Number: 420373 Municipality: Barrie Designed By: LB Date: 08-16-2020 Checked By: NM

Date:

Revision Number:


PHASE	LOCATION OF SECTION	AREA LABEL	UPSTREAM MAINTENANCE HOLE	DOWNSTREAM MAINTENANCE HOLE	TRIBUTARY AREA - A	RUNOFF COEFFICIENT - C	INDIVIDUAL A × C	CUMULATIVE AREA	CUMULATIVE A × C	TIME OF CONCENTRATION	RAINFALL INTENSITY	PEAK FLOW	MANNING'S ROUGHNESS COEFFICIENT	LENGTH	SLOPE	DIAMETER	FULL FLOW VELOCITY	FULL FLOW CAPACITY	ACTUAL VELOCITY	TIME OF FLOW	CALCULATED PIPE DIAMETER	TIME OF CONCENTRATION
			MH No.	MH No.	ha					min.	mm/hr	cms		m	m/m	mm	m/s	cms	m/s	min	mm	min
	From Site			Prop. STMMH1	0.160	0.95	0.152	0.160	0.152	10.00	108.92	0.063	0.013	15.9	0.0200	300	1.93	0.137	1.77	0.15	224	10.15
per City	g Storm Sewer as of Barrie As-Built 985-001-007)	_	EX. STMMH	EX. STMMH									0.013	44.0	0.0490	600	4.81	1.359	0.00			

Notes:

Peak flow shown is 5-year peak flow rate as per Rational Method Design Calculations Sheet for Catchment 201

Appendix E: Phosphorous Budget Calculations

Map | Pre-Development

Summary

Site	Project Name	Project Title	Storm Type
Pre-Development	79 Collier Street	Phosphorous Budget	avg-annual

Water Balance | Pre-Development

Catchment	Site Area	Site Rainfall In	Site Infiltration	Site Evapotranspiration	External Outflow	Rainfall Reduction
		(mm) (m ³)	(mm) (m ³)	(mm) (m ³)	(mm) (m ³)	(mm) (%)
1	0.16 ha	944.70 mm	0.00 mm	185.30 mm	759.49 mm	185.21 mm
		1,492.63 m ³	0.00 m ³	292.77 m ³	1,200.00 m ³	19.60 %
TOTAL	0.16 ha	944.70 mm	0.00 mm	185.30 mm	759.49 mm	185.21 mm
		1,492.63 m ³	0.00 m ³	292.77 m ³	1,200.00 m ³	19.60 %

Loading Summary TSS | Pre Development

			Generated	Outgoing
Catchment	Total Catchment TSS Removal	Peak Outflow	Total Flow (m ³)	Total Flow (m ³)
	Removal		Average Concentration (mg/l)	Average Concentration (mg/l)
			Total Load (kg)	Total Load (kg)
Catchment 1	0.000 %	0.022 m ³ /s	1,200.000 m ³	1,204.000 m ³
			90.000 mg/l	89.701 mg/l
			108.000 kg	108.000 kg
Total	0.000 %	0.022 m ³ /s	1,200.000 m ³	1,204.000 m ³
			90.000 mg/l	89.701 mg/l
			108.000 kg	108.000 kg

Loading Summary TP | Pre Development

			Generated	Outgoing
Catchment	Total Catchment TP Removal	Peak Outflow	Total Flow (m ³)	Total Flow (m ³)
	Removal		Average Concentration (mg/l)	Average Concentration (mg/l)
			Total Load (kg)	Total Load (kg)
Catchment 1	0.000 %	0.022 m ³ /s	1,200.000 m ³	1,204.000 m ³
			0.230 mg/l	0.229 mg/l
			0.276 kg	0.276 kg
Total	0.000 %	0.022 m ³ /s	1,200.000 m ³	1,204.000 m ³
			0.230 mg/l	0.229 mg/l
			0.276 kg	0.276 kg

Peak Flow | Pre-Development

Catchment	Element	Description	Peak outflow
1	101	PEAK RUNOFF FLOW from	0.02 m ³ /s
· ·	Mulcaster	MAXIMUM FLOW at	0.022 m ³ /s

Loading TSS | Pre Development

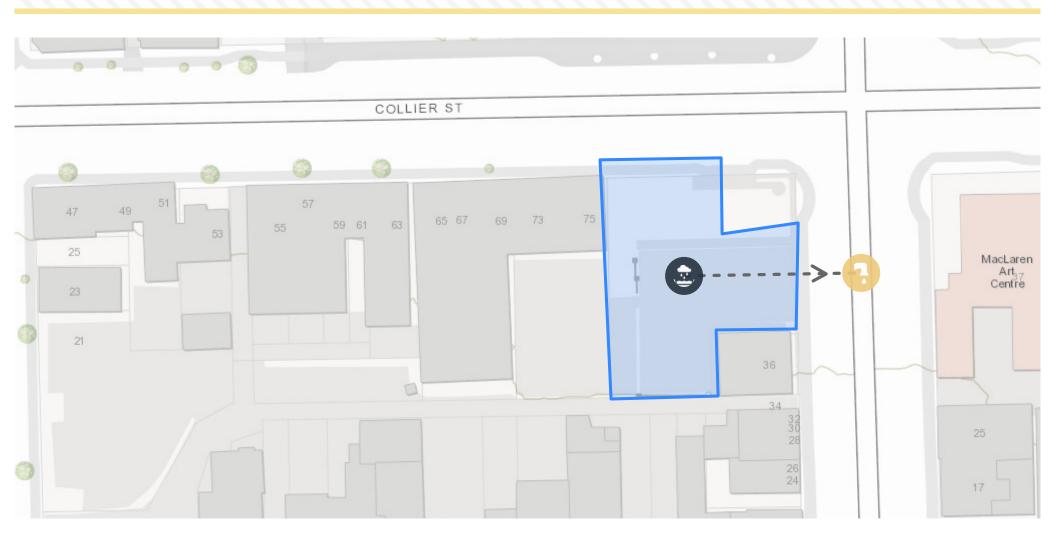
TSS - Catchment 1

Outgoing	Incoming			
Total Flow (m ³)	Total Flow (m ³)	Peak Outflow	LID Type (removal)	Name
Concentration (mg/l)	Concentration (mg/l)		(removal)	
Total Load (kg)	Total Load (kg)			
1,200.000 m ³	1,492.626 m ³	0.02 m ³ /s	0 %	101
90.000 mg/l	90.000 mg/l			
108.000 kg	134.336 kg			
1,204.000 m ³	1,204.000 m ³	0.022 m ³ /s	0 %	Mulcaster
89.701 mg/l	89.701 mg/l			
108.000 kg	108.000 kg			

Loading TP | Pre Development

TP - Catchment 1

			Incoming	Outgoing
Name	LID Type	Peak Outflow	Total Flow (m ³)	Total Flow (m ³)
			Concentration (mg/l)	Concentration (mg/l)
			Total Load (kg)	Total Load (kg)
101	0 %	0.02 m ³ /s	1,492.626 m ³	1,200.000 m ³
			0.230 mg/l	0.230 mg/l
			0.343 kg	0.276 kg
Mulcaster	0 %	0.022 m ³ /s	1,204.000 m ³	1,204.000 m ³
			0.229 mg/l	0.229 mg/l
			0.276 kg	0.276 kg


101

Field	Value
Subcatchment name	101
Catchment	1
Total AREA (HA)	0.158
Impervious area (HA)	0.158
Roof area (HA)	0
Landscaped area (HA)	0
Row Crop area (HA)	0
Open Space / Parkland area (HA)	0
Forest area (HA)	0
Wetland area (HA)	0
Other area (HA)	0
Manning's n for impervious areas	0.01
Manning's n for pervious areas	0.1
Depression storage for impervious areas (mm)	2
Depression storage for pervious areas (mm)	2.54
Weighted Curve Number	0

Mulcaster

Value

Mulcaster	Name
1	Catchment
229	Outfall Elevation (m)

Summary

Site	Project Name	Project Title	Storm Type
Pre-Development			
Post-Development	79 Collier Street	Phosphorous Budget	avg-annual

Water Balance | Post-Development

Catchment	Site Area	Site Rainfall In	Site Infiltration	Site Evapotranspiration	External Outflow	Rainfall Reduction
		(mm) (m ³)	(mm) (m ³)	(mm) (m ³)	(mm) (m ³)	(mm) (%)
1	0.16 ha	944.70 mm	0.00 mm	185.31 mm	761.01 mm	183.69 mm
		1,502.07 m ³	0.00 m ³	294.64 m ³	1,210.00 m ³	19.44 %
TOTAL	0.16 ha	944.70 mm	0.00 mm	185.31 mm	761.01 mm	183.69 mm
		1,502.07 m ³	0.00 m ³	294.64 m ³	1,210.00 m ³	19.44 %

Loading Summary TSS | Post Development

			Generated	Outgoing
Catchment	Total Catchment TSS Removal	Peak Outflow	Total Flow (m ³)	Total Flow (m ³)
	Removal		Average Concentration (mg/l)	Average Concentration (mg/l)
			Total Load (kg)	Total Load (kg)
Catchment 1	0.000 %	0.022 m ³ /s	1,210.000 m ³	1,211.000 m ³
			16.960 mg/l	16.946 mg/l
			20.522 kg	20.522 kg
Total	0.000 %	0.022 m ³ /s	1,210.000 m ³	1,211.000 m ³
			16.960 mg/l	16.946 mg/l
			20.522 kg	20.522 kg

Loading Summary TP | Post Development

			Generated	Outgoing
Catchment	Total Catchment TP Removal	Peak Outflow	Total Flow (m ³)	Total Flow (m ³)
	Removal		Average Concentration (mg/l)	Average Concentration (mg/l)
			Total Load (kg)	Total Load (kg)
Catchment 1	0.000 %	0.022 m ³ /s	1,210.000 m ³	1,211.000 m ³
			0.107 mg/l	0.107 mg/l
			0.129 kg	0.129 kg
Total	0.000 %	0.022 m ³ /s	1,210.000 m ³	1,211.000 m ³
			0.107 mg/l	0.107 mg/l
			0.129 kg	0.129 kg

Peak Flow | Post-Development

Catchment	Element	Description	Peak outflow
1	201	PEAK RUNOFF FLOW from	0.02 m ³ /s
, i	Mulcaster	MAXIMUM FLOW at	0.022 m ³ /s

Loading TSS | Post Development

TSS - Catchment 1

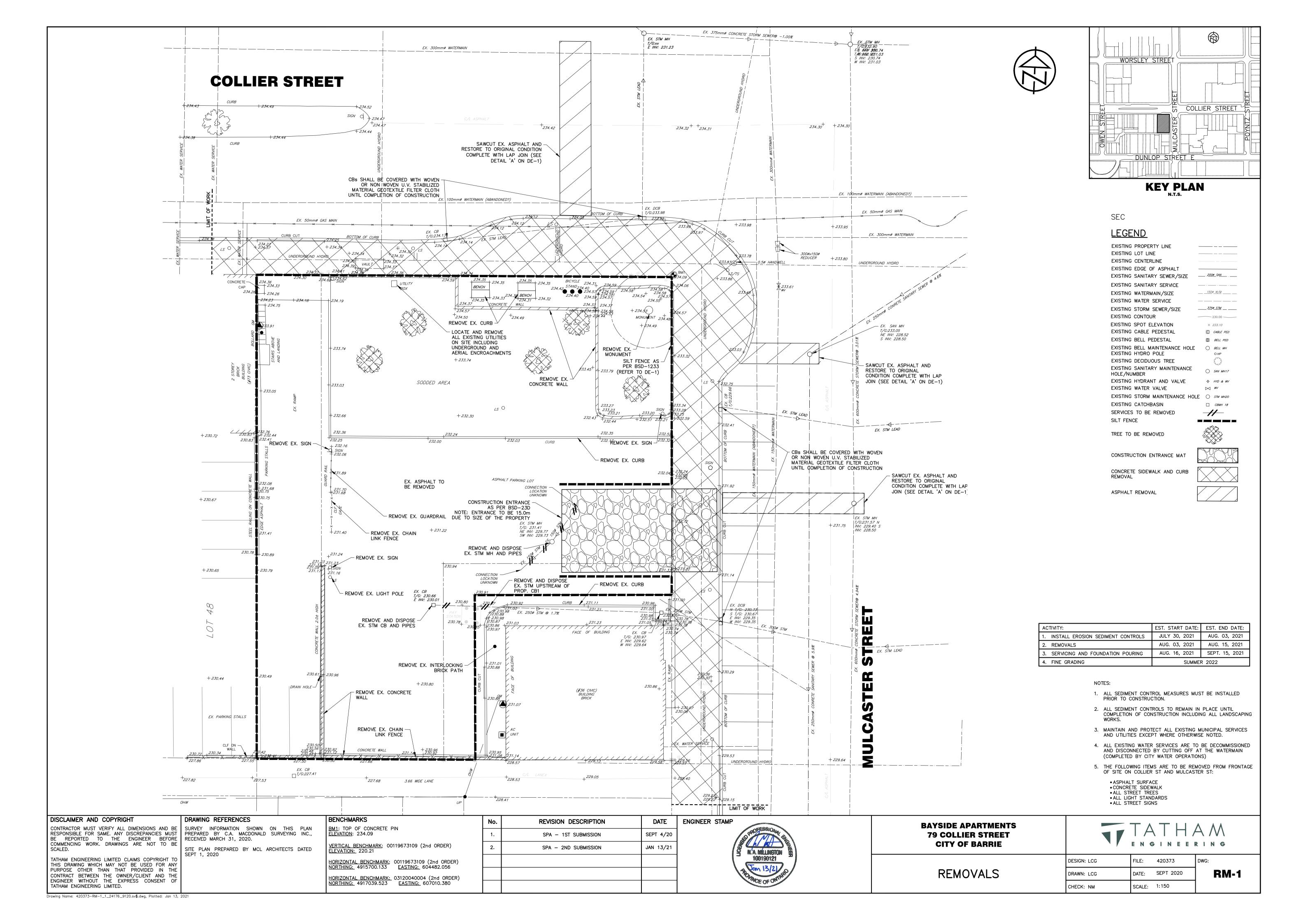
			Incoming	Outgoing
Name	LID Type (removal)	Peak Outflow	Total Flow (m ³)	Total Flow (m ³)
	(Terriovar)		Concentration (mg/l)	Concentration (mg/l)
			Total Load (kg)	Total Load (kg)
201	0 %	0.02 m ³ /s	1,502.073 m ³	1,210.000 m ³
			16.960 mg/l	16.960 mg/l
			25.475 kg	20.522 kg
Mulcaster	0 %	0.022 m ³ /s	1,211.000 m ³	1,211.000 m ³
			16.946 mg/l	16.946 mg/l
			20.522 kg	20.522 kg

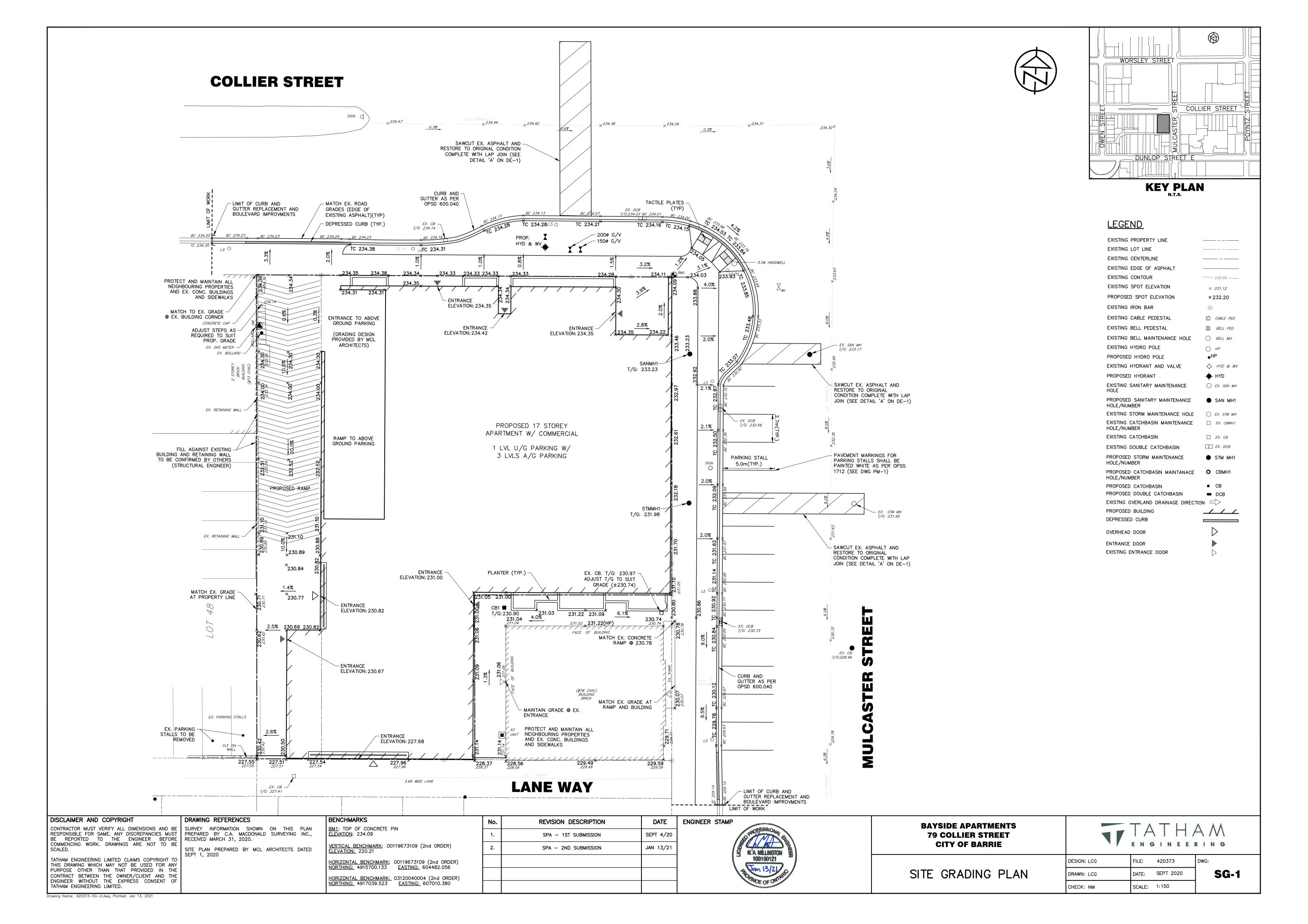
Loading TP | Post Development

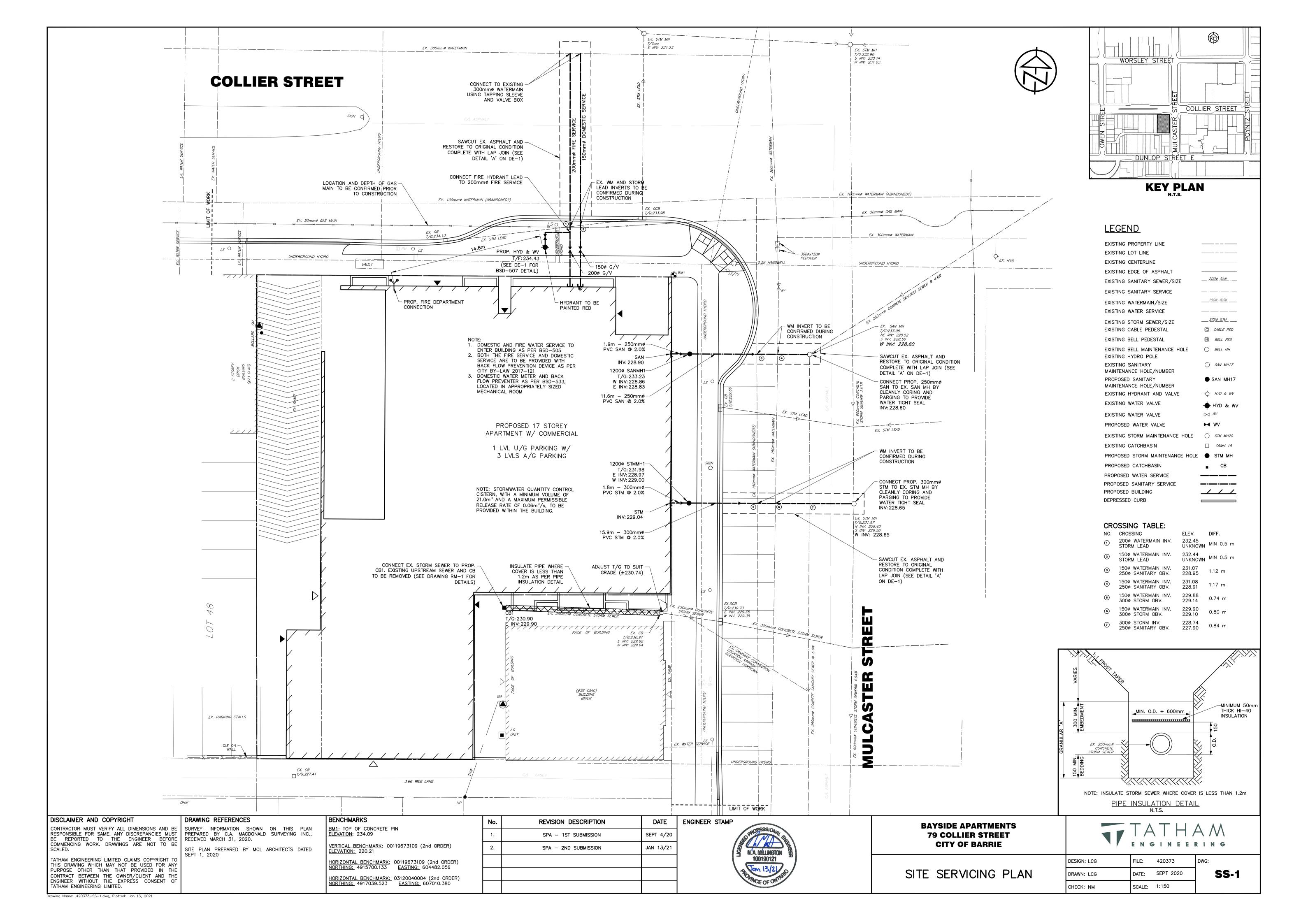
TP - Catchment 1

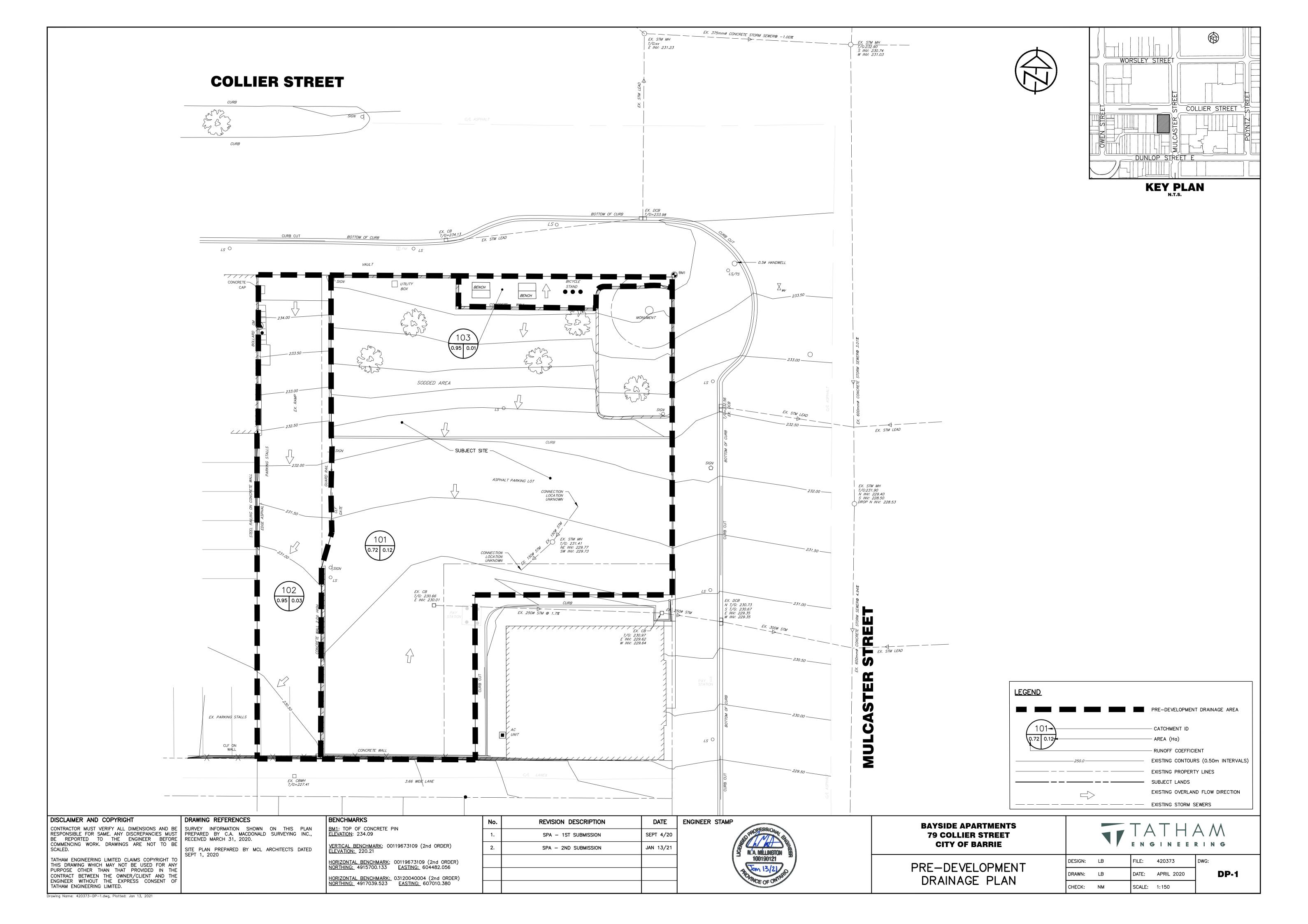
			Incoming	Outgoing
Name	LID Type	Peak Outflow	Total Flow (m ³)	Total Flow (m ³)
			Concentration (mg/l)	Concentration (mg/l)
			Total Load (kg)	Total Load (kg)
201	0 %	0.02 m ³ /s	1,502.073 m ³	1,210.000 m ³
			0.107 mg/l	0.107 mg/l
			0.160 kg	0.129 kg
Mulcaster	0 %	0.022 m ³ /s	1,211.000 m ³	1,211.000 m ³
			0.107 mg/l	0.107 mg/l
			0.129 kg	0.129 kg

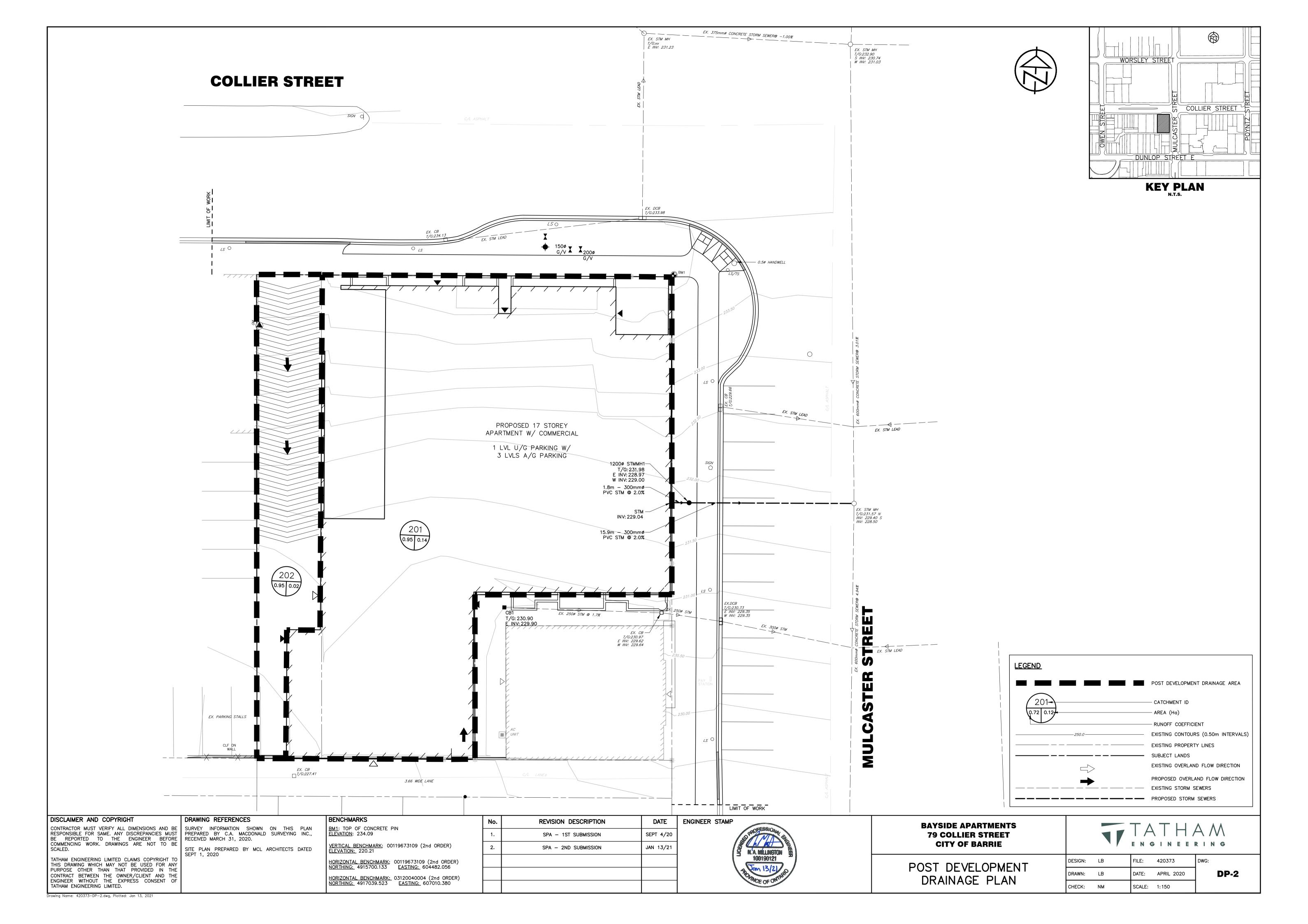
201

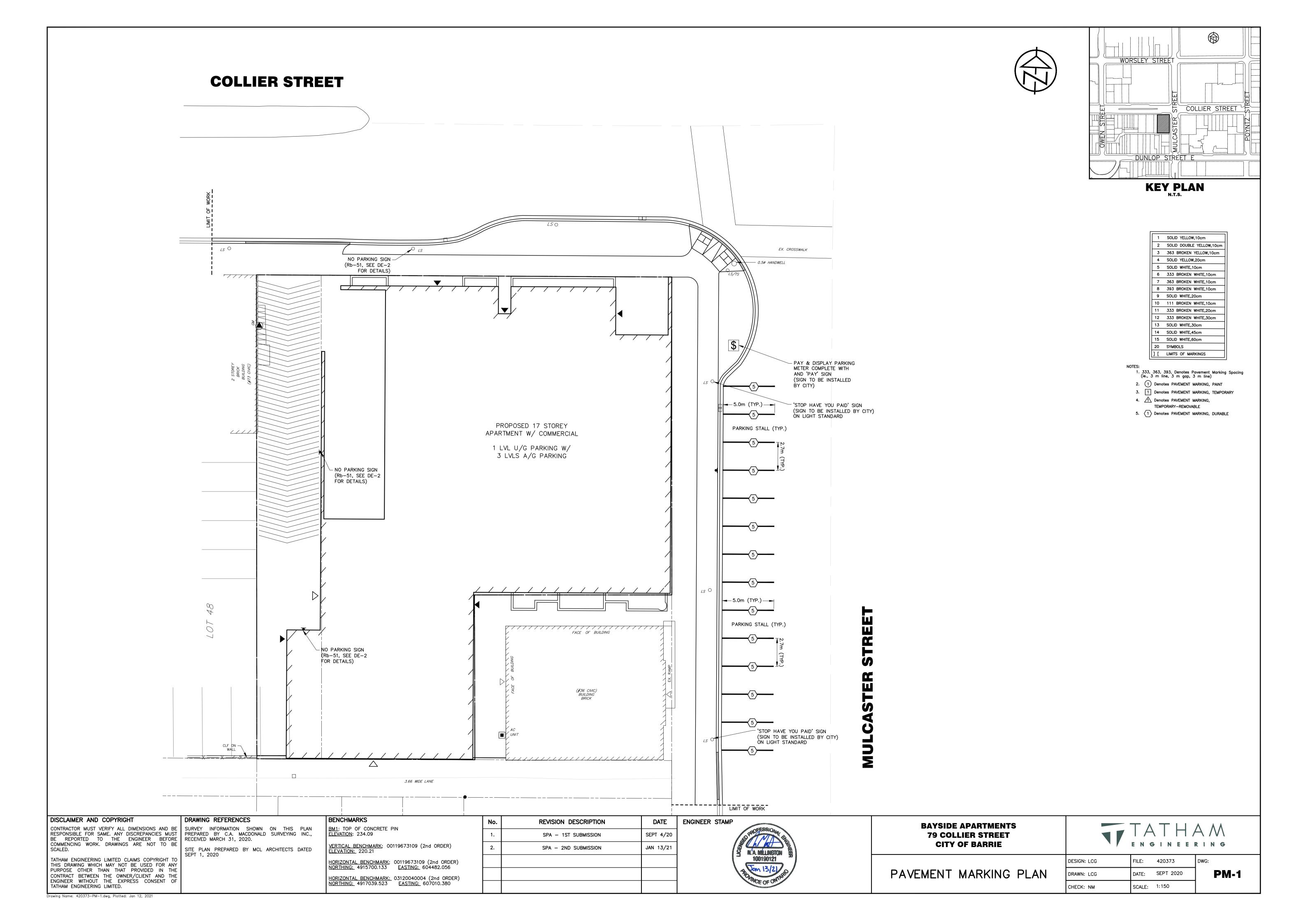

Field	Value
Subcatchment name	201
Catchment	1
Total AREA (HA)	0.159
Impervious area (HA)	0.01908
Roof area (HA)	0.1399200000000002
Landscaped area (HA)	0
Row Crop area (HA)	0
Open Space / Parkland area (HA)	0
Forest area (HA)	0
Wetland area (HA)	0
Other area (HA)	0
Manning's n for impervious areas	0.01
Manning's n for pervious areas	0.1
Depression storage for impervious areas (mm)	2
Depression storage for pervious areas (mm)	2.54
Weighted Curve Number	0

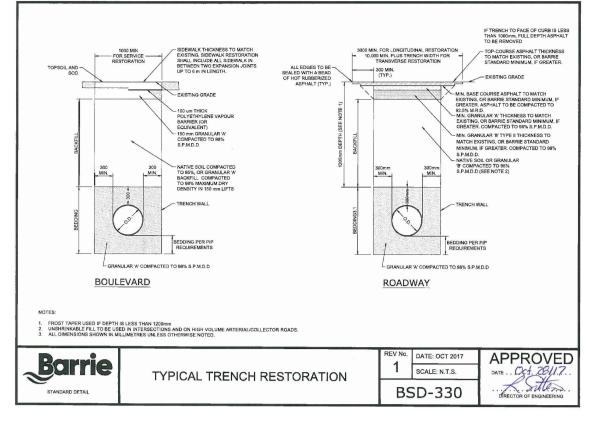

Mulcaster

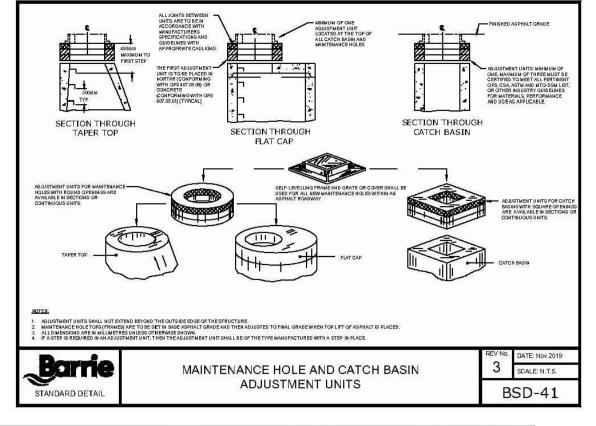

Value

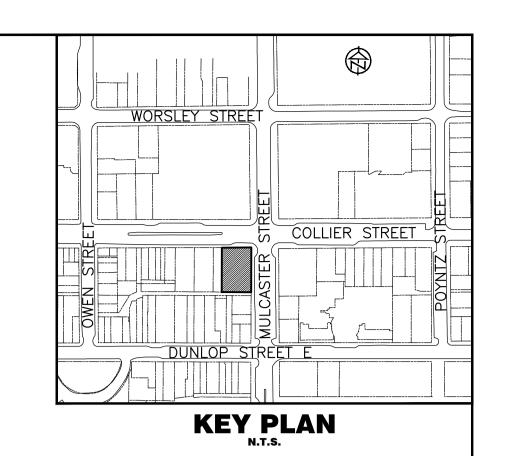

Mulcaster	Name
1	Catchment
229	Outfall Elevation (m)

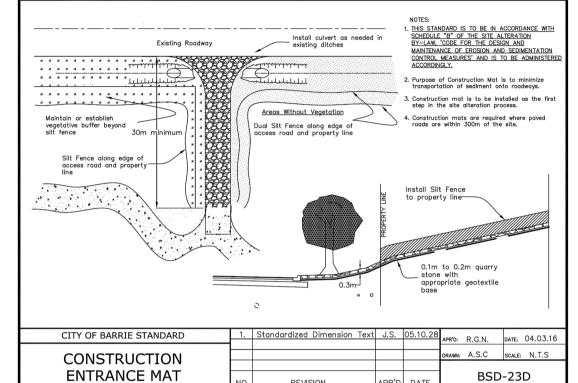

Appendix F: Drawings

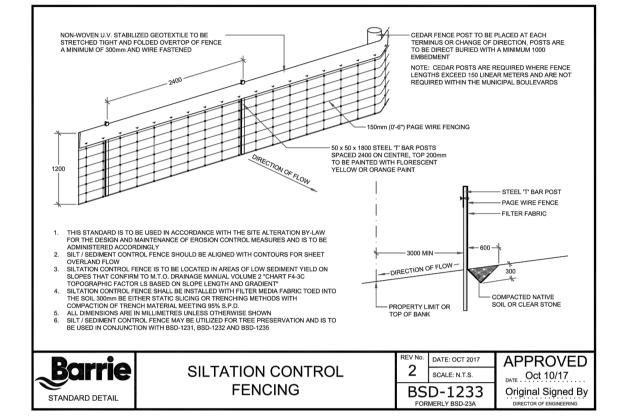


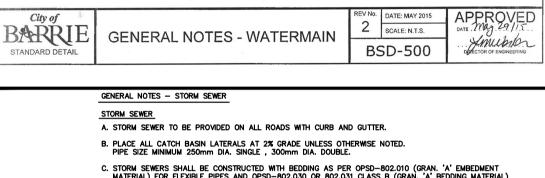












GENERAL NOTES 1. DRAWINGS

GENERAL NOTES

- C. STORM SEWERS SHALL BE CONSTRUCTED WITH BEDDING AS PER OPSD-802.010 (GRAN. 'A' EMBEDMENT MATERIAL) FOR FLEXIBLE PIPES AND OPSD-802.030 OR 802.031 CLASS B (GRAN. 'A' BEDDING MATERIAL) FOR RIGID PIPE UNLESS OTHERWISE APPROVED BY THE DIRECTOR OF ENGINEERING.
- D. MAINTENANCE HOLE TOPS (FRAMES) AND CATCH BASIN (FRAMES) ARE TO BE SET TO BASE COURSE ASPHALT GRADE AND THEN ADJUSTED TO FINAL GRADE WHEN THE TOP LIFT OF ASPHALT IS PLACED. ALL ADJUSTMENT WILL BE ACCORDANCE WITH DED. ACCORDANCE WITH BSD-N2.
- E. STORM SEWER TO BE LOCATED OFFSET 3.0m SOUTH OR EAST OF CENTRELINE UNLESS OTHERWISE SPECIFIED.

1. CONTRACTORS SHALL INFORM THE CITY OF BARRIE WATER OPERATIONS DEPARTMENT A MINIMUM OF 48 HOURS IN ADVANCE OF THEIR INTENTIONS TO PERFORM WORK ON WATER INFRASTRUCTURE.

OPERATION OF HYDRANTS AND VALVES ON THE POTABLE WATER SYSTEM BY OTHER THAN QUALIFIED WATER OPERATIONS STAFF IS PROHIBITED BY CURRENT BY-LAW, CITY SERVICE FEES ARE PER THE CURRENT FEES BY-LAW. THE CITY'S WATER OPERATIONS STAFF WILL SWAB, PRESSURE TEST, CHLORINATE AND FLUSH ALL NEW WATERWAINS.

3. MINIMUM COVER OVER WATERMAIN SHALL BE 1.7m. THE MINIMUM HORIZONTAL SEPARATION BETWEEN WATERMAIN AND SEWERS SHALL BE 2.5m. WHERE WATERMAIN CONFLICTS WITH SEWER PIPES, DEFLECT WATERMAIN HORIZONTALLY OR VERTICALLY WHILE PROVIDING A MINIMUM OF 0.5m CLEARANCE BETWEEN WATERMAIN AND SEWERS MAINTAIN MINIMUM DEP11 OF COVER TALL TIMES.

4. WATERMAIN SHALL BE INSTALLED IN BEDDING AS PER OPSD 802.010 (GRANULAR 'A' EMBEDMENT MATERIAL) FOR FLEXIBLE PIPES AND OPSD 802.030 OR 802.031 CLASS 'B' (GRANULAR 'A' SEDDING MATERIAL, GRANULAR 'A' OR SELECT NATIVE COVER MATERIAL) FOR RIGID PIPE UNLESS OTHERWISE APPROVED BY THE DIRECTOR OF WATER ORDERATIONS ALTERRATIVE EMBEDMENT MATERIAL. SAND MEETING GRADATION REQUIREMENTS OF OPSSMUNI 1004.05.07 COMPACTED TO 95% STANDARD PROCTOR MAXIMUM DRY DENSITY IS PERMISSIBLE WHERE NOTED IN STANDARD DETAILS, GEOTECHNICAL (SETRICATION OF MATERIAL AND COMPACTION TESTING MUST BE PROCIDE DVERT 150 METRES. THE COMPACTION TESTING MUST BE PROLIDED EVERY 150 METRES. THE COMPACTION TESTING MUST BE PROLIDED EVERY 150 METRES. THE

5. COPPER WATER MAINS AND SERVICES 25mm TO 50mm IN DIAMETER SHALL BE EMBEDDED IN SAND 100mm ABOVE AND BELOW TO CONFORM TO OPSS MUNI 1004 05.07.

7. NEW WATERMAINS TO BE PVC DR18 CL150 MINIMUM; DUCTILE IRON CL52 AS PER THE APPROVED MANUFACTURERS PRODUCTS FOR LINEAR WATER SYSTEMS LIST. 8. TRACING WIRE SHALL BE #12 AWG HIGH STRENGTH COPPER CLAD (HS-CSS) AND SHALL BE INSTALLED ON THE TOTAL LENGTH OF ALL WATERMAIN AND BROUGHT UP AT EACH HYDRANT AND CONNECTED TO FLANGE BOLT, ALL SPLICES TO UTILIZE CONNECTORS AS PER THE APPROVED MANUFACTURERS PRODUCTS FOR LINEAR WATER SYSTEMS LIST. 9. ALL WATER SERVICES SHALL BE MINIMUM 25mm TYPE 'K' COPPER OR 25mm CROSS-LINKED POLYETHYLENE UNLESS OTHERWISE APPROVED BY THE DIRECTOR OF WATER OPERATIONS. WATER SERVICE SADDLES SHALL BE USED WHEN TAPPING INTO PVC WATERMAIN.

10, SERVICE TAPPINGS SHALL BE PLACED AT A MINIMUM SEPARATION OF 1.0m AND A MINIMUM OF 0.6m FROM JOINTS. (ENDS OF PIPE) 11. RISER PIPES ARE TO BE INSTALLED AS PER BSD-510, AND REMOVED AS DIRECTED. SWABBING SCHEDULE TO BE SUPPLIED BY A WATER
OPERATIONS FIELD REPRESENTATIVE. ALL RISERS ARE TO BE RESTRAINED OR THRUST BLOCKED.

12. ALL NEW CURB STOPS AND BOXES TO BE LOCATED AT PROPERTY. LINE AND OUT OF DRIVEWAYS AND SIDEWALKS.

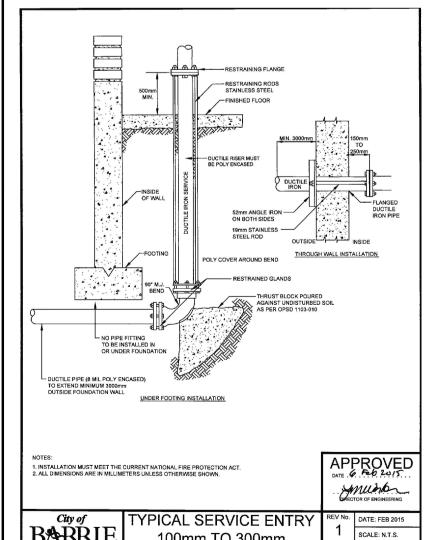
GENERAL NOTES - WATERMAIN

- F. ALL CONNECTIONS TO THE STORM MAIN SHALL BE MADE WITH A STORM MANHOLE OR APPROVED FACTORY TEE CONNECTION AS PER OPSD-708.01 OR 708.03.
- G. PIPE MATERIAL TO BE REINFORCED CONCRETE WITH A MINIMUM STRENGTH OF 50 N/m/mm CERTIFIED TO C.S.A. STANDARD A247.2-1982, CLASS 50-D (PREVIOUSLY C.S.A. STANDARD A257.2-1974, CLASS II) OR PVC CERTIFIED TO C.S.A. STANDARDS 182.2 AND 182.4.
- H. STORM SEWER TO BE MINIMUM 300mm DIAMETER WITH JOINTS CONFORMING TO C.S.A. STANDARD A257.3.

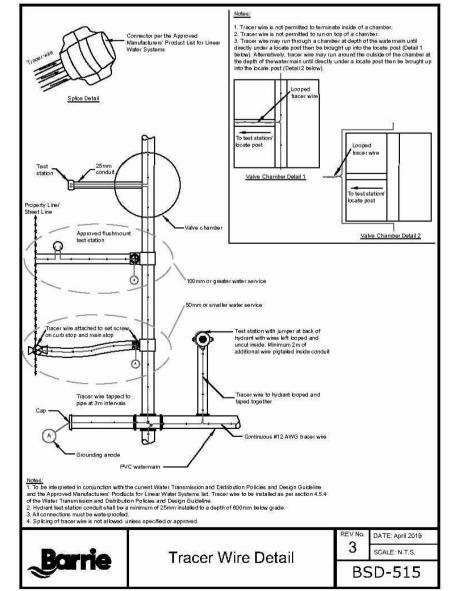
NO.

- I. ALL PIPE BEDDING MUST CONFORM TO OPSD, MAXIMUM COVER TABLE. NO FLEXIBLE PIPE SEWERS WILL BE INSTALLED WITH A DEPTH OF COVER GREATER THAN 6 METRES UNLESS SPECIFICALLY APPROVED BY THE DIRECTOR OF ENGINEERING.
- J. ALL PIPE HANDLING INSTALLATIONS MUST BE IN STRICT COMPLIANCE WITH MANUFACTURES INSTALLATION GUIDES AND THE O.C.P.A. OR UNIBELL GUIDELINES.
- K. SUMP PUMP DISCHARGE PIPING IN BOULEVARD:
 IN THE EVENT OF OVERACTIVE SUMP PUMP ACTIVITY, A 150mm DIAMETER PVC DR-28 SEWER MAY BE INSTALLED,
 WHEN SO DIRECTED BY THE DIRECTOR OF ENGINEERING, ALONG THE FRONTAGES OF DESIGNATED LOTS, WITH AN OFFSET
 OF 0.6m FROM BACK OF CURB. THIS SEWER IS TO BE CAPPED AT THE UPSTREAM END AND IS TO OUTLET INTO THE
 NEAREST CATCHBASIN DOWNSTREAM. DEPTH OF SEWER IS TO BE EQUAL TO SUBDRAIN DEPTH. NOT TO BE DIRECTLY
 CONNECTED TO FOUNDATION DRAINS.

	.,							
CITY OF BARRIE STANDARD	4.	NOTE 'K' — SUMP PUMP DISCHARGE PIPING	B.R.	2003.01.07	APR'D:	R.G.N.	DATE:	92.05.15
		NOTE 'I' & 'C' - "DIRECTOR OF ENGINEERING"	B.R.	2002.10.28	AFR D.	14.0.14.	DAIL.	02.00.10
CENEDAL NOTES	2.	NOTE 'C' OPSD NUMBER REVISION	K.C.	2000.03.16	DRAWN:	L.A.J.	SCALE:	N.T.S.
GENERAL NOTES	1.	NOTE 'D' CHANGED	K.C.	98.03.30				
STORM SEWERS	NO.	REVISION	APR'D	DATE		BSD	-N5	

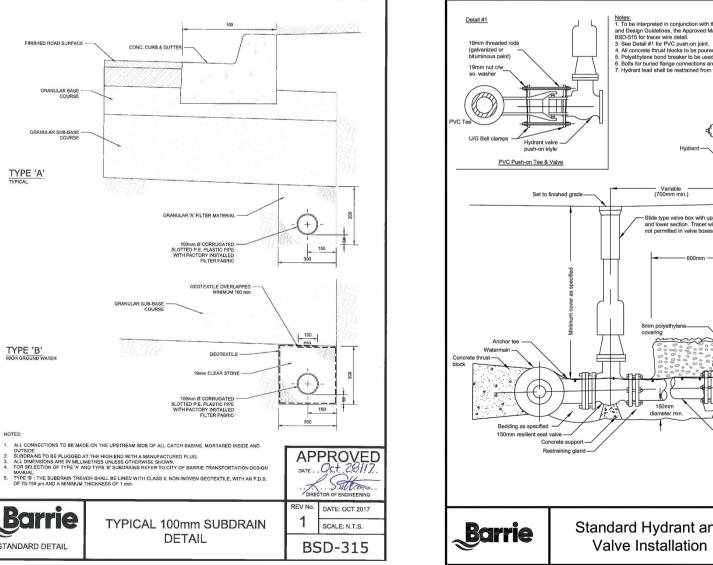

APR'D DATE

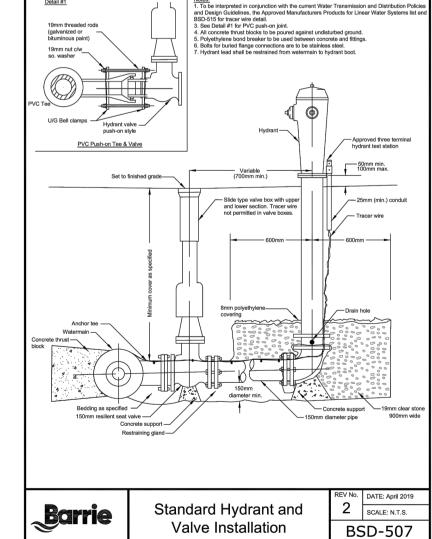
REVISION

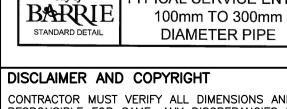

A.	ALL DRAWINGS SHALL BE PROD & SYMBOLS FOR PLAN & PROF									
2.	MEASUREMENTS									
A.	ALL DIMENSIONS ARE IN METRE UNLESS SPECIFIED OTHERWISE.	S, EXC	EPT PIPE DIAMETERS,	WHICH ARE IN N	MILLIMETI	RES,				
3.	GENERAL									
A.	ALL WORK SHALL BE IN ACCOR AND ONTARIO PROVINCIAL STAN			OF BARRIE STAN	IDARD D	RAWINGS (E	BSD)			
В.	ORDER OF PRECEDENCE OF STADRAWNGS (BSD) AND SECONDL									
C.	LOCATION OF EXISTING SERVICE THE CONTRACTOR IS REQUIRED TO THE COMMENCEMENT OF AN	TO NO	TIFY THE VARIOUS UT	LITY COMPANIES	6 48 HO	urs prior				
D.	A ROAD OCCUPANCY PERMIT IS PRIOR TO THE COMMENCEMENT					NS BRANCH	ı			
E.	A SITE ALTERATION PERMIT IS COMMENCEMENT OF ANY EARTH			RING DEPARTME	NT PRIC	OR TO THE				
F.	NATIVE MATERIAL, SUITABLE FO PROCTOR MAXIMUM DRY DENSIT		KFILL, SHALL BE COMP	ACTED TO 95%	STANDA	RD				
G.	GRANULAR MATERIAL , USED FO					IN DEPTH				
н.	ALL DISTURBED AREAS ARE TO AS DETERMINED BY THE CITY E			RIGINAL CONDITION	ON OR E	BETTER,				
I.	ALL SILT CONTROL AND EROSIO COMMENCEMENT OF CONSTRUCT CONTRACTOR UNTIL CONSTRUCT SUBJECT TO APPROVAL BY THE	ION AN	ID SHALL REMAIN IN F COMPLETE AND THE (PLACE AND BE NORASS HAS EST	MAINTAIN	IED BY THE	:			
CITY OF BARR	IE STANDARD						APR'D:	R.G.N.	DATE:	92.05.15
		3.	3. NOTE: 3.E. REVISEI	& 3.I. ADDED	J.S.	05.01.10	H		1	

REVISION

general notes – Sanitary Se	WER											
SANITARY SEWERS	SANITARY SEWERS											
MATERIAL) FOR FLEXIBLE PIPE	A. SEWERS SHALL BE CONSTRUCTED WITH BEDDINGS AS PER OPSD-802.010, (GRAN. 'A' EMBEDMENT MATERIAL) FOR FLEXIBLE PIPES AND OPSD-802.030 OR 802.031 CLASS B (GRAN. 'A' BEDDING MATERIAL) FOR RIGID PIPE UNLESS OTHERWISE APPROVED BY THE DIRECTOR OF ENGINEERING.											
B. MAXIMUM DEFLECTION FROM COO.P.S. OR MANUFACTURERS R		ED LIVE AND DEAD LOADING SHALL N MENDED SPECIFICATIONS.	OT EXC	EED ANY C.	S.A.,							
	C. PVC, CONCRETE AND PROFILE WALL PVC SEWERS SHALL HAVE RUBBER GASKET TYPE JOINTS AND SHALL BE CERTIFIED TO CONFORM TO ALL APPLICABLE CURRENT C.S.A. SPECIFICATIONS.											
D. CONCRETE SANITARY SEWERS STANDARD A257.2—1982, CLA	D. CONCRETE SANITARY SEWERS SHALL HAVE A MINIMUM STRENGTH OF 50 N/m/mm CONFORMING TO CSA STANDARD A257.2-1982, CLASS 50-D (PREVIOUSLY C.S.A. STANDARD A257.2-1974, CLASS II).											
E. MAINTENANCE HOLE TOPS (FF GRADE WHEN THE TOP LIFT O	E. MAINTENANCE HOLE TOPS (FRAMES) ARE TO BE SET TO BASE COURSE ASPHALT GRADE AND THEN ADJUSTED TO FINAL GRADE WHEN THE TOP LIFT OF ASPHALT IS PLACE. ALL ADJUSTMENT WILL BE ACCORDANCE WITH BSD-N2.											
F. ALL CONNECTIONS TO NEW SANITARY MAINS SHALL BE PRE-MANUFACTURED, FABRICATED TEES. CONNECTIONS TO EXISTING SANITARY SEWER SHALL BE MADE WITH APPROVED FACTORY MADE TEES												
ON INSERTA-TEES IN STRICT	OR INSERTA-TEES IN STRICT ACCORDANCE TO MANUFACTURES GUIDELINES.											
CITY OF BARRIE STANDARD	4.	NOTE 'B' - "ENGINEERING"	B.R.	2002.10.28	APR'D:	R.G.N.	DATE:	92.05.15				
CENEDAL NOTEC	3. 2.	NOTE 'B' OPSD NUMBER REVISION NOTE 'F' CHANGED	K.C.	2000.03.16 98.03.30	DRAWN:	L.A.J.	SCALE:	N.T.S.				
GENERAL NOTES	1.	CHANGES TO B. TO G.	K.C.	95.04.24	DRAWN:	L.A.U.	JUNEE	11.1.0.				
SANITARY SEWERS	NO.	REVISION	APR'D	DATE		BSD	-N3					




2. 3.D. - "ENGINEERING DEPARTMENT" B.R. 02.10.28 DRAWN: L.A.J. SCALE: N.T.S.


01.12.06

APR'D DATE

BSD-N6

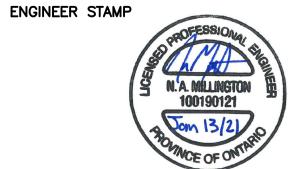
BE REPORTED TO THE ENGINEER BEFORE | RECEIVED MARCH 31, 2020. COMMENCING WORK. DRAWINGS ARE NOT TO BE SCALED.

TATHAM ENGINEERING LIMITED CLAIMS COPYRIGHT TO THIS DRAWING WHICH MAY NOT BE USED FOR ANY PURPOSE OTHER THAN THAT PROVIDED IN THE CONTRACT BETWEEN THE OWNER/CLIENT AND THE ENGINEER WITHOUT THE EXPRESS CONSENT OF TATHAM ENGINEERING LIMITED.

Drawing Name: 420373—DE—1.dwg, Plotted: Jan 12, 2021

DRAWING REFERENCES

BSD-505 (PREVIOUSLY BSD-61)

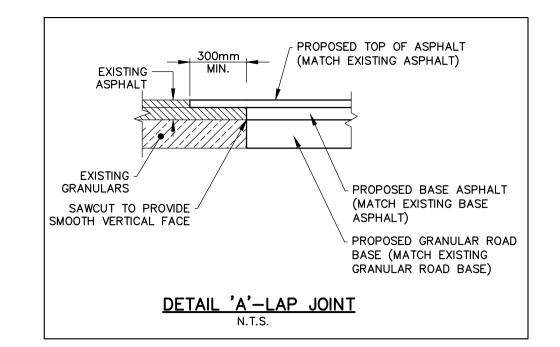

SEPT 1, 2020

CONTRACTOR MUST VERIFY ALL DIMENSIONS AND BE RESPONSIBLE FOR SAME. ANY DISCREPANCIES MUST PREPARED BY C.A. MACDONALD SURVEYING INC., SITE PLAN PREPARED BY MCL ARCHITECTS DATED

BENCHMARKS BM1: TOP OF CONCRETE PIN ELEVATION: 234.09

VERTICAL BENCHMARK: 00119673109 (2nd ORDER) ELEVATION: 220.21 HORIZONTAL BENCHMARK: 00119673109 (2nd ORDER) NORTHING: 4915700.133 <u>EASTING:</u> 604482.056 <u>HORIZONTAL BENCHMARK:</u> 03120040004 (2nd ORDER) <u>NORTHING:</u> 4917039.523 <u>EASTING:</u> 607010.380

No.	REVISION DESCRIPTION	DATE
1.	SPA - 1ST SUBMISSION	SEPT 4/20
2.	SPA - 2ND SUBMISSION	JAN 13/21

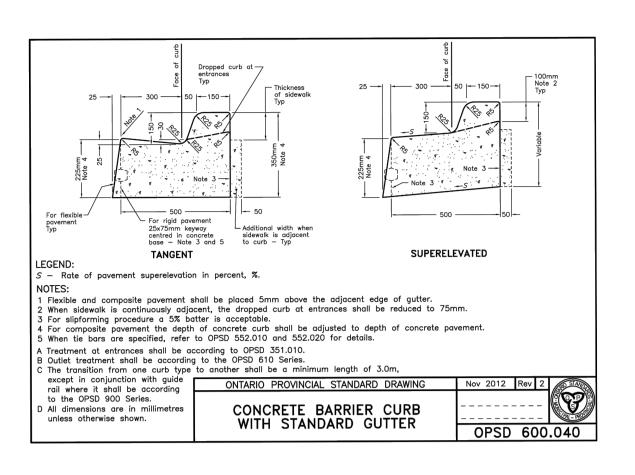


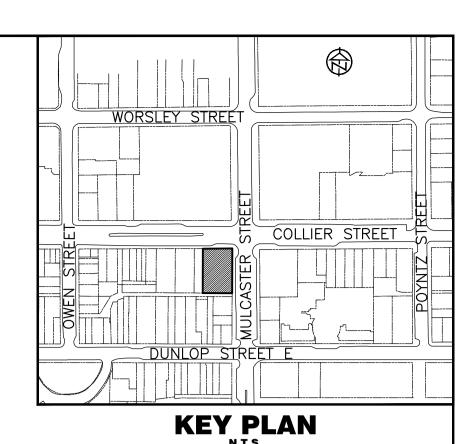
BAYSIDE APARTMENTS
79 COLLIER STREET
CITY OF BARRIE

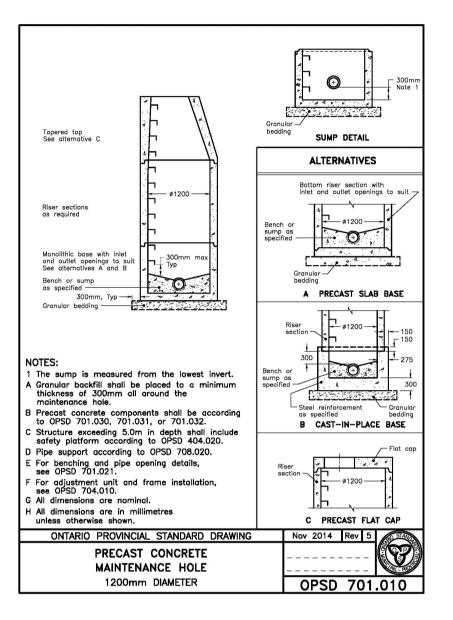
DESIGN: LCG FILE: 420373 DATE: SEPT 2020 DE-1

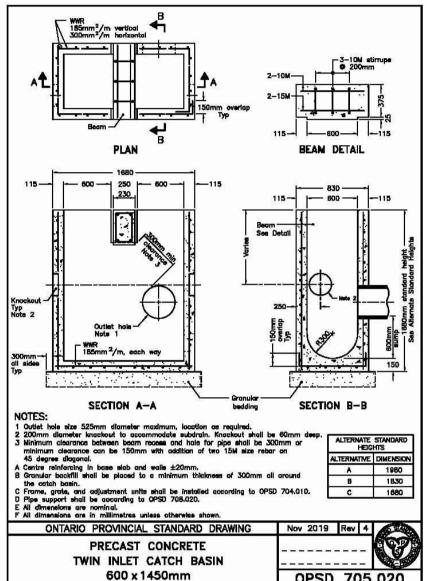
DETAILS

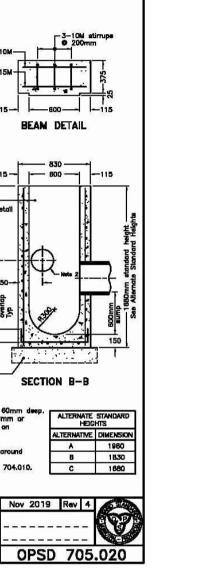
DRAWN: LCG SCALE: 1:150 CHECK: NM

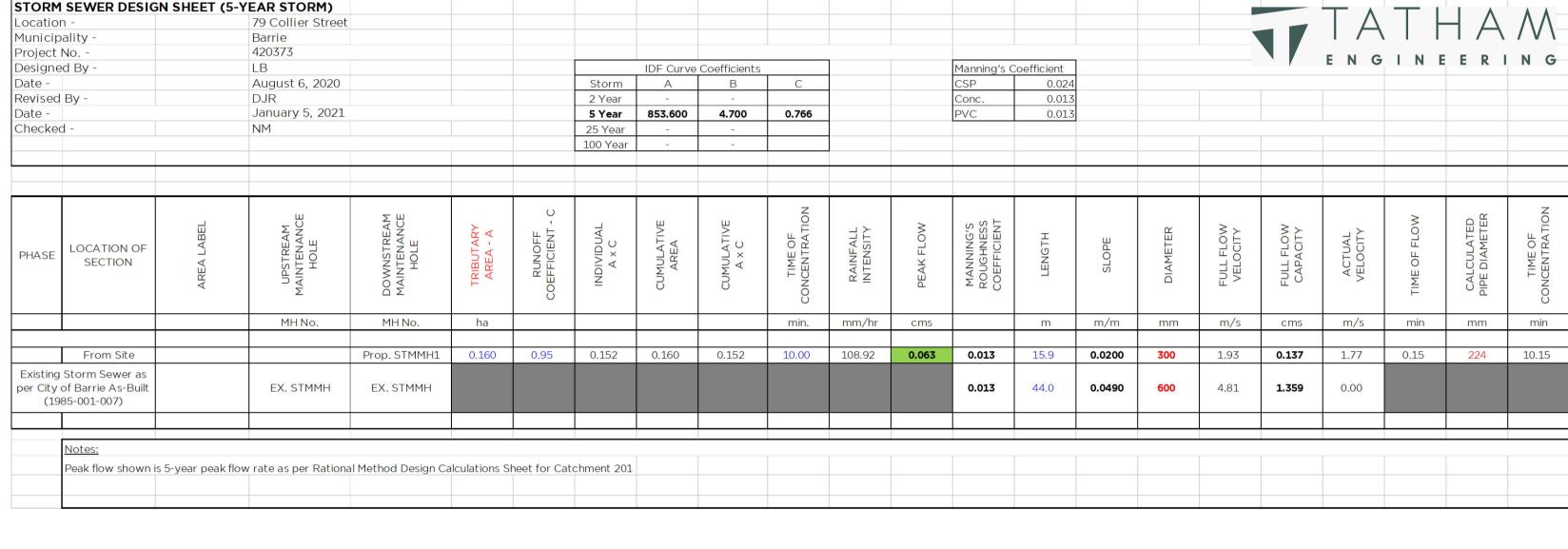


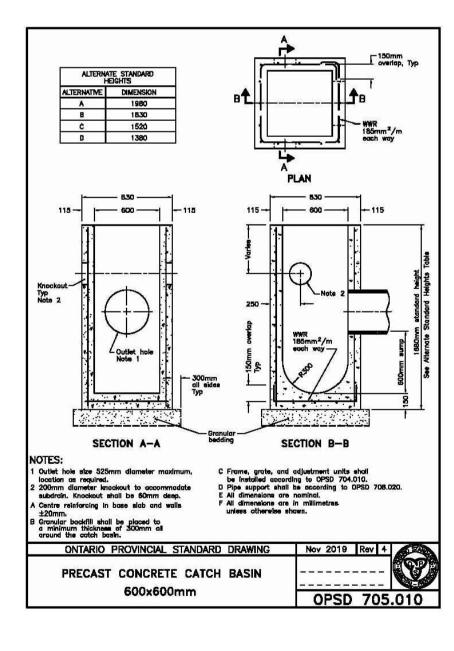

30 cm x 30 cm Rb-151 60 cm x 60 cm Interdictory Symbol - Red Reflective

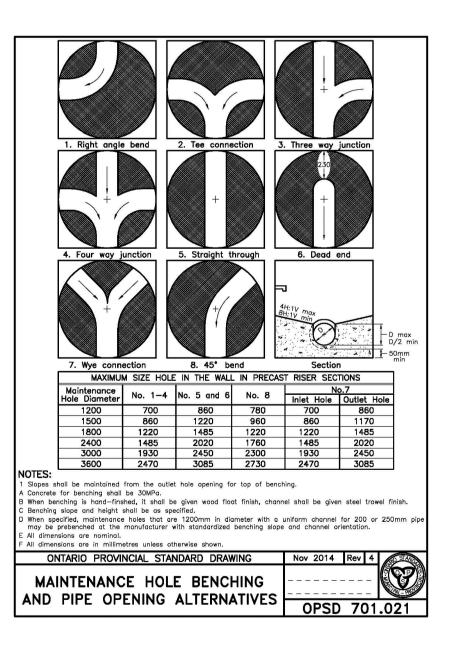

NO PARKING (Rb-51) TO BE INSTALLED IN ACCORDANCE WITH THE ONTARIO TRAFFIC MANUAL


Legend & Border – Black


Background - White Reflective







SANITARY SEWER DESI																				\top	Λ T	_	\	\ \ /
ocation -	79 Collier Street																				\leftarrow		\forall	/ V
Municipality -	Barrie						FLOW C	RITERIA															, ,	
Project No	420373							LA	AND USE			AVER			PEA	KING			` '	E N	GI	NE	RI	N
Designed By -	LB											FLO	W		FAC	TOR								
Pate -	August 6, 2020						RESIDEN	ITIAL			225		L/cap/d		HAR	MON								
Revised By -	DJR						COMME	RCIAL			28		m³/ha/day	M	_1_	14								
ate -	January 5, 2021						PEOPLE,	/UNIT (HIC	SH DENSI	TY)	1.67		cap/unit	*	=1+ -	+p0.5								
Checked -	NM						INFILTRA	ATION			0.10		L/ha/s			-								
												AVE	RAGE FLOW			PEA	K FLOW			F	ROPOSE	D SEWER		=
LOCATION OF SECTION	AREA LABEL	FROM UPSTREAM	TO DOWNSTREAM	NUMBER OF UNITS	POPULATION	CUMULATIVE POP.	PEAKING FACTOR	COMMERCIAL AREA	SITE AREA	CUMULATIVE AREA	RESIDENTIAL	COMMERCIAL	INFILTRATION	TOTAL	RESIDENTIAL	COMMERCIAL	INFILTRATION	TOTAL	LENGTH	DIAMETER	GRADE	FULL FLOW CAP.	FULL FLOW VELOCITY	
		MH#	MH#	Ea.	CAP.	CAP.		ha	ha	ha	I/s	l/s	I/s	l/s	l/s	l/s	I/s	l/s	m	mm	%	l/s	m/s	r
0.0 0.0 0 0 00	100 20		0.2															and the same			and an inches			
Bayside Apartments	A1	N/A	Prop. SANMH	136	227	227	4.13	0.04	0.16	0.16	0.59	0.01	0.02	0.62	2.44	0.01	0.02	2.47	11.6	250	2.00%	84.09	1.71	0.
xisting Sanitary Sewer (Based on Available As-Built Drawing 1985-001-007)		EX. SANMH	EX. SANMH																	250	5.90%	144.43	2.94	C

DISCLAIMER	AND	COP	YRIG	SHT	
CONTRACTOR	MUST	VERIFY	ALL	DIMENSIONS	Αl
DECDONICIDI E		CALIE	A & IV.	DICODEDANIOI	-

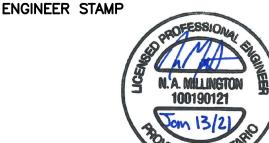
CONTRACTOR MUST VERIFY ALL DIMENSIONS AND BE REPORTED TO THE ENGINEER BEFORE SURVEY INFORMATION SHOWN ON THIS PLAN PREPARED BY C.A. MACDONALD SURVEYING INC., RECEIVED MARCH 31, 2020. COMMENCING WORK. DRAWINGS ARE NOT TO BE SCALED.

TATHAM ENGINEERING LIMITED CLAIMS COPYRIGHT TO THIS DRAWING WHICH MAY NOT BE USED FOR ANY PURPOSE OTHER THAN THAT PROVIDED IN THE CONTRACT BETWEEN THE OWNER/CLIENT AND THE ENGINEER WITHOUT THE EXPRESS CONSENT OF TATHAM ENGINEERING LIMITED.

DRAWING REFERENCES

SEPT 1, 2020

SITE PLAN PREPARED BY MCL ARCHITECTS DATED


BENCHMARKS BM1: TOP OF CONCRETE PIN ELEVATION: 234.09

<u>VERTICAL BENCHMARK</u>; 00119673109 (2nd ORDER) <u>ELEVATION</u>: 220.21

<u>HORIZONTAL BENCHMARK:</u> 00119673109 (2nd ORDER) <u>NORTHING:</u> 4915700.133 <u>EASTING:</u> 604482.056
 HORIZONTAL
 BENCHMARK:
 03120040004 (2nd ORDER)

 NORTHING:
 4917039.523
 EASTING:
 607010.380

No.	REVISION DESCRIPTION	DATE
1.	SPA - 1ST SUBMISSION	SEPT 4/20
2.	SPA - 2ND SUBMISSION	JAN 13/2

BAYSIDE APARTMENTS
79 COLLIER STREET
CITY OF BARRIE

D	EI	ΓΑ	\prod	S

DESIGN: LCG	FILE:	420373	DWG:	
DRAWN: LCG	DATE:	SEPT 2020		DI
CHECK: NM	SCALE:	1:150		