

Phase Two
Environmental Site
Assessment 220 Bradford Street,
Barrie, Ontario

2020-04-20

Prepared for: Chayell Hotels Ltd.

Cambium Reference No.: 9326-001

CAMBIUM INC. 866.217.7900 cambium-inc.com

Peterborough | Barrie | Oshawa | Kingston

Cambium Ref. No.: 9326-001

Table of Contents

1.0	Executive Summary	1
2.0	Introduction	3
2.1	Site Description	3
2.2	Property Ownership	4
2.3	Current and Proposed Future Uses	5
2.4	Applicable Site Condition Standards	5
3.0	Background Information	9
3.1	Physical Setting	g
3.2	Past Investigations	9
4.0	Scope of the Investigation	14
4.1	Overview of the Site Investigation	14
4.2	Media Investigated	15
4.3	Phase One Conceptual Site Model	15
4.3.1	Site Description	15
4.3.2	Existing Buildings and Structures	16
4.3.3	Water Bodies and Areas of Natural Significance	16
4.3.4	Drinking Water Wells	16
4.3.5	Potentially Contaminating Activities	17
4.3.6	Areas of Potential Environmental Concern	17
4.3.7	Contaminants of Potential Concern	18
4.3.8	Contaminant Distribution and Transport	18
4.3.9	Geological and Hydrogeological Setting	19
4.3.10	Uncertainty or Absence of Information	19
4.4	Deviations from Sampling and Analysis Plan	20
4.5	Impediments	20
5.0	Investigation Method	21

2	വാ	$^{\prime}$	1/	20	

5.1	General	21
5.2	Drilling and Excavating	21
5.3	Soil: Sampling	21
5.4	Field Screening Measurements	22
5.5	Groundwater: Monitoring Well Installation	22
5.6	Groundwater: Field Measurement of Water Quality Parameters	23
5.7	Groundwater: Sampling	23
5.8	Analytical Testing	24
5.9	Residue Management Procedures	25
5.10	Elevation Surveying	25
5.11	Quality Assurance and Quality Control Measures	25
6.0	Review and Evaluation	26
6.1	Geology	26
6.2	Groundwater: Elevations and Flow Direction	26
6.3	Groundwater: Hydraulic Gradients	27
6.4	Fine-Medium Soil Texture	28
6.5	Soil: Field Screening	29
6.6	Soil Quality	29
6.6.1	Volatile Organic Compounds	29
6.6.2	Petroleum Hydrocarbons	29
6.6.3	Polycyclic Aromatic Hydrocarbons	30
6.6.4	Polychlorinated Biphenyls	30
6.6.5	Metals	30
6.6.6	pH	30
6.7	Groundwater Quality	31
6.7.1	Volatile Organic Compounds	31
6.7.2	Petroleum Hydrocarbons	31
6.7.3	Polycyclic Aromatic Hydrocarbons	31
6.7.4	Polychlorinated Biphenyls	32

6.7.5	Metals	32
6.8	Quality Assurance and Quality Control Results	33
5.9	Phase Two Conceptual Site Model	34
5.9.1	APECs, PCAs, and Structures	34
6.9.1.1	PCAs	34
6.9.1.2	Areas of Potential Environmental Concern	35
6.9.1.3	Subsurface Structures and Utilities	36
6.9.1.4	Proposed Structures	36
5.9.2	Physical Setting	36
6.9.2.1	Stratigraphy	36
6.9.2.2	Hydrogeology	37
6.9.2.2	.1 Groundwater Elevations and Flow Direction	37
6.9.2.2	.2 Soil Texture	38
6.9.2.2	.3 Hydraulic Gradients	38
5.9.3	Applicable Site Condition Standards	39
5.9.4	Source Water Protection	42
3.9.5	Soil Quality	42
5.9.6	Groundwater Quality	43
5.10	Human Health and Ecological CSM	43
5.10.1	Human Health Exposure Model	44
5.10.2	Ecological Exposure Model	44
7.0	Conclusions	. 46
7.1	Signatures	46
8.0	References	47

List of Appended Figures

igure 1	Site Location Map
igure 2	Proposed Land Use
Figure 3	Conceptual Site Model – Phase One Study Area
igure 4	Conceptual Site Model – Phase One Property
Figure 5	Sample Location Plan
Figure 6	Groundwater Elevations – Shallow Wells – October 3, 2019
igure 7	Groundwater Elevations – Deep Wells – February 13, 2020
Figure 8	Cross-Section Locations
Figure 9	Soil Results – VOCs
Figure 10A	Soil Results – PHCs
Figure 10B	Cross-Section A-A' & B-B' Along Gradient PHCs in Soil
Figure 10C	Cross-Section C-C' & D-D' Perpendicular to Gradient PHCs in Soil
igure 11	Soil Results – PAHs
igure 12	Soil Results – PCBs
Figure 13	Soil Results – Metals
igure 14A	Groundwater Results – VOCs
Figure 14B	Cross-Section A-A' & B-B' Along Gradient VOCs in Groundwater
Figure 14C	Cross-Section C-C' & D-D' Perpendicular to Gradient VOCs in Groundwater
Figure 15	Groundwater Results – PHCs
Figure 16	Groundwater Results – PAHs
igure 17	Groundwater Results – PCBs
Figure 18	Groundwater Results – Metals
Figure 19	Human Health Conceptual Site Model – Without Risk Management Measures
igure 20	Human Health Conceptual Site Model – With Risk Management Measures
Figure 21	Ecological Conceptual Site Model – Without Risk Management Measures
igure 22	Ecological Conceptual Site Model – With Risk Management Measures

Cambium Ref. No.: 9326-001

List of Appended Tables

Table 1	Potentially Contaminating Activities
Table 2	Areas of Potential Environmental Concern
Table 3	Summary of Analysis
Table 4	Monitoring Well Summary
Table 5	Summary of Soil Quality
Γable 6	Summary of Groundwater Quality
Γable 7	Summary of Groundwater Quality - Volatiles
Table 8	Summary of Soil Vapour Quality

List of Appendices

Appendix A Plan of Survey

Appendix B Grain Size Distribution Results

Appendix C Slug Test Analysis Reports

Appendix D Sampling and Analysis Plan

Appendix E Borehole Logs

Appendix F Laboratory Certificates of Analysis

Appendix G Source Protection Mapping

1.0 Executive Summary

Chayell Hotels Ltd. (Client) retained Cambium Inc. (Cambium) to complete a Phase Two Environmental Site Assessment (ESA) of the property at 220 Bradford Street in Barrie, Ontario (Site or Phase Two Property). The Phase Two ESA will be used to support filing a Record of Site Condition (RSC) under Section 168.3.1 of Part XV.1 of the *Environmental Protection Act*; therefore, it was completed to meet the requirements of Ontario Regulation (O.Reg.) 153/04.

The roughly 0.35 ha Site is on the west side of Bradford Street and extends to Sanford Street. The Site is currently vacant and undeveloped but was formerly used for residential and commercial purposes.

Twenty-two potentially contaminating activities (PCAs) were identified within the Phase One Study Area. These PCAs contributed to five areas of potential environmental concern (APECs).

To investigate the APECs, the following investigations have been completed by Cambium and others.

- Advanced 25 boreholes to depths ranging from 1.2 m to 10.7 m below ground surface (bgs)
 with 18 monitoring wells
- Soil samples were analyzed for volatile organic compounds (VOCs), petroleum hydrocarbons (PHC) F1-F4, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals, and inorganics.
- Groundwater samples were analyzed for VOCs, PHC F1-F4, PAHs, PCBs, and metals.

The investigation results identified the following:

- PHC F4 impacts in soil in the central portion of the Site
- VOC impacts in shallow groundwater across the south and east portions of the Site, from property line to property line

 VOC impacts in deeper groundwater are present across the Site and are part of the regional TCE plume north/northwest of the Site

2.0 Introduction

The Client retained Cambium to complete a Phase Two ESA at 220 Bradford Street in Barrie, Ontario.

The proposed future use of the Site is residential. Based on a review of historical property use, a change in land use to a more sensitive use will occur on the Site. This part of the Site is subject to Section 168.3.1 of Part XV.1 of the Environmental Protection Act, which requires a RSC to be filed in the Environmental Site Registry when a change to a more sensitive land use occurs.

It is the Client's intention the file an RSC for the entire Phase Two Property; therefore, this Phase Two ESA was prepared consistent with O.Reg. 153/04. The report headings, format, and content follow the requirements of O.Reg. 153/04. Additional sections have been added for the purpose of improving report clarity and completeness.

Site description, ownership, future land use, and applicable soil and groundwater standards are discussed in the following sub-sections.

2.1 Site Description

The Site is on the west side of Bradford Street and extends to Sanford Street in Barrie, Ontario in the County of Simcoe. Site information is summarized below. The Phase Two Property location is shown on Figure 1. A plan of survey is provided in Appendix A.

Property use surrounding the Site is as follows.

North: Commercial (The Speech Clinic – 218 Bradford Street) and residential (212 and 214 Bradford Street)

South: Commercial (Simcoe County Logistic Support Unit - 224 Bradford Street) and parkland (240 Bradford Street)

East: Bradford Street then industrial (249 Bradford Street - City of Barrie Wastewater Treatment Facility)

West: Residential (149 to 163 Sanford Street)

Site Identification Information

Municipal Address	220 Bradford Street, Barrie, Ontario
Historical Land Use	Commercial and Residential
Current Land Use	Vacant former commercial and residential
Future Land Use	Residential
PIN	58794-0126
Roll No.	434204000108100
Universal Transverse Mercator Coordinates*	Zone 17T 604130 m E, 4914439 m N
Legal Description	Part Parklot 15 West Side Bradford Street, Lot 16 West Side Bradford Street, Lot 17 West Side Bradford Street, Lot 18 West Side Bradford Street, Plan 15 Barrie, Part 4 of Plan 51R-7586; Barrie
Site Area	≈0.35 ha (0.85 acres)

^{*} Coordinates were obtained from Google Earth Pro.

2.2 Property Ownership

Property owner and contact information is provided below.

Property Owner	Contact Information	
Chayell Palm Canada Ltd.	Ali Rehman	
7815 Kent Boulevard	Vice President/COO	
Brockville, Ontario	Phone: (613) 484-6061	
K6V 6N7	Email: ali@hiebrockville.com	

Cambium Ref. No.: 9326-001

2.3 Current and Proposed Future Uses

The Site is currently vacant and undeveloped. Around 1945, a dwelling was constructed on the Site and in approximately 1949, a commercial building was constructed. The Site was used for residential and commercial purposes until 2012 when the buildings were demolished. From 1949 to 2012, commercial occupants included an autobody/auto repair shop and a car dealership.

Cambium understands that Chayell Hotels intends to redevelop the entire Site for residential use, which constitutes a change to a more sensitive land use for the former commercial portion of the Site. A proposed site plan is provided as Figure 2.

2.4 Applicable Site Condition Standards

O.Reg. 153/04, Records of Site Condition – Part XV.1 under the *Environmental Protection Act* specifies acceptable limits of contaminants in soil, groundwater, and sediment in the Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011). These standards are presented in tables (Tables 1 to 9) defined by groundwater use (i.e., potable or non-potable) and type of remediation (full depth or stratified). Each table presents chemical-specific site condition standards (SCS) based on property use (agricultural, residential/parkland/ institutional, or industrial/community/ commercial), grain-texture (medium/fine-textured or coarse-textured).

Selection of the applicable SCS considered the following characteristics specific to the Site:

- Intended property use
- Soil characteristics
- Environmental sensitivity, including:
 - Soil pH
 - Proximity to areas of natural significance
- Proximity of water bodies
- Groundwater use

Intended Property-Use

The proposed future use of the Site is residential. Therefore, the applicable land use category was residential/parkland/institutional (RPI).

Soil Characteristics

Investigations completed at the Site have identified the overburden stratigraphic profile as discontinuous fill (sand and gravel, silty sand, and sand) overlaying layers of sand, silt, and clay to the maximum depth investigated 10.7 mbgs.

Based on grain size distribution testing completed by Pinchin (2018) and grain size distribution and hydraulic conductivity testing by Cambium, coarse-textured soil was considered applicable. Grain size analysis results are included in Appendix B. Hydraulic conductivity test results are included in Appendix C.

Environmentally Sensitive Areas

The O.Reg.153/04 generic SCS cannot be used at properties that are within, include, or are proximate (i.e., within 30 m) to an area of natural significance, when soil pH is not within the acceptable ranges for surface (5 to 9) and/or sub-surface soils (5 to 11), or if a Qualified Person (QP) is of the opinion that it is appropriate to apply Section 41 of the regulation.

Areas of Natural and Scientific Interest

Based on a site sensitivity search completed as per the requirements of Section 41 of O.Reg.153/04, no areas of natural significance as defined by the regulation, were identified on or within 30 m of the Site. Therefore, the Site was not considered an environmentally sensitive area and the generic SCS were applicable.

Soil pH

Six soil samples were submitted for laboratory analysis by THEM (2016a), Pinchin (2018), and Cambium to assess soil pH at the Site. Soil pH results were within the acceptable ranges for surface and sub-surface soil.

Qualified Person Opinion

Geologic and hydrogeological parameters that influence the derivation of the O.Reg.153/04 generic SCS were compared to site-specific data and the generic values used in the derivation

of the SCS. The site-specific parameters were consistent with the defaults; therefore, it was the QP's opinion that the generic SCS were applicable.

Proximity of Water Bodies and Shallow Bedrock

SCS are defined for properties that are within 30 m of a water body or at which bedrock is less than 2 mbgs.

Hotchkiss Creek ranges from 20 m to 50 m south of the Site; therefore, the Site is within 30 m of a water body, as defined in O.Reg. 153/04. The generic SCS established for properties within 30 m of a water body (i.e., Tables 8 or 9) were considered applicable for the Site.

Subsurface investigations completed at the Site by THEM (2016a), Pinchin (2018), and Cambium did not encounter bedrock to a maximum depth of 10.7 mbgs. Therefore, the generic SCS established for properties with shallow bedrock (i.e., Tables 6 and 7) were not applicable.

Shallow Groundwater and Groundwater Use

Groundwater levels measured between 2016 and 2019 ranged from 0.81 to 3.91 mbgs. Generally, the depth to groundwater is less than 2 mbgs on the south side of the Site and greater than 2 mbgs on the north side of the Site. Therefore, the generic SCS established for properties with shallow bedrock (i.e., Tables 6 and 7) was deemed applicable when evaluating groundwater quality for purposes of risk assessment.

For groundwater at a property to be considered non-potable, all properties within 250 m of the property must be supplied by a municipal drinking water system that does not obtain its water from a groundwater source.

The City of Barrie obtains drinking water from surface water and groundwater wells; therefore, the generic SCS established for properties in a potable groundwater condition were considered applicable for the Site.

Applicable Generic Site Condition Standards

Based on the foregoing, Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition, were considered appropriate for use at the Site.

Cambium Ref. No.: 9326-001

2020-04-20

For evaluation of groundwater quality for purposes of risk assessment, Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition, were considered appropriate to account for shallow groundwater conditions on the south side of the Site.

Cambium Ref. No.: 9326-001

3.0 Background Information

3.1 Physical Setting

The Site slopes gently toward the southeast. Site elevation generally ranges from 222 to 224 m above sea level (Simcoe, 2019). A roughly 2 m embankment, reported to be fill imported to the Site in 2012, is present along the retaining wall on the northeast property boundary. The topography increases regionally to the west (Simcoe, 2019).

The Site is within the Simcoe Lowlands physiographic region (Chapman & Putnam, 2007), characterized by level plains composed of sand, silt and clay. In the general area, the overburden is coarse-textured glaciolacustrine deposits of sand and gravel with minor silt and clay (OGS, 2010). The soils overlie Verulam formation limestone and shale (OGS, 2007). A search of the Ministry Water Well Information System by ERIS indicated that the stratigraphy in the Phase One Study Area generally consisted of sand, silty sand, and silt to the maximum depth of 14.3 mbgs. Clay was encountered around 9 to 11 mbgs in some locations and peat was encountered around to Hotchkiss Creek. Bedrock was not encountered.

No areas of natural significance, as defined by O.Reg. 153/04, were identified on or within 30 m of the Site.

3.2 Past Investigations

Relevant information from the available reports is summarized below by report. In addition, Cambium conducted a Phase One ESA at the Site (Cambium, 2019). Information from the Phase One ESA is incorporated throughout this report.

Phase I ESA (Skelton, Brumwell & Associates, 2012)

Skelton Brumwell indicated that the Phase I ESA was completed in accordance with the procedures outlined in O.Reg. 153/04. The Phase I ESA included a review of readily available historical and regulatory records, a site reconnaissance, interviews, and an evaluation of information and reporting.

A review of the Ministry of Natural Resources Ontario Base Map (OBM) based on 1983 aerial imagery indicates the property is relatively flat at an elevation of 225 m above sea level.

Skelton Brumwell interviewed Dennis Tascona, a representative of the owner of the propertry, and Les Babinchak, a former tenant at the site. Mr. Tascona stated that the property was used as a used car dealership and autobody shop from 1949 to 2012. His father owned the car dealership and autobody shop and in 1989, a portion of the building was rented to Mr. Babinchak. Mr. Babinchak owned Harris Auto Electric and completed repairs of electrical components of automobiles from 1989 to 2012. Any hazardous wastes generated on-site were disposed off-site by Mr. Babinchak or picked up and disposed off-site by Safety Kleen. Mr. Babinchak stated that the shop did not have any ASTs or USTs and he was unaware of why there would be a record in the Retail Fuel Storage Tanks database.

During the site reconnaissance in October 2012, the property was vacant. There was a large amount of fill, generally sand, on the north side of the property to support a concrete block retaining wall. Morris Shelswell & Sons Excavating & Grading Ltd. brought the fill to the property from 66 Lockhart Road in Barrie during the demolition of a former ship/car dealership and residence in 2012. An oil stain was observed on an asphalt surface on the north side of the property. Adjacent to the south of the property were two mechanic shops, A One Automotive Services and Ed's Performance Shop.

Skelton Brumwell recommended that a Phase II ESA be conducted at the property "to determine whether or not any contamination exists on the subject lands".

Phase II ESA (THEM, 2016a)

T. Harris Environmental Management (THEM) completed a Phase II ESA based on the information provided in Skelton Brumwell Phase I ESA. The Phase II ESA included the advancement of 10 boreholes (BH1 to BH10) to depths ranging from 1.2 m to 6.1 m below ground surface (mbgs). Three of the boreholes (BH1, BH2, and BH3) were instrumented with monitoring wells.

Soil samples from nine of the boreholes (BH1 to BH4 and BH6 to BH10) were analyzed for one or more of PHC/BTEX, PAHs, metals, electrical conductivity (EC), sodium adsorption ratio

(SAR), cyanide, and pH to assess the concerns identified by the Phase I ESA. A groundwater sample from each the monitoring wells was analyzed for PHCs, VOCs, PAHs, and metals. The findings of the Phase II ESA (with Cambium commentary in *italics*) indicated the following:

- Soil and groundwater analysis results were compared to the Table 9 Site Condition Standards (SCS) for Use within 30 m of a Water Body in a Non-Potable Groundwater Condition (MOE, 2011) due to the proximity of the property to Hotchkiss Creek.
- The soil profile consisted of granular fill ranging from 0.6 to 1.2 m thick across much of the Site. The fill was underlain by native sand and clayey sand to the maximum depth of the investigation, 6.1 mbgs.
- The depth to groundwater was roughly 1.5 mbgs at all monitoring wells on February 26, 2016, three days after completion of the monitoring wells.
- Soil analysis results met the Table 9 SCS for BTEX, PHCs, PAHs, metals, and inorganics. Concentrations of barium, cobalt, and vanadium exceed the Table 6 SCS applicable at properties with shallow groundwater (<3 mbgs).
- Chlorinated solvents (a subset of VOCs) were present at concentrations greater than the Table 9 SCS in all three monitoring wells.

THEM concluded that VOC impacted groundwater was present at the Site. No recommendations were provided.

Groundwater Sampling & Analysis (THEM, 2016b)

The groundwater sampling and analysis was completed to minimize uncertainty associated with groundwater conditions in existing wells on the property.

Groundwater samples were collected from three existing on-site wells (BH1, BH2, and BH3) and submitted for analysis of VOCs. The findings of the groundwater sampling and analysis indicated the following:

THEM compared the results to the Table 9 SCS.

Cambium Ref. No.: 9326-001

- The depth to groundwater ranged from 1.51 m (BH1) to 2.27 mbgs (BH3) on May 26, 2016 (approximately three months after completion of the wells).
- Chlorinated solvents (cis-1,2-dichloroethylene, trichloroethylene, and vinyl chloride) were present at concentrations greater than the Table 9 SCS in the groundwater samples collected from all three wells.

Phase II ESA (Pinchin, 2018)

The purpose of this Phase II ESA was to further investigate soil and groundwater quality based on the findings of the Phase II ESA completed by THEM. Pinchin indicated that the Phase II ESA was completed in general accordance with the Canadian Standards Association (CSA) Standard Z769-00 (R2013). The Phase II ESA included the advancement of four boreholes (BH101 to BH104) to 6.1 mbgs. All four boreholes were instrumented with monitoring wells.

A soil sample collected at the bottom of each of the boreholes BH101 to BH104 was analyzed for VOCs. One soil sample collected at BH104 was analyzed for PHC/BTEX. Based on review of the borehole logs, the analyzed soil sample for PHC/BTEX was selected for analysis on the basis of field vapor screening results (i.e., samples with highest vapors submitted for analysis). In addition, two borehole soil samples were analyzed for grain size. A groundwater sample from each the new monitoring well and three existing monitoring wells was analyzed for VOCs. The findings of the Phase II ESA indicated the following:

- Pinchin compared the soil and groundwater analysis results to the Table 2 Full Depth Generic SCS in a Potable Ground Water Condition (MOE, 2011) for industrial/commercial/ community land use and coarse-textured soil.
- The soil profile consisted of fill (sand and gravel) to a depth of 0.3 to 0.46 mbgs. The fill was underlain by native sand to silty sand to the maximum depth of the investigation (6.1 mbgs).
- Groundwater levels were measured in the existing monitoring wells and the newly installed monitoring wells. The depth to groundwater ranged from 1.56 m (BH102) to 3.76 mbgs

(BH101) on August 27, 2018 (four days after completion of the wells). Groundwater flow direction was to the east-northeast toward Kempenfelt Bay.

- The overburden soil was coarse-textured.
- Soil analysis results met the Table 2 SCS for BTEX/PHCs and VOCs.
- Chlorinated solvents were present at concentrations greater than the Table 2 SCS in three existing monitoring wells (BH1 to BH3) and two new monitoring wells (BH102 and BH104)
- Non-aqueous phase liquids (NAPL) were not present in the on-site monitoring wells.
- Pinchin concluded that VOC impacted groundwater was present at the Site and recommended that a risk-based approach be completed to assess the human health and ecological risks resulting from the Table 2 SCS exceedances.

4.0 Scope of the Investigation

4.1 Overview of the Site Investigation

The proposed scope of work for the Phase Two ESA was based on the requirements of O.Reg. 153/04 and the findings of the Phase One ESA. The Phase Two ESA investigation included sampling of soil and groundwater. Soil and groundwater samples were submitted to an analytical laboratory accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA). The Phase Two ESA was subject to a Quality Assurance/Quality Control (QA/QC) program, including analysis of blind duplicate soil and groundwater samples and trip blanks as outlined in the Sampling and Analysis Plan (SAP) in Appendix D. The SAP was developed to assess APECs identified by the Phase One ESA and further assess contaminants of concern (COCs) identified during previous subsurface investigations.

Cambium coordinated and provided direction to subcontractors required to complete the work, including utility locators and a licensed well drilling contractor; and retained an accredited laboratory for analysis of soil and groundwater samples. Prior to conducting any field work, Cambium prepared a Site Health and Safety Plan (HASP) tailored to the known and possible contaminants on-site, physical site hazards and the type of work scheduled to be conducted. Included in the HASP was a detailed map showing the transportation route to the nearest hospital, emergency contact numbers, and other pertinent information required for site work on potentially contaminated sites. All persons entering the Site as contractors or otherwise were required to review the document and sign off prior to their admission.

Cambium arranged for underground services to be located and marked by public and private utility companies. Private utility locating company Utility Marx was at the Site on August 21, 2019 and January 27, 2020 to provide clearance for buried services at all proposed borehole locations.

Cambium Ref. No.: 9326-001

4.2 Media Investigated

The Phase Two ESA investigated soil and groundwater quality. As no water bodies exist on the property, surface water and sediment sampling was not applicable. Soil quality at the Site was investigated through dual tube sampling. The drilling method was selected based on sample depth, subsurface conditions, and monitoring well requirements.

Groundwater samples were collected from monitoring wells using low-flow sampling techniques and a peristaltic pump. The low-flow sampling methodology minimizes the velocity of the formation water entering the well screen and reduces the amount of sediment entrained in the collected groundwater samples, as the drawdown is kept to a minimum by adjusting the pumping rate accordingly.

Soil sampling was completed on August 22 and 26, 2019. Groundwater sampling was completed on August 29, September 12, October 10, and October 24, 2019, and February 12, 2020.

4.3 Phase One Conceptual Site Model

The following descriptions and discussion supplement the attached Figure 3 and Figure 4, which comprise the Phase One Conceptual Site Model (CSM). The purpose of the CSM is to assist the QP in illustrating the results of the Phase One ESA and to provide a basis for further work, if required.

4.3.1 Site Description

The Site is on the west side of Bradford Street and extends to Sanford Street in Barrie, Ontario in the County of Simcoe. The legal description of the Site is *Part Parklot 15 West Side Bradford Street, Lot 16 West Side Bradford Street, Lot 17 West Side Bradford Street, Lot 18 West Side Bradford Street, Plan 15 Barrie, Part 4 of Plan 51R-7586; Barrie.* The Property Identification Number (PIN) is 58794-0126 (LT). The Universal Transverse Mercator (UTM) coordinates for the centroid for the Site are Zone 17 T, 604130 m east and 4914439 m north. The roughly 0.35 ha Site is bound by residential and commercial land use to the north,

commercial and parkland land use to the south, Bradford Street to the east, and residential land use to the west.

4.3.2 Existing Buildings and Structures

There is a retaining wall along northeast property boundary. The remainder of the Site is vacant and undeveloped. Historical structures were removed in 2012.

4.3.3 Water Bodies and Areas of Natural Significance

The closest water body is Hotchkiss Creek, which runs roughly parallel to the Site and ranges from 20 m to 50 m south of the Site; therefore, the Site is within 30 m of a water body, as defined in O.Reg. 153/04.

Cambium reviewed the Ministry of Natural Resources and Forestry (MNRF) online Make A Map: Natural Heritage Areas to determine if an area of natural significance, as defined in Section 1 of O.Reg. 153/04, is located in whole or in part within the Phase One Study Area (MNRF, 2019). The search did not identify occurrences of species at risk on the Site; therefore, the Site is not considered an area of natural significance.

4.3.4 Drinking Water Wells

The Phase One Study Area is municipally serviced for drinking water. No drinking water wells were observed on the Site and no records of drinking water wells at the Site were identified by the records review.

A search of the Ministry Water Well Information System by ERIS identified three records for on-site monitoring wells and 19 records for water wells within the Phase One Study Area ranging from about 15 m to 200 m from the Site. The wells were identified as observation wells, monitoring and test holes, or dewatering wells. Some records were for the abandonment of unspecified wells.

Based on the records review, site reconnaissance, and interviews, 22 PCAs (three on-site and 19 off-site), listed below, were identified within the Phase One Study Area. Refer to Table 1 for PCA details and Figure 3 for PCA locations.

PCA #1	Former on-site commercial autobody shop
PCA #2	On-site fill of unknown quality adjacent to the retaining wall
PCA #3	On-site contaminants in groundwater
PCA #4	Former gasoline service station at 224 Bradford Street
PCA #5	Former automotive repair garage at 224 Bradford Street
PCA #6	Former automotive repair garage at 240 Bradford Street
PCA #7	Former gasoline service station off-site to the southeast
PCA #8	Former gasoline service station at 252 Bradford Street
PCA #9	Gasoline UST at Dangerfield Motors formerly off-site to the east
PCA #10	Dangerfield Motors formerly off-site to the east
PCA #11	Barrie sewage treatment plant off-site to the east
PCA #12	Automotive repair garage at 84 Tiffin Street
PCA #13	Former automotive repair garage at 94 Tiffin Street
PCA #14	Former bulk fuel plant at 91 Tiffin Street
PCA #15	Former gasoline service station at 254 Bradford Street
PCA #16	Former automotive repair garage at 212 Bradford Street
PCA #17	Motor oil spill on Bradford Street, north of Tiffin Street
PCA #18	Barrie Public Utilities Commission at 184 Innisfil Street
PCA #19	Historical landfill northeast of Brock and Sanford Street
PCA #20	Historical landfill northwest of Brock and Sanford Street
PCA #21	Former private service station at 85 Brock Street
PCA #22	Regional TCE plume north of the Site

4.3.6 Areas of Potential Environmental Concern

As required by O.Reg. 153/04, all on-site PCAs resulted in an APEC. Based on a review of potential to result in contamination at the Site, four of the off-site PCAs contributed to an

APEC. APECs are listed below. Refer to Table 2 for APEC details and Figure 4 for APEC locations.

- APEC 1 Footprint of the former autobody shop (PCA 10 Commercial Autobody Shops)
- APEC 2 Embankment along the northeast side of the Site (PCA 30 Importation of Fill Material of Unknown Quality)
- APEC 3 South portion of the Site (Unidentified PCA Previously identified VOC and metal contaminants)
- APEC 4 Southeast property boundary due to historical off-site activities to the southeast (PCA 27 Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles and PCA 28 Gasoline and Associated Products Storage in Fixed Tanks)
- APEC 5 Entire Site (Unidentified PCA Regional TCE plume north of the Site)

4.3.7 Contaminants of Potential Concern

COPCs were identified for each PCA contributing to an APEC. The COPCs specific to each APEC are summarized in Table 2. VOCs, PHCs, PAHs, PCBs, and metals were identified as COPCs related to the current and historical on and off-site PCAs.

4.3.8 Contaminant Distribution and Transport

No underground utilities were identified on, in, or under the Site. Contaminant distribution and transport may be influenced by the presence of utility trenches that were historically present on the Site. Water level data reviewed for the Site indicates that the water table is within sand, which would likely have similar properties as trench backfill. Therefore it is considered unlikely that preferential migration of contaminants would occur via historical utility trenches.

No specific climatic or meteorological conditions were observed that may influence the distribution or migration of contaminants.

Cambium Ref. No.: 9326-001

4.3.9 Geological and Hydrogeological Setting

The Site slopes gently towards the southeast. Site elevation generally ranges from 222 to 224 m above sea level (Simcoe, 2019). A roughly 2 m embankment, reported to be fill imported to the Site in 2012, is present along the retaining wall on the northeast property boundary. The topography increases regionally to the west (Simcoe, 2019).

The Site is within the Simcoe Lowlands physiographic region (Chapman & Putnam, 2007), characterized by level plains composed of sand, silt and clay. In the general area, the overburden is coarse-textured glaciolacustrine deposits of sand and gravel with minor silt and clay (OGS, 2010). The soils overlie Verulam formation limestone and shale (OGS, 2007). A search of the Ministry Water Well Information System by ERIS indicated that the stratigraphy in the Phase One Study Area generally consisted of sand, silty sand, and silt to the maximum depth of 14.3 mbgs. Clay was encountered around 9 to 11 mbgs in some locations and peat was encountered around to Hotchkiss Creek. Bedrock was not encountered.

Subsurface investigations completed by THEM in 2016 and Pinchin in 2018 identified the soil profile as fill ranging from 0.3 to 1.2 m thick underlain by native sand, silty sand and clayey sand to the maximum depth of the investigations, 6.1 mbgs.

The depth to groundwater on February 26, 2016 was roughly 1.5 mbgs in the three monitoring wells installed on February 23, 2016. On August 27, 2018, the depth to groundwater ranged from 1.56 m to 3.76 mbgs in the three monitoring wells installed in 2016 and the four monitoring wells installed on August 23, 2018. Based on the water levels collected on August 27, 2018, the groundwater flow direction was northeasterly toward Kempenfelt Bay.

4.3.10 Uncertainty or Absence of Information

All aspects of the Phase One ESA were conducted consistent with O.Reg. 153/04, and as such, the Site was investigated thoroughly to the best of the assessor's abilities. As access to the entire Site was possible, and adequate historical information was available through the interviewee's and records review, uncertainty or absence of information is not expected. While the placement of historical off-site structures and PCAs based on FIPs may be of low

accuracy, investigations completed during the Phase Two ESA can account for this uncertainty with increased investigation and sample locations.

4.4 Deviations from Sampling and Analysis Plan

There were no deviations from the Sampling and Analysis Plan.

4.5 Impediments

No physical impediments or denial of access were encountered during the Phase Two ESA investigation.

Cambium Ref. No.: 9326-001

5.0 Investigation Method

5.1 General

The following sections provide a description of the subsurface investigation conducted from August 22, 2019 to February 12, 2020. Soil and groundwater samples were analyzed for the COPCs: VOCs, PHC F1-F4, PAHs, PCBs, and/or metals.

As previously referenced in Section 2.4, the applicable SCS for the evaluation of soil and groundwater quality at the Site is Table 8 (Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Groundwater Condition). Residential property use and coarse grained soils were selected to determine concentration exceedances for the analyzed parameters.

5.2 Drilling and Excavating

Drilling was completed by Strata Drilling Group (Strata) and Walker Drilling Ltd. (Walker), qualified and licensed well contractors, consistent with R.R.O. Regulation 903.

On August 22 and 26, 2019, and January 29, 2020, Strata advanced 10 boreholes (BH201 to BH208 and BH401 and BH402) to a maximum depth of 10.7 mbgs, using a track-mounted Geoprobe 7822DT drilling rig. On October 21, 2019, Walker advanced four boreholes (BH301 to BH304) to 4.6 mbgs, using a track-mounted D52 drilling rig. BH201 to BH208, BH301, BH401, and BH402 were instrumented with groundwater monitoring wells. The drilling locations, except BH302 to BH304, which were drilled to provide geotechnical data, were selected to assess APECs identified in the Phase One ESA (Cambium, 2019). The borehole and monitoring well locations are shown on Figure 5.

5.3 Soil: Sampling

During the drilling program, soil samples were collected continuously or every 0.76 to 1.5 m. No soil samples were collected from BH301, BH401 and BH402 for the Phase Two ESA

Cambium Ref. No.: 9326-001

2020-04-20

investigation. Each sample was handled solely by the Cambium field technician using dedicated nitrile gloves to reduce the potential for cross-contamination.

Soil samples were logged for soil type, moisture content, presence of odour, and signs of impacts such as staining, consistent with standard geotechnical and environmental soil descriptions and nomenclature. A portion of each soil sample was placed in a dedicated polyethylene sample bag and field screened using an RKI Eagle 2 portable gas detector for concentrations of combustible soil vapour (CSV) and organic vapour (OV), calibrated to hexane and isobutylene, respectively. The field screening observations were used to determine which samples to submit for laboratory analysis.

Samples were collected consistent with the Guidance on Sampling and Analytical Methods for use at Contaminated Sites in Ontario (MOE, 1996) and O.Reg. 153/04. Samples to be submitted for analysis of VOCs and/or PHC F1 were collected using a Terra Core sampler and methanol preserved vial.

5.4 Field Screening Measurements

Olfactory and visual observations of the soil samples were documented immediately upon extraction for soil characteristics and potential indicators of environmental contamination. The samples placed in plastic sample bags and sealed, were used to determine if any vapours were present in the soil headspace. Each sample was measured for concentrations of CSV and OV using an Eagle 2 portable gas detector, calibrated to hexane and isobutylene, respectively. After agitating the sample, the peak reading was recorded by inserting the meter probe into the sample bag. Refer to the borehole logs in Appendix E for the recorded vapour readings.

5.5 Groundwater: Monitoring Well Installation

Monitoring wells were completed in the boreholes BH201 to BH208, BH301, BH401, and BH402. The monitoring wells were constructed using 50 mm or 25 mm inner diameter, flush threaded PVC well pipe with a 1.5 or 3.0 m section of screen at the base of the well. Washed silica sand filter pack was brought to 0.3 metres above the top of the screens. The wells were

completed with bentonite (seal) to at least 0.3 m below grade. The monitoring wells were completed with monument or flush-mount protective covers.

Following installation, monitoring wells were developed by purging ten well volumes of groundwater or purging dry three times. Groundwater was purged to remove sediment from the well, stabilize and grade the filter pack, improve connectivity between the well and the formation, and restore groundwater that may have been disturbed during the drilling process to ensure the samples are representative of true formation water.

Refer to the borehole logs in Appendix E for details regarding the monitoring well installation materials.

5.6 Groundwater: Field Measurement of Water Quality Parameters

Groundwater samples collected for analysis were field tested for pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential (ORP), using specific field parameter meters.

5.7 Groundwater: Sampling

As per O.Reg. 153/04, all groundwater sampling was conducted consistent with the regulation by or under the supervision of a QP.

On August 29, 2019, Cambium staff completed groundwater sampling of 11 monitoring wells (BH201 to BH208, BH1, BH2, and BH102). On September 12, 2019, Cambium resampled BH201 and BH208 for select parameters. On October 10, 2019, Cambium resampled BH2 and sampled BH102 for metals. On October 24, 2019, Cambium sampled BH301 and on February 12, 2020, Cambium sampled BH401 and BH402.

Prior to all sampling events, the static groundwater elevation was collected at each of the monitoring wells, using an interface probe, which can accurately measure the depth to groundwater and the thickness of non-aqueous phase liquids (DNAPL & LNAPL) that may be present in groundwater monitoring wells.

Cambium Ref. No.: 9326-001

Prior to sampling monitoring wells installed by THEM in 2016 (BH1 and BH2) and Pinchin in 2018 (BH102), a minimum of three well volumes of groundwater were purged from to remove stagnant water and to ensure the samples are representative of true formation water.

Groundwater samples were collected using low-flow sampling techniques and a peristaltic pump, with dedicated tubing installed in each of the monitoring wells. Low-flow sampling reduces the amount of sediment entrained in the collected groundwater samples, as agitation of the water column is minimized by lowering the pumping rate and limiting the movement of the tubing in the water column. Prior to sample collection, each monitoring well was purged until field-measured parameters (pH, temperature, conductivity, dissolved oxygen, and oxidation/reduction potential) had stabilized, to ensure samples were representative of the surrounding groundwater aquifer. Groundwater samples submitted for analysis of metals were field filtered.

Technicians were nitrile sample gloves while collecting the groundwater samples and replaced the glove set between each sample location.

5.8 Analytical Testing

All samples submitted for chemical analysis were placed in a cooler and kept at less than 10°C for transport to Caduceon in Barrie, Ontario.

Soil and groundwater samples, including duplicate samples, were submitted for analysis of the following parameters: PHCs, VOCs, PAHs, metals, PCBs, and/or pH. A summary of the samples submitted for analysis is provided in Table 3. Additionally, trip blanks were submitted for analysis of VOCs with each submission of groundwater samples collected for VOC analysis.

The analysis results are discussed in Section 6.0. Copies of the laboratory Certificates of Analysis as received from Caduceon are included in Appendix F.

5.9 Residue Management Procedures

Soil cuttings from the drilling program and purged groundwater were stored in steel drums on the Site.

5.10 Elevation Surveying

On September 3 and October 23, 2019, and March 13, 2020, Cambium surveyed the location and elevation of monitoring wells using a Topcon RTK enabled HiPer II GPS system with an FC-25 field controller. Monitoring wells surveyed on October 23, 2019 and March 13, 2020, were surveyed relative to the known elevation of a monitoring well previously surveyed. The surveyed elevations, along with groundwater measurements, were used to determine the direction of groundwater flow at the Site. A summary of the monitoring well elevation data is provided in Table 4.

5.11 Quality Assurance and Quality Control Measures

As part of the QA/QC program, blind duplicate soil and groundwater samples were submitted in conjunction with the original sample for comparison purposes, at a minimum rate of one duplicate sample for every 10 samples submitted. Blind duplicate samples were collected at the same time as the original sample and placed into a separate container; split sampling methodology was used to ensure that the sampling was completed in exactly the same way for both original and duplicate samples. Refer to Section 6.8 for the results of the QA/QC program.

Trip blanks were prepared by Caduceon and was submitted for analysis of VOCs together with the groundwater samples submitted on August 29, September 12, and October 24, 2019, and February 13, 2020. A trip blank is a sample of laboratory grade water that has negligible or immeasurable amounts of the substance of interest, and is transported to and from the sampling location, and carried through the entire sampling and analytical process.

All equipment and tools used to obtain soil samples were cleaned with Alconox[©] and distilled water before the collection of each sample. Technicians wore dedicated nitrile gloves which were replaced with each sample.

6.0 Review and Evaluation

6.1 Geology

The physiography and geology of the Site has been discussed previously in Section 3.1. Investigations completed at the Site have identified the overburden stratigraphic profile as discontinuous fill (sand and gravel, silty sand, and sand) overlaying layers of sand, silt, and clay to the maximum depth investigated 10.7 mbgs.

Bedrock was not encountered during subsurface investigations. A review of Ministry water well records within 300 m of the Site (Ministry, 2019) indicated that bedrock was not encountered to the maximum depth of 93.3 mbgs.

6.2 Groundwater: Elevations and Flow Direction

Water level data was collected from six existing monitoring wells installed in 2016 by THEM and 2018 by Pinchin, and from the 11 monitoring wells installed in 2019 and 2020 by Cambium. To evaluate groundwater flow direction and hydrogeological characteristics, the monitoring wells were classified as shallow or deep based on installation depth of the screen.

Shallow Wells: BH1, BH2, BH3, BH101, BH102, BH103, BH104, BH201, BH202, BH203, BH204, BH205, BH206, BH207, BH301

Deep Wells: BH208, BH401, BH402

Water level data was available for select wells for February 26 and May 26, 2016; August 24 and 27, 2018; August 29, October 3, November 19, and December 10, 2019; and January 10, February 13, March 11, and April 8, 2020. Water level data is provided in Table 4. Minimum, maximum, and average depths to the water table are summarized below.

	Shallow Wells	Deep Wells
Minimum (mbgs)	0.51	0.45
Maximum (mbgs)	3.79	3.97
Average (mbgs)	2.16	1.41

Cambium Ref. No.: 9326-001

The water level (WL) data was used to calculate groundwater elevations. Elevation data is summarized below. Groundwater elevations (GWE) were calculated as follows.

 $GWE = Top \ of \ Casing \ Elevation - WL \ Depth \ below \ Top \ of \ Casing$

Summary of Groundwater Elevation Data

	Shallow	Deep
Highest (masl)	222.32	222.30
Lowest (masl)	220.29	220.62
Average (masl)	221.22	221.71

masl – metres above sea level

Pinchin (Pinchin) indicated that the shallow groundwater flow was towards the east-northeast on August 27, 2018. Groundwater levels on August 27, 2018 ranged from 1.56 to 3.76 mbgs.

Elevation data for 2016, 2018, 2019, and 2020, indicates the shallow groundwater is easterly with temporal variations to the northeast and southeast. April 2020 elevation data was used to generate the flow direction figures for shallow groundwater (Figure 6) and deep groundwater (Figure 7). Shallow groundwater flow beneath the Site was easterly and deep groundwater flow beneath the Site was northeasterly toward Kempenfelt Bay in April 2020.

6.3 Groundwater: Hydraulic Gradients

The average horizontal hydraulic gradient in the shallow groundwater in October 2019, and April 2020 was 0.01 m/m.

Cambium conducted rising and falling head slug tests at three shallow monitoring wells. The data generated was processed using AquiferTest Pro ™ software and is summarized below. Slug test analysis reports are presented in Appendix B.

The well screens only partially penetrated the aquifer, therefore the rising head slug tests (slug out) was considered more representative of aquifer conditions. The hydraulic conductivity varied from 7.72×10^{-5} m/s to 1.00×10^{-4} m/s. The results were considered representative of the sand layer within which the wells were screened and similar to results outlined in literature (Fetter, 2001; J.P.Powers, 2007).

Cambium Ref. No.: 9326-001

Hydraulic Conductivity Results (m/s)

Test #	BH202	BH204	BH207
	Slug Out	Slug Out	Slug Out
Slug Test 1	8.65 x 10 ⁻⁵	2.53 x 10 ⁻⁴	1.01 x 10 ⁻⁴
Slug Test 2	7.72 x 10 ⁻⁵	2.67 x 10 ⁻⁴	1.00 x 10 ⁻⁴
Slug Test 3	8.46 x 10 ⁻⁵	2.82 x 10 ⁻⁴	1.15 x 10 ⁻⁴
Slug Test 4	8.28 x 10 ⁻⁵	2.83 x 10 ⁻⁴	1.10 x 10 ⁻⁴

Assuming a porosity range of 20% to 25%, hydraulic gradient of 0.01, and a geometric mean hydraulic conductivity of 1.3×10^{-4} , the average linear shallow groundwater flow velocity ranges from 164 to 205 m per year. The actual velocity is likely significantly lower due to tortuosity.

The horizontal hydraulic gradient for the deeper groundwater in April 2020 was 0.01 m/m. Vertical hydraulic gradients were calculated using April 2020 water level data for clustered monitoring wells BH101/BH402, BH104/BH401, and BH1/BH208. The vertical gradient was 0.10 at BH101/BH402, 0.15 at BH104/BH401, and 0.19 at BH1/BH208. The gradient was upward at all three well clusters.

6.4 Fine-Medium Soil Texture

Pinchin (2018) reported grain size results for two soil samples collected from 3.8 to 4.6 mbgs. Cambium completed grain size distribution analyses on four samples of the native soil as summarized below. The grain size distribution results are provided in Appendix B. Based on grain size distribution testing, more than one third of the soil at the Site, measured by volume, is coarse textured.

Particle Size Distribution Results

Borehole	Depth (mbgs)	Material	% Gravel	% Sand	% Silt	% Clay
BH301-19-SS3	1.5 - 2.0	Sand some Gravel trace Silt trace Clay	10	83	5	2
BH302-19-SS20	25.9 – 26.4	Silt trace Sand trace Clay	0	7	88	5
BH303-19-SS1	0 – 0.6	Sand some Silt trace Gravel trace Clay	5	77	13	4
BH304-19-SS9	9.5 – 9.6	Silty sand trace Gravel trace Clay	1	67	25	7

6.5 Soil: Field Screening

A portion of each soil sample collected from the boreholes was field screened. No soil samples were collected from BH301, BH401 and BH402 for the Phase Two ESA investigation. Refer to the detailed borehole logs included with this report as Appendix E for the results of field soil screening. Soil samples submitted for analysis can be found in Table 3.

6.6 Soil Quality

The submission and analysis of soil samples obtained during the subsurface investigation was discussed in Section 5.8. Cambium submitted soil samples for analysis of: VOCs, PHC F1-F4, PAHs, PCBs, metals, and/or pH. A complete summary of analysis is included in Table 5 and Laboratory Certificates of Analysis are included in Appendix F.

6.6.1 Volatile Organic Compounds

Cambium submitted seven soil samples, including one duplicate sample, for analysis of VOCs. There were no exceedances of the Table 8 SCS.

Four soil samples collected in 2018 (Pinchin) were submitted for analysis of VOCs and six soil samples collected in 2016 (THEM) were submitted for analysis of benzene, toluene, ethylbenzene, and xylenes (BTEX). There were no exceedances of the Table 8 SCS.

6.6.2 Petroleum Hydrocarbons

Cambium submitted eight soil samples, including one duplicate sample, for analysis of PHC F1-F4. The concentration of PHC F4 exceeded the Table 8 SCS in one soil sample collected at BH201 3.0-3.7 m. The remaining results met the Table 8 SCS.

Six soil samples collected in 2016 (THEM) and one soil sample collected in 2018 (Pinchin) were submitted for analysis of PHC F1-F4. There were no exceedances of the Table 8 SCS.

Refer to Figure 10 for the location of the impact, and Figure 11 and Figure 12 for the vertical extent of the PHC F4 impact.

6.6.3 Polycyclic Aromatic Hydrocarbons

Cambium submitted five soil samples, including one duplicate sample, for analysis of PAHs. There were no exceedances of the Table 8 SCS.

Two soil samples collected in 2016 (THEM) were submitted for analysis of PAHs. There were no exceedances of the Table 8 SCS.

6.6.4 Polychlorinated Biphenyls

Cambium submitted two soil samples, including one duplicate sample, for analysis of PCBs. There were no exceedances of the Table 8 SCS.

6.6.5 Metals

Cambium submitted six soil samples, including one duplicate sample, for analysis of metals. There were no exceedances of the Table 8 SCS.

Two soil samples collected in 2016 (THEM) were submitted for analysis of metals. There were no exceedances of the Table 8 SCS.

6.6.6 pH

Cambium submitted 2 soil samples, one surface soil (<1.5 mbgs) and one subsurface (>1.5 mbgs) to assess soil pH at the Site. Additionally, four soil samples were submitted for pH analysis by THEM (2016a) and Pinchin (2018) to assess soil pH at the Site.

Soil pH results were within the acceptable ranges for surface (5-9) and sub-surface soil (5-11).

Cambium Ref. No.: 9326-001

6.7 Groundwater Quality

The submission and analysis of groundwater samples obtained during the subsurface investigation was discussed in Section 5.8. Cambium submitted groundwater samples for analysis of: VOCs, PHC F1-F4, PAHs, PCBs, and/or metals. A complete summary of analysis is included in Table 6 and a summary of VOC concentrations in groundwater compared to Table 6 SCS is included in Table 7. Laboratory Certificates of Analysis are included in Appendix F.

6.7.1 Volatile Organic Compounds

Cambium submitted 17 groundwater samples, including 3 duplicate samples, for analysis of VOCs. Additionally, Cambium submitted two groundwater samples, including one duplicate sample, for analysis of BTEX.

Six groundwater samples collected in 2016 (THEM) and seven groundwater samples collected in 2018 (Pinchin) were submitted for analysis of VOCs.

VOCs impacts in shallow groundwater are present across the south and east sides of the Site and VOC impacts in deeper groundwater are present across the entire Site. The lateral distribution of VOC impacts is shown on Figure 16. The vertical extent of VOC impacts is shown on Figure 17 and Figure 18.

6.7.2 Petroleum Hydrocarbons

Cambium submitted eight groundwater samples, including one duplicate sample, for analysis of PHC F1-F4. There were no exceedances of the Table 8 SCS.

Three groundwater samples collected in 2016 (THEM) were submitted for analysis of PHC F1-F4. There were no exceedances of the Table 8 SCS.

6.7.3 Polycyclic Aromatic Hydrocarbons

Cambium submitted four groundwater samples, including one duplicate sample, for analysis of PAHs. There were no exceedances of the Table 8 SCS.

One groundwater sample collected in 2016 (THEM) was submitted for analysis of PAHs. There were no exceedances of the Table 8 SCS.

6.7.4 Polychlorinated Biphenyls

Cambium submitted two groundwater samples, including one duplicate sample, for analysis of PCBs. There were no exceedances of the Table 8 SCS.

6.7.5 Metals

Cambium submitted eight groundwater samples, including one duplicate sample, for analysis of metals. There were no exceedances of the Table 8 SCS.

One groundwater sample collected in 2016 (THEM) from BH2 was submitted for analysis of metals. The concentrations of barium, cobalt, and vanadium exceeded the Table 8 SCS. However, Cambium resampled BH2 two times in 2019 and the concentrations of all metals parameters met the Table 8 SCS.

6.8 Quality Assurance and Quality Control Results

Five duplicate soil samples and three duplicate groundwater samples were submitted to Caduceon for analysis consistent with the SAP.

Where analytical parameters were detected in both the parent and the duplicate samples at more than five times the detection limits, relative percent difference (RPD) was calculated to assess the precision of the analytical data. Based on acceptable RPDs for laboratory duplicates (MOE, 2011) and to account for added sampling and handling variability, the results were evaluated based on data quality objectives (DQOs) of 60% for soil and 40% for groundwater. RPD values were calculated as follows:

$$RPD(\%) = \frac{|x_1 - x_2|}{x_m} \times 100\%$$

Where: x_1 = initial sample result

 x_2 = duplicate sample result

 x_m = arithmetic mean of initial and duplicate sample results

The RPDs met the DQOs for soil and groundwater.

Two trip blanks were also submitted in for analysis of VOCs with groundwater samples submitted on August 29 and September 12, 2019. The trip blanks were submitted as part of the QA/QC program to monitor whether VOCs may have been introduced into a sample during transport to and from the analytical laboratory. Results of analysis indicated that all parameters analyzed were less than the laboratory method detection limits.

Certificates of Analysis received for each sample submitted to Maxxam have been included in full in Appendix F. All laboratory Certificates of Analysis pursuant to clause 47 (2) (b) of O.Reg. 153/04, are in compliance of subsection 47(3) of the regulation.

Based on the results of the QA/QC program, the analytical results discussed herein can be interpreted with confidence.

Cambium Ref. No.: 9326-001

6.9 Phase Two Conceptual Site Model

As per Table 1 of Schedule E of O.Reg. 153/04, a Phase Two Conceptual Site Model (CSM) is required assist the qualified person(s) (QP) in illustrating the results of the Phase Two ESA, demonstrating the current condition of the Phase Two Property, or where remedial actions have been undertaken, the condition of the Phase Two Property before the remedial actions were undertaken. The following sections provide the requisite narrative that accompanies Figure 2 to Figure 22.

6.9.1 APECs, PCAs, and Structures

Cambium (2019) identified 22 PCAs, 3 on-site and 19 off-site, within the Phase One ESA Study Area. Cambium assessed the PCAs for their risk of contamination to the Site. This assessment resulted in seven PCAs that contributed to areas of potential environmental concern (APECs). The PCAs, APECs, and subsurface utilities and structures on and around the Site are discussed in the following sections. PCAs and APECs are summarized in Table 1 and Table 2, respectively.

6.9.1.1 PCAs

The following on-site and off-site PCAs were identified by the Phase One ESA. Surrounding property use and PCA locations are shown on Figure 3.

On-site

PCA #1	Former on-site commercial autobody shop
PCA #2	On-site fill of unknown quality adjacent to the retaining wall
PCA #3	On-site contaminants in groundwater
Off-site	
PCA #4	Former gasoline service station at 224 Bradford Street
PCA #5	Former automotive repair garage at 224 Bradford Street
PCA #6	Former automotive repair garage at 240 Bradford Street
PCA #7	Former gasoline service station off-site to the southeast
PCA #8	Former gasoline service station at 252 Bradford Street

APEC 1

Cambium Ref. No.: 9326-001

PCA#9 Gasoline UST at Dangerfield Motors formerly off-site to the east PCA #10 Dangerfield Motors formerly off-site to the east PCA #11 Barrie sewage treatment plant off-site to the east Automotive repair garage at 84 Tiffin Street PCA #12 PCA #13 Former automotive repair garage at 94 Tiffin Street PCA #14 Former bulk fuel plant at 91 Tiffin Street PCA #15 Former gasoline service station at 254 Bradford Street PCA #16 Former automotive repair garage at 212 Bradford Street PCA #17 Motor oil spill on Bradford Street, north of Tiffin Street PCA #18 Barrie Public Utilities Commission at 184 Innisfil Street PCA #19 Historical landfill northeast of Brock and Sanford Street PCA #20 Historical landfill northwest of Brock and Sanford Street PCA #21 Former private service station at 85 Brock Street PCA #22 Regional TCE plume north of the Site

6.9.1.2 Areas of Potential Environmental Concern

The following four APECs were identified at the Site. The APECs are shown on Figure 4.

APEC 2 Embankment along the northeast side of the Site (PCA 30 - Importation of Fill Material of Unknown Quality)

Footprint of the former autobody shop (PCA 10 - Commercial Autobody Shops)

- APEC 3 South portion of the Site (Unidentified PCA Previously identified VOC and metal contaminants)
- APEC 4 Southeast property boundary due to historical off-site activities to the southeast (PCA 27 Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles and PCA 28 Gasoline and Associated Products Storage in Fixed Tanks)
- APEC 5 Entire Site (Unidentified PCA Regional TCE plume north of the Site)

Cambium Ref. No.: 9326-001

6.9.1.3 Subsurface Structures and Utilities

Underground communications cables are present beneath the north side of the Site. The depth to the cables is not known. Underground utilities are also present east of the Site beneath Bradford Street and west of the Site beneath Sanford Street.

Contaminants from on- and off-site sources could potentially migrate along utility corridors given that the water table is within the depth typical of utility trenches.

6.9.1.4 Proposed Structures

The Site will be redeveloped for residential use with a mid-rise condominium apartment building. The proposed development is shown on Figure 2.

Volatile COCs are present in groundwater at the Site. These COCs may migrate to indoor air under the proposed redevelopment scenario.

6.9.2 Physical Setting

The following subsections describe the physical setting of the Phase Two Property.

6.9.2.1 Stratigraphy

The Site is within the Simcoe Lowlands physiographic region (Chapman & Putnam, 2007), characterized by level plains composed of sand, silt and clay. In the general area, the overburden is coarse-textured glaciolacustrine deposits of sand and gravel with minor silt and clay (OGS, 2010). The soils overlie Verulam formation limestone and shale (OGS, 2007).

Investigations completed at the Site have identified the overburden stratigraphic profile as discontinuous fill (sand and gravel, silty sand, and sand) overlaying layers of sand, silt, and clay to the maximum depth investigated 10.7 mbgs.

Bedrock was not encountered during subsurface investigations. A review of Ministry water well records within 300 m of the Site (Ministry, 2019) indicated that bedrock was not encountered to the maximum depth of 93.3 mbgs.

Cambium Ref. No.: 9326-001 2020-04-20

6.9.2.2 Hydrogeology

6.9.2.2.1 Groundwater Elevations and Flow Direction

Water level data was collected from six existing monitoring wells installed in 2016 by THEM and 2018 by Pinchin, and from the 11 monitoring wells installed in 2019 and 2020 by Cambium. To evaluate groundwater flow direction and hydrogeological characteristics, the monitoring wells were classified as shallow or deep based on installation depth of the screen.

Shallow Wells: BH1, BH2, BH3, BH101, BH102, BH103, BH104, BH201, BH202, BH203, BH204, BH205, BH206, BH207, BH301

Deep Wells: BH208, BH401, BH402

Water level data was available for select wells for February 26 and May 26, 2016; August 24 and 27, 2018; August 29, October 3, November 19, and December 10, 2019; and January 10, February 13, March 11, and April 8, 2020. Water level data is provided in Table 4. Minimum, maximum, and average depths to the water table are summarized below.

	Shallow Wells	Deep Wells
Minimum (mbgs)	0.51	0.45
Maximum (mbgs)	3.79	3.97
Average (mbgs)	2.16	1.41

The water level (WL) data was used to calculate groundwater elevations. Elevation data is summarized below. Groundwater elevations (GWE) were calculated as follows.

 $GWE = Top \ of \ Casing \ Elevation - WL \ Depth \ below \ Top \ of \ Casing$

Summary of Groundwater Elevation Data

	Shallow	Deep
Highest (masl)	222.32	222.30
Lowest (masl)	220.29	220.62
Average (masl)	221.22	221.71

masl - metres above sea level

Cambium Ref. No.: 9326-001

Pinchin (Pinchin) indicated that the shallow groundwater flow was towards the east-northeast on August 27, 2018. Groundwater levels on August 27, 2018 ranged from 1.56 to 3.76 mbgs.

Elevation data for 2016, 2018, 2019, and 2020, indicates the shallow groundwater is easterly with temporal variations to the northeast and southeast. April 2020 elevation data was used to generate the flow direction figures for shallow groundwater (Figure 6) and deep groundwater (Figure 7). Shallow groundwater flow beneath the Site was easterly and deep groundwater flow beneath the Site was northeasterly toward Kempenfelt Bay in April 2020.

6.9.2.2.2 Soil Texture

Pinchin (2018) reported grain size results for two soil samples collected from 3.8 to 4.6 mbgs. Cambium completed grain size distribution analyses on four samples of the native soil as summarized below. Based on grain size distribution testing, more than one third of the soil at the Site, measured by volume, is coarse textured.

Particle Size Distribution Results

Borehole	Depth (mbgs)	Material	% Gravel	% Sand	% Silt	% Clay
BH301-19-SS3	1.5 - 2.0	Sand some Gravel trace Silt trace Clay	10	83	5	2
BH302-19-SS20	25.9 – 26.4	Silt trace Sand trace Clay	0	7	88	5
BH303-19-SS1	0 - 0.6	Sand some Silt trace Gravel trace Clay	5	77	13	4
BH304-19-SS9	9.5 - 9.6	Silty sand trace Gravel trace Clay	1	67	25	7

6.9.2.2.3 Hydraulic Gradients

The average horizontal hydraulic gradient in the shallow groundwater in October 2019, and April 2020 was 0.01 m/m.

Cambium conducted rising and falling head slug tests at three shallow monitoring wells. The data generated was processed using AquiferTest Pro ™ software and is summarized below.

The well screens only partially penetrated the aquifer, therefore the rising head slug tests (slug out) was considered more representative of aquifer conditions. The hydraulic conductivity varied from 7.72×10^{-5} m/s to 1.00×10^{-4} m/s. The results were considered representative of the sand layer within which the wells were screened and similar to results outlined in literature (Fetter, 2001; J.P.Powers, 2007).

Cambium Ref. No.: 9326-001

Hydraulic Conductivity Results (m/s)

Test #	BH202	BH204	BH207
	Slug Out	Slug Out	Slug Out
Slug Test 1	8.65 x 10 ⁻⁵	2.53 x 10 ⁻⁴	1.01 x 10 ⁻⁴
Slug Test 2	7.72 x 10 ⁻⁵	2.67 x 10 ⁻⁴	1.00 x 10 ⁻⁴
Slug Test 3	8.46 x 10 ⁻⁵	2.82 x 10 ⁻⁴	1.15 x 10 ⁻⁴
Slug Test 4	8.28 x 10 ⁻⁵	2.83 x 10 ⁻⁴	1.10 x 10 ⁻⁴

Assuming a porosity range of 20% to 25%, hydraulic gradient of 0.01, and a geometric mean hydraulic conductivity of 1.3 x 10⁻⁴, the average linear shallow groundwater flow velocity ranges from 164 to 205 m/yr. The actual velocity is likely significantly lower due to tortuosity.

The horizontal hydraulic gradient for the deeper groundwater in April 2020 was 0.01 m/m. Vertical hydraulic gradients were calculated using April 2020 water level data for clustered monitoring wells BH101/BH402, BH104/BH401, and BH1/BH208. The vertical gradient was 0.10 at BH101/BH402, 0.15 at BH104/BH401, and 0.19 at BH1/BH208. The gradient was upward at all three well clusters.

6.9.3 Applicable Site Condition Standards

O.Reg. 153/04, Records of Site Condition – Part XV.1 under the *Environmental Protection Act* specifies acceptable limits of contaminants in soil, groundwater, and sediment in the *Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act* (MOE, 2011). These standards are presented in tables (Tables 1 to 9) defined by groundwater use (i.e., potable or non-potable) and type of remediation (full depth or stratified). Each table presents chemical-specific site condition standards (SCS) based on property use (agricultural, residential/parkland/ institutional, or industrial/community/ commercial), grain-texture (medium/fine-textured or coarse-textured).

Selection of the applicable SCS considered the following characteristics specific to the Site:

- 1. Intended property use
- 2. Soil characteristics
- 3. Environmental sensitivity, including:
 - a. Soil pH

- b. Proximity to areas of natural significance
- 4. Proximity of water bodies
- 5. Groundwater use

Intended Property-Use

The proposed future use of the Site is residential. Therefore, the applicable land use category was residential/parkland/institutional (RPI).

Soil Characteristics

Investigations completed at the Site have identified the overburden stratigraphic profile as discontinuous fill (sand and gravel, silty sand, and sand) overlaying layers of sand, silt, and clay to the maximum depth investigated 10.7 mbgs.

Based on grain size distribution testing completed by Pinchin (2018) and observations made by Cambium during this subsurface investigation, coarse-textured soil was considered applicable.

Environmentally Sensitive Areas

The O.Reg.153/04 generic SCS cannot be used at properties that are within, include, or are proximate (i.e., within 30 m) to an area of natural significance, when soil pH is not within the acceptable ranges for surface (5 to 9) and/or sub-surface soils (5 to 11), or if a Qualified Person (QP) is of the opinion that it is appropriate to apply Section 41 of the regulation.

Areas of Natural and Scientific Interest

Based on a site sensitivity search completed as per the requirements of Section 41 of O.Reg.153/04, no areas of natural significance as defined by the regulation, were identified on or within 30 m of the Site. Therefore, the Site was not considered an environmentally sensitive area and the generic SCS were applicable.

Soil pH

Six soil samples were submitted for laboratory analysis by THEM (2016a), Pinchin (2018), and Cambium to assess soil pH at the Site. Soil pH results were within the acceptable ranges for surface and sub-surface soil.

Cambium Ref. No.: 9326-001

Qualified Person Opinion

Geologic and hydrogeological parameters that influence the derivation of the O.Reg.153/04 generic SCS were compared to site-specific data and the generic values used in the derivation of the SCS. The site-specific parameters were consistent with the defaults; therefore, it was the QP's opinion that the generic SCS were applicable.

Proximity of Water Bodies and Shallow Bedrock

SCS are defined for properties that are within 30 m of a water body or at which bedrock is less than 2 mbgs.

Hotchkiss Creek ranges from 20 m to 50 m south of the Site; therefore, the Site is within 30 m of a water body, as defined in O.Reg. 153/04. The generic SCS established for properties within 30 m of a water body (i.e., Tables 8 or 9) were considered applicable for the Site.

Subsurface investigations completed at the Site by THEM (2016a), Pinchin (2018), and Cambium did not encounter bedrock to a maximum depth of 10.7 mbgs. Therefore, the generic SCS established for properties with shallow bedrock (i.e., Tables 6 and 7) were not applicable.

Shallow Groundwater and Groundwater Use

Groundwater levels measured between 2016 and 2019 ranged from 0.81 to 3.91 mbgs. Generally, the depth to groundwater is less than 2 mbgs on the south side of the Site and greater than 2 mbgs on the north side of the Site. Therefore, the generic SCS established for properties with shallow bedrock (i.e., Tables 6 and 7) was deemed applicable when evaluating groundwater quality for purposes of risk assessment.

For groundwater at a property to be considered non-potable, all properties within 250 m of the property must be supplied by a municipal drinking water system that does not obtain its water from a groundwater source.

The City of Barrie obtains drinking water from surface water and groundwater wells; therefore, the generic SCS established for properties in a potable groundwater condition were considered applicable for the Site.

Applicable Generic Site Condition Standards

Based on the foregoing, Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition, were considered appropriate for use at the Site.

For evaluation of groundwater quality for purposes of risk assessment, Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition, were considered appropriate to account for shallow groundwater conditions on the south side of the Site.

6.9.4 Source Water Protection

Cambium reviewed the Ministry's Source Protection Information Atlas to determine if the Site is in or within 250 m of the following, as set out in the Assessment Report portion of the applicable Source Protection Plan under the Clean Water Act (MECP, 2019).

- The Site is in designated well head protection area (WHPA) B.
- The Site is in a significant groundwater recharge area (SGRA) 6.
- The Site is in a highly vulnerable aguifer (HVA).
- The Site is in an issue contributing area (ICA).
- The Site is in a Source Water Intake Protection Zone (IPZ) 3.

Mapping showing the Site in relation to the Source Water Protection Areas discussed above is included in Appendix G.

6.9.5 Soil Quality

Soil samples were submitted for analysis of one or more of the COPCs: VOCs, PHCs, PAHs, PCBs, and metals. All analysis results met the Table 8 SCS with the exception of PHC F4 in soil sample BH201 3.0-3.7 m. The impact is localized to a small area in the centre of the Site and extends to 4.1 mbgs.

Refer to Figure 10 for the location of the PHC F4 impact, and Figure 11 and Figure 12 for the vertical extent of the PHC F4 impact.

Cambium Ref. No.: 9326-001

6.9.6 Groundwater Quality

Groundwater samples were submitted for analysis of the COPCs: VOCs, PHCs, PAHs, PCBs, and/or metals. PHCs, PAHs, PCBs, and metals met the Table 8 SCS.

VOC impacts in shallow groundwater are present across the south and east sides of the Site and VOC impacts in deeper groundwater are present across the entire Site. Deeper VOC impacts are part of the regional TCE plume north/northwest of the Site that was identified in the early 2000s. The concentration of TCE in the deeper groundwater ranged from $5.4~\mu g/L$ (BH402, north side of the property) to $29.7~\mu g/L$ (BH401, northeast side of the property); however, the concentration of associated breakdown products were much higher in BH402 on the north side of the property.

The lateral distribution of VOC impacts is shown on Figure 16. The vertical extent of VOC impacts is shown on Figure 17 and Figure 18.

The concentrations of barium, cobalt, and vanadium exceeded the Table 8 SCS in one sample collected in 2016 (THEM) from BH2. However, Cambium resampled BH2 two times in 2019 and the concentrations of all metals parameters met the Table 8 SCS.

6.10 Human Health and Ecological CSM

Based on the site characterization, contaminants of concern exceeding the applicable Table 8 SCS were identified in groundwater. The VOC impacts in groundwater extend across the south and east sides of the Site and up to the south, east and west property boundaries. The impacts appear to be the result of former off-site activities south of the Site.

Based on a review of site characteristics (e.g., soil profile, depth to groundwater, contaminant type and distribution, etc.), Cambium identified potential exposure pathways and receptors for human health and ecological receptors. These exposure pathways and receptors are discussed in the following sections.

Cambium Ref. No.: 9326-001 2020-04-20

6.10.1 Human Health Exposure Model

The human health CSM describes the potential exposure pathways that are likely to be present for various human receptors at the Site. The human health CSM provides a basis for examining potential health risks in a human health risk assessment. The human health CSM, without and with risk management measures (RMMs), are presented as Figure 23 and Figure 24, respectively, and discussed below.

In the absence of RMM, the following exposure pathways are considered applicable for one or more of the current and future on-site receptors:

- Direct contact with groundwater;
- Incidental ingestion of groundwater;
- Inhalation of volatiles from groundwater in outdoor air; and
- Inhalation of volatiles from groundwater in indoor air (future use only).

Based on the future residential land use for the Site, possible receptors at the Site are:

- Resident (all age groups)
- Site visitor/trespasser (all age groups)
- Subsurface worker (adult/teen construction worker)
- Maintenance worker (short-term adult/teen)

6.10.2 Ecological Exposure Model

The ecological CSM describes the potential exposure pathways that are likely to be present for various ecological receptors at the Site. The ecological CSM provides a basis for examining potential risks in an ecological risk assessment. The ecological CSM, without and with RMMs, are presented as Figure 25 and Figure 26, respectively, and discussed below.

Ecological receptors at the Site are assumed to have direct contact with surface soil and shallow groundwater. In the absence of RMM, the following exposure pathways are considered applicable for one or more of the potential on-site ecological receptors:

- Direct contact with groundwater
- Uptake of groundwater

Ingestion of impacted food

Based on the future residential land use for the Site, possible ecological receptors at the Site are:

- Terrestrial soil invertebrates and plants
- Birds, mammals, and reptiles

Cambium Ref. No.: 9326-001

2020-04-20

7.0 Conclusions

The subsurface investigation program was conducted from August 22, 2019 to February 12, 2020. Based on results, PHC F4 is present in soil and VOCs are present in groundwater at concentrations greater than the applicable standard.

7.1 Signatures

This Phase Two ESA was completed by Mr. Nick Young, M.Eng., P.Geo., QP_{ESA} and Ms. Natalie Wright, P.Eng., as per O.Reg. 153/04. Information presented in this report is true and accurate to the best of the assessors' knowledge.

Respectfully submitted,

Cambium Inc.

Nick Young, M.Eng., P.Geo. Senior Project Manager

Natalie Wright, P.Eng., PMP Project Coordinator

NJY/ncw

P:\9300 to 9399\9326-001 Chayell Hotels Ltd. - ENV - 220 Bradford Street\Deliverables\REPORT - Phase Two ESA\Final\2020-04-20 RPT Phase Two ESA - 220 Bradford Street, Barrie.docx

Cambium Ref. No.: 9326-001

8.0 References

- Cambium. (2019). *Phase One Environmental Site Assessment 220 Bradford Street, Barrie, Ontario.* Cambium Inc. September 12, 2019.
- Chapman, L., & Putnam, D. (2007). *The Physiographic Regions of Southern Ontario;*MIscellaneous Release--Data 228. Ontario Geological Survey.
- Fetter. (2001). Applied Hydrogeology.
- J.P.Powers, A. C. (2007). Construction Dewatering and Groundwater Control, New Methods and Applications.
- MECP. (2019). Source Protection Information Atlas. Retrieved 10 15, 2019, from Ministry of Environment, Conservation and Parks:

 https://www.gisapplication.lrc.gov.on.ca/SourceWaterProtection/Index.html?site=SourceWaterProtection&viewer=SWPViewer&locale=en-US
- Ministry. (2019, 09 17). *Map: Well Records*. Retrieved from MInistry of the Environment, Conservation and Parks: https://www.ontario.ca/environment-and-energy/map-well-records
- MNRF. (2019). *Make A Map: Natural Heritage Areas*. Retrieved 09 04, 2019, from Land Information Ontario:

 http://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR_NHLUPS_Natural Heritage&viewer=NaturalHeritage&locale=en-US
- MOE. (1996). Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. Ontario Ministry of the Environment and Energy Standards Development Branch.
- MOE. (2011). Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Laboratory Services Branch, Ministry of the Environment. March 9, 2004, amended July 1, 2011.

Cambium Ref. No.: 9326-001 2020-04-20

- MOE. (2011). Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Ministry of the Environment. April 15, 2011.
- OGS. (2007). Paleozoic geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 219. Ontario Geological Survey.
- OGS. (2010). Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV. Ontario Geological Survey.
- Pinchin. (2018). Phase II Environmental Site Assessment, 220 Bradford Street, Barrie, Ontario. Pinchin Ltd. September 13, 2018.
- Simcoe. (2019). Interactive Map County of Simcoe (GIS). Retrieved 09 05, 2019, from County of Simcoe: https://maps.simcoe.ca/public/#
- Skelton, Brumwell & Associates. (2012). Phase I Environmental Site Assessment, 220 Bradford Street, City of Barrie. Skelton, Brumwell & Associates Inc. November 30, 2012.
- THEM. (2016a). Phase II Environmental Site Assessment, 220 Bradford Street, Barrie, Ontario. T. Harris Environmental Management. May 16, 2016.
- THEM. (2016b). Groundwater Sampling and Analysis, 220 Bradford Street, Barrie, Ontario. T. Harris Environmental Management. May 16, 2016.

Chayell Hotels Ltd.

Cambium Ref. No.: 9326-001

2020-04-20

	i۸		r 0	_
г	IU	u	re	3

CHAYELL HOTELS LTD. 220 Bradford Street, Barrie, Ontario

LEGEND

Site (approximate)

Notes:
- Proposed Land Use was obtained from mataj Architects Inc. Drawing A.101.
- Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).
- Distances on this plan are in metres and can be converted to feet by
- Distances on this plan are in metres and can be converted to feet by
- Cambium Inc. makes every effort to ensure this map is free from errors but cannot be held responsible for any damages due to error or omissions. This map should not be used for navigation or legal purposes. It is intended for general reference use only.

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

PROPOSED LAND USE

Date: Project No.: March 2020 9326-001 Rev.: Projection: Scale: 1:600 NAD 1983 UTM Zone 17N

Created by: Checked by: MAT NJY

SISproject_MXDs/8300-9399/3326-001 Chayell Hotels Ltd. - ENV - 220 Bradford Street/2019-09-26 P2 F1G 3 Conceptual Site Model - Phase One Study Ar

CHAYELL HOTELS LTD. 220 Bradford Street, Barrie, Ontario

LEGEND

Potentially Contaminating Activity

Location of Off-Site Activity

Location of PCA 22 (projected extent of TCE plume >10ug/L)

Former Building Footprint

Site (approximate)

Area of Potential Environmental Concern:

APEC 1

APEC 2

APEC 3

APEC 4

APEC 5

Notes:

- Base mapping features are @ Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).

- Distances on this plan are in metres and can be converted to feet by dividing by 0.3048.

- Cambium Inc. makes every effort to ensure this map is free from errors but cannot be held responsible for any damages due to error or omissions. This map should not be used for navigation or legal purposes. It is intended for general reference use only.

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

CONCEPTUAL SITE MODEL -PHASE ONE PROPERTY

Project No.: March 2020 April 2020 9326-001 Rev.: Projection:

NAD 1983 UTM Zone 17N 1:1,000

Checked by: MAT NJY

CHAYELL HOTELS LTD. 220 Bradford Street, Barrie, Ontario

LEGEND

Borehole

Borehole with Monitoring Well

Site (approximate)

Notes:

- Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).

- Distances on this plan are in metres and can be converted to feet by dividing by 0.3048.

- Cambium Inc. makes every effort to ensure this map is free from errors but cannot be held responsible for any damages due to error or omissions. This map should not be used for navigation or legal purposes. It is intended for general reference use only.

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

SAMPLE LOCATION PLAN

March 2020 Project No.: 9326-001 Rev.: Scale: Projection: NAD 1983 UTM Zone 17N 1:600

Created by: Checked by: MAT NJY

CHAYELL HOTELS LTD. 220 Bradford Street. Barrie, Ontario

LEGEND

Borehole

Borehole with Monitoring Well

Groundwater Contours (shallow) (April 8, 2020)

Site (approximate)

(220.75) Groundwater Elevation (April 8, 2020)

Groundwater Flow Direction (October 3, 2019)

Notes:
- Base mapping leatures are @ Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).
- Distances on this plan are in metres and can be converted to feet by dividing by 0.304.
- Cambium Inc. makes every effort to ensure this map is free from errors but cannot be held responsible for any damages due to error or onsistions. This map proud for the use of or any damages due to error or onsistions. This map general reference use only.

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

GROUNDWATER ELEVATIONS -SHALLOW WELLS -**APRIL 8, 2020**

Date: Project No.: March 2020 April 2020 Rev.: 9326-001 Scale: Projection:

NAD 1983 UTM Zone 17N 1:600 Checked by: Created by: Figure:

MAT NJY

CHAYELL HOTELS LTD. 220 Bradford Street, Barrie, Ontario

LEGEND

Borehole

Borehole with Monitoring Well

Groundwater Contour (Deep) (April 8, 2020)

Site (approximate)

(222.30)

Groundwater Elevation (April 8, 2020)

Notes:

- Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).

- Distances on this plan dare in metres and can be converted to feet by dividing by 0.3046.

- Cambium Inc. make she way effort to ensure this map is free from enrors but consume the control of the contr

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

GROUNDWATER ELEVATIONS - DEEP WELLS -**APRIL 8, 2020**

Date: Project No.: April 2020 9326-001 Rev.: Scale: Projection: NAD 1983 UTM Zone 17N

1:600 Created by: Checked by: MAT NJY

CHAYELL HOTELS LTD. 220 Bradford Street, Barrie, Ontario

LEGEND

Borehole

Borehole With Monitoring Well

Cross Section

Site (approximate)

Notes:

- Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).

- Distances on this plan dare in metres and can be converted to feet by dividing by 0.3046.

- Cambium Inc. make she way effort to ensure this map is free from enrors but consume the control of the contr

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

CROSS SECTION LOCATIONS

March 2020 Project No.: Rev.: 9326-001 Projection: Scale: NAD 1983 UTM Zone 17N 1:600 Created by: Checked by: MAT NJY

CHAYELL HOTELS LTD. 220 Bradford Street, Barrie, Ontario

LEGEND

Borehole

Borehole With Monitoring Well

Meets Table 8 SCS

Site (approximate)

Notes:

- Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).

- Distances on this plan dare in metres and can be converted to feet by dividing by 0.3046.

- Cambium Inc. make she way effort to ensure this map is free from enrors but consume the control of the contr

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

SOIL RESULTS - VOCs

Project No.:		Date:	Marcl	h 2020
9	326-001	Rev.:		
Scale:		Projection	n:	
	1:600	NAD	1983 UTM Z	one 17N
Created by:	Checked	by:	Figure:	_
MAT	l	NJY		9

CHAYELL HOTELS LTD. 220 Bradford Street. Barrie, Ontario

LEGEND

Borehole

Borehole With Monitoring Well

Exceeds Table 8 SCS

Meets Table 8 SCS

Site (approximate)

Table 8 SCS				
PHC F1	25			
PHC F2	10			
PHC F3	240			
PHC F4	120			
PHC F4 (G)	120			

Notes:

Table 8 (R/P/I/I/C/C Property Uses) Bold and shaded values exceed the standard

Notes:
- Base mapping features are @ Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).
- Olstances on this plan are in metres and can be converted to feet by dividing by 0.304es.
- Cambium Inc. makes every effort to ensure this map is free from errors but camb to the fire responsible for any damages due to error or on insistins. This map should not be used for navigation or legal purposes. It is intended for general reference use only.

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

SOIL RESULTS - PHCs

Project No.:		Date:	March 2020
9	326-001	Rev.:	
Scale:		Projection	
	1:600	NAD	1983 UTM Zone 17N
Created by:	Checked	by:	Figure:
MAT		NJY	10A

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT CHAYELL HOTELS LTD.

220Bradford Street Barrie, Ontario

LEGEND

Groundwater Level

Asphalt

Fill, Topsoil

Sandy Silt

Ciay

Table 8 Standards				
PHC F1 (C6-C10)	25			
PHC F2 (>C10-C16)	10			
PHC F3 (>C16-C34)	240			
PHC F4 (>C34-C50)	120			
PHC F4 (Gravimetric)	120			

Table 8 - GENERIC SITE CONDITION STANDARDS FOR USE WITHIN 30 m OF A WATERBODY IN A POTABLE GROUNDWATER CONDITION (MOE, 2011).

CROSS SECTION A-A' & B-B' ALONG GRADIENT PHCs IN SOIL

Project No.:		Date:	March 2020
9	9326-001	Rev.:	
Horizontal Scale:		Vertical :	Scale:
	1:400		1:150
Drawn By:	Checked	Ву:	Figure: 40D
MAT	1	NIV	1 10B

	BH104	Bl	1 1	BH204	BH208
Table 8 SCS	23-Aug-18	23-Feb-16 23-Feb-16		22-Aug-19	22-Aug-19
	4.6 - 5.3	0.1 - 1.2	2.4 - 3.6	3.0 - 4.1	4.6 - 5.5
25	<10	<10	<10	<10	<10
10	<10	<10	<10	<5	<5
240	<50	<20	<20	<10	<10
120	<50	<20	<20	<10	<10
120	-	-	-	-	-
	25 10 240 120	Z3-Aug-18 4.6 - 5.3 25 <10	Table 8 SCS 23-Aug-18 23-Feb-16 4.6 - 5.3 0.1 - 1.2 25 <10	Table 8 SCS 23-Aug-18 23-Feb-16 23-Feb-16 23-Feb-16 4.6 - 5.3 0.1 - 1.2 2.4 - 3.6 25 <10	Table 8 SCS 23-Aug-18 23-Feb-16 23-Feb-16 22-Aug-19 4.6 - 5.3 0.1 - 1.2 2.4 - 3.6 3.0 - 4.1 25 <10

PHASE TWO ENVIRONMENTAL

SITE ASSESSMENT CHAYELL HOTELS LTD.

220Bradford Street

Barrie, Ontario

LEGEND

Asphalt

Fill, Topsoil

Sandy Silt

Groundwater Level

Well Casing

- Parameters Tested Exceed Table 8 SCS

- Parameters Tested Meet Table 8 SCS

Table 8 - GENERIC SITE CONDITION STANDARDS FOR USE WITHIN 30 m OF A WATERBODY IN A POTABLE GROUNDWATER CONDITION (MOE,

CROSS SECTION C-C' & D-D' PERPENDICULAR TO **GRADIENT PHCs IN SOIL**

Project No.:			Date:	October 2019
	9	326-001	Rev.:	
Horizontal Scale:		Vertical Scale:		
		1:400		1:150
Drawn By:		Checked	By:	Figure:
ı	MAT		NJY	10C

CHAYELL HOTELS LTD. 220 Bradford Street, Barrie, Ontario

LEGEND

Borehole

Borehole With Monitoring Well

Meets Table 8 SCS

Site (approximate)

Notes:

- Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).

- Distances on this plan dare in metres and can be converted to feet by dividing by 0.3046.

- Cambium Inc. make she way effort to ensure this map is free from enrors but consume the control of the contr

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

SOIL RESULTS - METALS

Project No.:		Date:	Mar	ch 2020
	9326-001	Rev.:		
Scale:		Projection	n:	
	1:600	NAD	1983 UTM	Zone 17N
Created by:	Checked by:		Figure:	10
ΜΔΤ	1	NIV		

CHAYELL HOTELS LTD. 220 Bradford Street. Barrie, Ontario

LEGEND

Borehole With Monitoring Well

Exceeds Table 8 SCS

Meets Table 8 SCS

Site (approximate)

Table 8 SCS				
Dichloroethylene, 1,2-cis-	1.6			
Dichloroethylene,1,2-trans-	1.6			
Trichloroethylene	1.6			
Vinyl chloride	0.5			

Table 8 (All Types of Property Use) Bold and shaded values exceed the standard

(#) - Duplicate result

Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the

not constitute an endorsement by the Ministry of Natural Resources or the Ontatio Government.

- Distances on this plan are in metres and can be converted to feet by dividing by 0.304.

- Cambibum Inc. makes every effort to ensure this map is free from errors but cannot be held responsible for any damages due to error or omissions. This map should not be used for navigation or legal purposes. It is intended for general reference use only.

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907 www.cambium-inc.com

GROUNDWATER RESULTS - VOCs

Created by: MAT	Checked	d by: NJY	Figure: 14A
Scale:	1:600		1983 UTM Zone 17N
			<u>.</u>
9326-001		Rev.:	April 2020
Project No.:		Date:	March 2020

> CHAYELL HOTELS LTD. 220Bradford Street

> > Barrie, Ontario

LEGEND

Asphalt

Fill, Topsoil Sandy Silt

Groundwater Level

- Well Casing

- Well Screen

Parameters Tested Mee Table 8 SCS

POTABLE GROUNDWATER CONDITION (MOE, (#) - INDICATES DUPLICATE RESULT.

CROSS SECTION A-A' & B-B' ALONG GRADIENT VOCs IN GROUNDWATER

Project No.:	Date: March 2020
9326-001	Rev.: April 2020
Horizontal Scale:	Vertical Scale:
1:400	1:150

Checked By:

Sample Location	Table 8 SCS	BH104	BH401		BH1				BH208		
Sample Date	Table 6 303	25-Oct-17	12-Feb-20	26-Feb-16	26-May-16	25-Oct-17	29-Aug-19	29-Aug-19	29-Aug-19	12-Sep-19	
Dichloroethylene, 1,2-cis-	1.6	23	2	175	157	130	148	37.4	1.2	1.2 (0.9)	
Dichloroethylene, 1,2-trans-	1.6	0.47	<0.5	1.1	1.1	1.7	1.6	<0.5	<0.5	<0.5 (<0.5)	
Trichloroethylene	1.6	36	29.7	132	172	89	70.3	16.4	<0.5	<0.5 (<0.5)	
Vinyl chloride	0.5	0.64	<0.2	9	6.6	5.7	6.2	1.7	<0.2	<0.2 (<0.2)	

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT CHAYELL HOTELS LTD. 220Bradford Street Barrie, Ontario LEGEND Groundwater Level Asphalt Fill, Topsoil Sandy Silt Clay Silt Well Casing Well Screen Parameters Tested Exceed Table 8 SCS Parameters Tested Meet Table 8 SCS

Table 8 Standards								
Dichloroethene, cis-1,2-	1.6							
Dichloroethene, trans-1,2-	1.6							
Trichloroethylene	1.6							
Vinyl Chloride	0.5							
-								

Table 8 - GENERIC SITE CONDITION STANDARDS FOR USE WITHIN 30 m OF A WATERBODY IN A POTABLE GROUNDWATER CONDITION (MOE, 2011).

(#) - INDICATES DUPLICATE RESULT.

CROSS SECTION C-C' & D-D' ALONG GRADIENT VOCs IN GROUNDWATER

Project No.:		Date:	March 2020
9	326-001	Rev.:	Apr il 2020
Horizontal Scale:		Vertical :	Scale:
	1:400		1:150
Drown By:	Chookoo	D./·	Figure:

CHAYELL HOTELS LTD. 220 Bradford Street. Barrie, Ontario

LEGEND

Borehole With Monitoring Well

Meets Table 8 SCS

Site (approximate)

Notes:

- Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).

- Distances on this plan dare in metres and can be converted to feet by dividing by 0.3046.

- Cambium Inc. make she way effort to ensure this map is free from enrors but consume the control of the contr

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

GROUNDWATER RESULTS - PHCs

Project No.:		Date:	March 202				
(9326-001	Rev.:	Ap	oril 2020			
Scale:		Projection:					
	1:600	NAD 1983 UTM Zone 17					
Created by:	Checked	by:	Figure:	1			
MAAT	1	NI IV		751			

CHAYELL HOTELS LTD. 220 Bradford Street, Barrie, Ontario

LEGEND

Borehole With Monitoring Well

Meets Table 8 SCS

Site (approximate)

Notes:

- Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).

- Distances on this plan dare in metres and can be converted to feet by dividing by 0.3046.

- Cambium Inc. make she way effort to ensure this map is free from enrors but consume the control of the contr

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

GROUNDWATER RESULTS - PAHs

Project No.:		Date:	March 2	2020			
	9326-001	Rev.:	April 2	2020			
Scale:		Projection:					
	1:600	NAD 1983 UTM Zone 17					
Created by:	Checked	by:	Figure:				
MAT		N.IY	1	Ibl			

CHAYELL HOTELS LTD. 220 Bradford Street, Barrie, Ontario

LEGEND

Borehole With Monitoring Well

Meets Table 8 SCS

Site (approximate)

Notes:

- Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).

- Distances on this plan are in metres and can be converted to feet by dividing by 0.3048.

- Cambium Inc. makes every effort to ensure this map is free from errors but cannot be held responsible for any damages due to error or omissions. This map should not be used for navigation or legal purposes. It is intended for general reference use only.

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

GROUNDWATER RESULTS - PCBs

Cup ata d lave	Observices	I leave	Figures.			
	1:600	NAD 1983 UTM Zone 17N				
Scale:		Projection	on:			
	9326-001	Rev.:	April 2020			
Project No.:		Date:	March 2020			

MAT NJY

CHAYELL HOTELS LTD. 220 Bradford Street, Barrie, Ontario

LEGEND

Borehole With Monitoring Well

Meets Table 8 SCS

Site (approximate)

Notes:

- Base mapping features are © Queen's Printer of Ontario, 2019 (this does not constitute an endorsement by the Ministry of Natural Resources or the Ontario Government).

- Distances on this plan dare in metres and can be converted to feet by dividing by 0.3046.

- Cambium Inc. make she way effort to ensure this map is free from enrors but consume the control of the contr

P.O. Box 325, 52 Hunter Street East Peterborough, Ontario, K9H 1G5 Tel: (705) 742.7900 Fax: (705) 742.7907

GROUNDWATER **RESULTS - METALS**

MAT		NJY		18			
Created by:	Checked	l by:	Figure:	40			
	1:600	NAD 1983 UTM Zone 17N					
Scale:		Projection	n:				
9	326-001	Rev.:	Ap	ril 2020			
Project No.:		Date.	Marc	ch 2020			

FIGURE 19 HUMAN HEALTH CONCEPTUAL SITE MODEL - WITHOUT RISK MANAGEMENT

Notes:

- ✓ Indicates a potential exposure of contaminant of concern to receptor.
- **x** Indicates no exposure of contaminant of concern to receptor.

FIGURE 20 HUMAN HEALTH CONCEPTUAL SITE MODEL - WITH RISK MANAGEMENT

Notes:

- ✓ Indicates a potential exposure of contaminant of concern to receptor.
- **x** Indicates no exposure of contaminant of concern to receptor.

FIGURE 21 ECOLOGICAL CONCEPTUAL SITE MODEL - WITHOUT RISK MANAGEMENT

Notes:

- ✓ Indicates a potential exposure of contaminant of concern to receptor.
- **x** Indicates no exposure of contaminant of concern to receptor.

FIGURE 22 ECOLOGICAL CONCEPTUAL SITE MODEL - WITH RISK MANAGEMENT

Notes:

- ✓ Indicates a potential exposure of contaminant of concern to receptor.
- **x** Indicates no exposure of contaminant of concern to receptor.

Chayell Hotels Ltd.

Cambium Ref. No.: 9326-001

2020-04-20

		Tables
		iabics

Table 1 - Potentially Contaminating Activities

P	otentially Contaminating Activity (PCA) ¹	Location of PCA	PCA Description	Contaminants of Potential Environmental Concern ²	APEC ³ (Yes/No)
1	PCA #10 - Commercial Autobody Shops	East side of the Site	Former on-site commercial autobody shop	VOCs, PHCs, PAHs, PCBs, metals	Yes
2	PCA #30 - Importation of Fill Material of Unknown Quality	Along the retaining wall on the north side of the Site	On-site fill of unknown quality adjacent to the retaining wall	PHCs, BTEX, PAHs, metals	Yes
3	Unidentified PCA	South portion of the Site	On-site contaminants in groundwater	VOCs, metals	Yes
4	PCA #28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-site to the south	Former gasoline service station at 224 Bradford Street	PHCs, BTEX, metals	Yes
5	PCA #27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-site to the south	Former automotive repair garage at 224 Bradford Street	VOCs, PHCs, PAHs, metals	Yes
6	PCA #27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-site to the south	Former automotive repair garage at 240 Bradford Street	VOCs, PHCs, PAHs, metals	Yes
7	PCA #28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-site to the southeast	Former gasoline service station off- site to the southeast	PHCs, BTEX, metals	No
8	PCA #28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-site to the southeast	Former gasoline service station at 252 Bradford Street	PHCs, BTEX, metals	No
9	PCA #28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-site to the east	Gasoline UST at Dangerfield Motors formerly off-site to the east	PHCs, BTEX, metals	No
10	PCA #10 - Commercial Autobody Shops	Off-site to the east	Dangerfield Motors formerly off-site to the east	VOCs, PHCs, PAHs, metals	No
11	PCA #58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Off-site to the east	Barrie sewage treatment plant off- site to the east	VOCs, PHCs, metals and inorganics	No
12	PCA #27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-site to the southwest	Automotive repair garage at 84 Tiffin Street	VOCs, PHCs, PAHs, metals	No
13	PCA #27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-site to the southwest	Former automotive repair garage at 94 Tiffin Street	VOCs, PHCs, PAHs, metals	No
14	PCA #28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-site to the southwest	Former bulk fuel plant at 91 Tiffin Street	PHCs, BTEX, metals	No
15	PCA #28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-site to the south	Former gasoline service station at 254 Bradford Street	PHCs, BTEX, metals	No
16	PCA #27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-site adjacent to the north	Former automotive repair garage at 212 Bradford Street	VOCs, PHCs, PAHs, metals	No
17	Unidentified PCA	Off-site to the southeast	Motor oil spill on Bradford Street, north of Tiffin Street	PHCs, BTEX, metals	No
18	PCA #18 - Electricity Generation, Transformation and Power Stations	Off-site to the northwest	Barrie Public Utilities Commission at 184 Innisfil Street	PHCs, PCBs, metals	No
19	PCA #58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Off-site to the north	Historical landfill northeast of Brock and Sanford Street	VOCs, PHCs, PAHs, PCBs, metals	No
20	PCA #58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Off-site to the northwest	Historical landfill northwest of Brock and Sanford Street	VOCs, PHCs, PAHs, PCBs, metals	No
21	PCA #28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-site to the west	Former private service station at 85 Brock Street	PHCs, BTEX, metals	No
22	Unidentified PCA	Off-site to the north	Regional TCE plume in an unconfined aquifer around Brock Street, extending from Anne Street to the City of Barrie's Wastewater Treatment Plant.	VOCs	Yes

Notes:

- 1. Potentially Contaminating Activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area
- 2. Method groups as defined in Protocol for in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011
- 3. APEC means the area on, in or under a phase one property where one or more contaminants are potentially present, as determined through the phase one environmental site assessment

Table 2 - Areas of Potential Environmental Concern

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on the Phase One Property	Potentially Contaminating Activity ²	Location of PCA (on-site or off- site)	Contaminants of Potential Concern ³	Media Potentially Impacted (Groundwater, soil, and/or sediment)
APEC 1	Footprint of the former autobody shop	10. Commercial Autobody Shops	on-site	VOCs, PHCs, PAHs, PCBs, metals	Soil & Groundwater
APEC 2	Embankment along the northeast side of the Site	30. Importation of Fill Material of Unknown Quality	on-site	PHCs, BTEX, PAHs, metals	Soil
APEC 3	South portion of the Site	Unidentified PCA - Previously identified VOC and metal contaminants	on-site	VOCs, metals	Groundwater
APEC 4	Southeast property boundary	Casoline and Associated Products Storage in Fixed Tanks Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	off-site	VOCs, PHCs, PAHs, metals	Groundwater
APEC 5	Entire Site	Unidentified PCA - Regional TCE plume north of the Site	off-site	VOCs	Groundwater

Notes:

- 1. Area of Potential Environmental Concern means the area on, in or under a phase one property where one or more contaminants are potentially present, as determined through the phase one environmental site assessment
- 2. Potentially Contaminating Activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area
- 3. Method groups as defined in Protocol for in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011

Table 3 - Summary of Analysis

					SOIL							
	0 11 "	5 (1 (1)	1/00	DTEV		DALL		DOD		045	F-0	
Sampled By	Sample Location	Depth (mbgs)	VOCs	BTEX	PHCs	PAHs	Metals	PCBs	Cyanide	SAR	EC	pН
	BH1	0.1 - 1.2		Х	Х							
	BH1	2.4 - 3.6		Х	Х							
60	BH2	1.2 - 2.4		Х	Х							
2	BH3	2.4 - 3.6		Х	Х							
тнем, 2016	BH4	0.1 - 1.2					Х		Х	Х	Х	Х
单	BH6	1.2 - 2.4		Х	Х							
F	BH7	0.1 - 1.2					Х		Х	Х	Х	Х
	BH8	1.2 - 2.4				Х						
	BH9	1.2 - 2.4		Х	Х							
	BH10	0.1 - 1.2				Х						
	BH101	4.9 - 6.1	Х									
Pinchin, 2018	BH102	5.3 - 6.1	Х									
χ,	BH103	0.8 - 1.5										Х
Ë	BH103	3.7 - 4.6										Х
<u>2</u>	BH103	4.6 - 5.8	Х									
_	BH104	4.6 - 5.3			Х							
	BH104	5.3 - 6.1	Х									
	BH201	0.9 - 1.5					Х					х
	BH201	3.0 - 3.7	Х		Х			х				х
	BH201	4.1 - 4.6			Х							
<u>6</u>	BH202	0.6 - 1.5				Х	х					
Cambium, 2019	BH202	3.0 - 3.4	х		х							
É	BH203	0.6 - 1.5				х	х					
ρiα	BH204	1.5 - 2.2				Х	Х					
ä	BH204	3.0 - 4.1	Х		х							
Ö	BH205	0.0 - 1.5				Х	Х					
	BH205	3.0 - 4.6	х		х							
	BH207	3.0 - 3.4	Х		Х							
	BH208	4.6 - 5.5	х		х							
				GRO	UNDWATE	ER						
Sampled By	Sample L	ocation	VOCs	BTEX	PHCs	PAHs	Metals	PCBs				
THEM, 2016			Х		Х	Х						
Pinchin, 2018	BH ⁻	1	Х									
Cambium, 2019			Х			Х						
THEM, 2016	DU	•	X		Х		Х					
Pinchin, 2018 Cambium, 2019	BH	2	X X				х					
THEM, 2016			X		х		^					
Pinchin, 2018	BH:	3	Х									
Pinchin, 2018	BH10	01	Х									
Pinchin, 2018	BH10	02	Х									
Cambium, 2019			**	Х	Х		Х					-
Pinchin, 2018 Pinchin, 2018	BH10		X X						 			
Cambium, 2019	BH104 BH201 BH202		X		х	х	х	х				
Cambium, 2019			X		X	,						
	BHZ	BH203										
Cambium, 2019	BH20		Х					1				1
Cambium, 2019 Cambium, 2019	BH20 BH20	04	Х		х	Х	Х					
Cambium, 2019 Cambium, 2019 Cambium, 2019	BH20 BH20 BH20	04 05	X X		x x	Х	X X					
Cambium, 2019 Cambium, 2019 Cambium, 2019 Cambium, 2019	BH20 BH20 BH20 BH20	04 05 06	X X X		х	х						
Cambium, 2019 Cambium, 2019 Cambium, 2019 Cambium, 2019 Cambium, 2019	BH20 BH20 BH20 BH20 BH20	04 05 06 07	X X X		x x	X	х					
Cambium, 2019 Cambium, 2019 Cambium, 2019 Cambium, 2019	BH20 BH20 BH20 BH20	04 05 06 07	X X X X		х	X						
Cambium, 2019 Cambium, 2019 Cambium, 2019 Cambium, 2019 Cambium, 2019 Cambium, 2019	BH20 BH20 BH20 BH20 BH20 BH20	04 05 06 07 08	X X X		x x	X	х					

Table 4 - Monitoring Well Summary

Installed By		U	тм	Top of Casing	Ground Surface	Top of Screen	Bottom of Screen	en Base Depth	26-I	Feb-16	26-May-16		24-Aug-18		27-Aug-18		29-Aug-19	
installed By	Well ID	Easting	Northing	Elevation	Elevation	Depth (mbgs)	Depth (mbgs)	(mbgs)	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation
s ntal t Inc.	BH1	604151.55	4914444.30	222.43	222.52	3.05	6.00	6.10	1.59	220.93	1.60	220.92	1.65	220.87	1.66	220.86	1.77	220.75
T. Harris Environmental Management Inc.	BH2	604132.93	4914429.22	222.73	222.83	3.05	6.00	6.10	1.66	221.17	1.75	221.08	1.77	221.06	1.76	221.07	1.88	220.95
T Envi Mana	ВН3	604102.09	4914434.06	223.83	222.830	3.05	6.00	6.10	0.51	222.32	1.27	221.56	1.62	221.21	1.59	221.24	-	-
	BH101	604081.70	4914469.90	225.79	225.12	3.05	6.10	6.10	-	-	-	-	3.79	221.33	3.78	221.34	-	-
in Ld.	BH102	604110.72	4914411.67	222.85	222.87	3.05	6.10	6.10	-	-	-	-	1.52	221.35	1.50	221.37	1.63	221.24
Pinchin Ld.	BH103	604109.23	4914443.40	225.06	224.45	3.05	6.10	6.10	-	-	_	-	3.26	221.19	3.26	221.19	-	-
	BH104	604147.08	4914466.90	222.62	222.76	3.05	6.10	6.10	-	-	-	-	1.90	220.85	1.89	220.86	-	-
	BH201	604131.04	4914442.63	222.88	223.02	0.91	3.96	4.57	-	-	_	-	-	-	-	-	2.09	220.93
	BH202	604132.98	4914455.88	223.82	223.95	1.52	4.57	4.57	-	-	-	-	-	-	-	-	2.05	221.90
	BH203	604118.37	4914446.01	223.97	224.11	1.52	4.57	4.57	-	-	-	-	-	-	-	-	3.04	221.07
	BH204	604153.32	4914443.54	222.26	222.46	0.91	3.96	4.57	-	-	-	-	-	-	-	-	1.72	220.74
nc.	BH205	604134.89	4914427.94	222.71	222.79	1.22	4.27	4.57	-	-	-	-	-	-	-	-	1.84	220.95
Cambium Inc.	BH206	604085.30	4914392.40	221.91	222.05	1.22	4.27	4.57	-	-	-	-	-	-	-	-	1.17	220.88
Can	BH207	604099.76	4914429.07	224.16	224.26	1.52	4.57	4.57	-	-	-	-	-	-	-	-	2.04	222.23
	BH208	604151.10	4914441.60	222.44	222.51	9.15	10.66	10.66	-	-	_	-	-	-	-	-	1.89	220.62
	BH301	604093.79	4914446.01	226.10	224.91	1.88	4.93	9.60	-	-	-	-	-	-	-	-	-	-
	BH401	604146.00	4914466.90	222.65	222.75	9.15	10.66	10.66	-	-	-	-	-	-	-	-	-	-
	BH402	604081.20	4914469.20	226.04	225.13	9.15	10.66	10.66	-	-	-	-	-	-	-	-	-	-

Notes:

Elevation in metres above sea level mbgs - metres below ground surface

Table 4 - Monitoring Well Summary

		U	ТМ	Top of Casing	Ground Surface	3-O	ct-19	19-N	lov-19	10-D	ec-19	10-J	an-20	13-F	eb-20	11-1	Mar-20	8-A	pr-20
Installed By	Well ID	Easting	Northing	Elevation	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation	Depth	Elevation
s ntal t Inc.	BH1	604151.55	4914444.30	222.43	222.52	1.85	220.67	1.63	220.89	1.56	220.96	1.61	220.91	-	-	1.48	221.04	1.49	221.03
. Harris ronme gemen	BH2	604132.93	4914429.22	222.73	222.83	1.95	220.88	-	-	-	-	-	-	-	-			1.59	221.24
T. Harris Environmental Management Inc.	ВН3	604102.09	4914434.06	223.83	222.830	-	-	-	-	-	-	-	-	-	-				
	BH101	604081.70	4914469.90	225.79	225.12	3.24	221.88	3.76	221.36	3.74	221.38	3.69	221.43	3.52	221.60	3.53	221.60	3.33	221.79
in Ld.	BH102	604110.72	4914411.67	222.85	222.87	1.65	221.22	1.45	221.42	1.38	221.49	1.37	221.50	1.39	221.48	1.11	221.76	1.21	221.66
Pinchin Ld.	BH103	604109.23	4914443.40	225.06	224.45	2.76	221.69	3.20	221.25	3.18	221.27	3.14	221.31	-	-	2.99	221.46	2.88	221.57
	BH104	604147.08	4914466.90	222.62	222.76	2.15	220.61	1.98	220.77	1.84	220.91	1.93	220.82	-	-	1.64	221.11	1.64	221.11
	BH201	604131.04	4914442.63	222.88	223.02	2.23	220.79	1.95	221.07	1.90	221.12	1.87	221.15	-	-	1.70	221.32	1.70	221.32
	BH202	604132.98	4914455.88	223.82	223.95	3.20	220.75	2.91	221.04	2.87	221.08	2.85	221.10	2.47	221.48	3.66	220.29	2.63	221.32
	BH203	604118.37	4914446.01	223.97	224.11	3.19	220.92	2.91	221.20	2.88	221.23	2.91	221.20	2.73	221.38	2.68	221.43	2.60	221.51
	BH204	604153.32	4914443.54	222.26	222.46	1.91	220.55	1.58	220.88	1.52	220.94	1.54	220.92	1.55	220.91	1.53	220.93	1.52	220.94
nc.	BH205	604134.89	4914427.94	222.71	222.79	1.89	220.90	1.66	221.13	1.60	221.19	1.60	221.19	1.55	221.24	1.42	221.37	1.45	221.34
Cambium Inc.	BH206	604085.30	4914392.40	221.91	222.05	1.21	220.84	1.01	221.04	0.80	221.25	0.95	221.10	0.86	221.19	0.73	221.32	0.78	221.27
Саш	BH207	604099.76	4914429.07	224.16	224.26	3.15	221.11	2.90	221.37	2.88	221.39	2.83	221.44	2.72	221.55	2.67	221.60	2.58	221.69
	BH208	604151.10	4914441.60	222.44	222.51	0.88	221.63	1.33	221.18	0.66	221.85	0.70	221.81	0.85	221.66	0.46	222.05	0.45	222.06
	BH301	604093.79	4914446.01	226.10	224.91	-	-	3.27	221.64	3.26	221.65	3.21	221.70	3.08	221.83	3.06	221.85	2.90	222.01
	BH401	604146.00	4914466.90	222.65	222.75	-	-	-	-	-	-	-	-	0.98	221.77	0.95	221.80	0.85	221.90
	BH402	604081.20	4914469.20	226.04	225.13	-	-	-	-	-	-	-	-	2.96	222.17	3.97	221.16	2.83	222.30

Notes:

Elevation in metres above sea level mbgs - metres below ground surface

				г	Location	BH01	BH01	BH02	BH03	BH04	BH06	BH07	BH08	BH09	BH10	BH101	BH102	BH103	BH104	BH104
					Date	2/23/16	2/23/16	2/23/16	2/23/16	2/23/16	2/23/16	2/23/16	2/23/16	2/23/16	2/23/16	8/23/18	8/23/18	8/23/18	8/23/18	8/23/18
					Field ID Laboratory	BH01-1 Exova	BH01-3 Exova	BH02-2 Exova	BH03-3 Exova	BH04-1 Exova	BH06-2 Exova	BH07-1 Exova	BH08-2 Exova	BH09-2 Exova	BH10-1 Exova	BH101-8 Maxxam	-	BH103-7 Maxxam	BH104-7 Maxxam	BH104-8 Maxxam
					Lab Report Number	1602777	1602777	1602777	1602777	1602777	1602777	1602777	1602777	1602777	1602777	B8M2749	B8M2749	B8M2749	B8M2749	B8M2749
			Table	8 - All Tv	/pes of Property Use	Normal	Normal	Normal	Normal	Normal										
				,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															
Parameter	Unit	RDL	≤1.5 m	>1.5 m	>0 m															
BTEX Benzene	ug/g	0.02			0.02	<0.02	<0.02	<0.02	<0.02	-	<0.02	-	-	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	ug/g	0.2			0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	-	-	<0.2	-	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene Xylene Total	ug/g ug/g	0.05			0.05 0.05 ^{#1}	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05	-	-	<0.05 <0.05	-	<0.02 <0.02	<0.02	<0.02 <0.02	<0.02 <0.04	<0.02
PHCs	l ag/g	0.00				40.00	40.00	10.00	10.00		10.00	l		10.00		40.02	10.02	10.02	10.04	10.02
PHC F1	ug/g	10			10 ^{#2}	<10	<10	<10	<10	-	<10	-	-	<10	-	-	-	-	<10	-
PHC F2 PHC F3	µg/g µg/g	5 10			10 ^{#3} 50 ^{#4}	<10 <20	<10 <20	<10 <20	<10 <20	-	<10 <20	-	-	<10 <20	-	-	-	-	<10 <50	-
PHC F4	µg/g	10			50	<20	<20	<20	<20	-	<20	-	-	<20	-	-	-	-	<50	-
PHC F4g	ug/g	50			50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VOCs Acetone	ug/g	0.5			0.5	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	-	<0.5
Bromodichloromethane	ug/g	0.02			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Bromoform Bromomethane	ug/g ug/g	0.02			0.05 0.05	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05
Carbon tetrachloride	ug/g	0.05			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Chlorobenzene Chloroform	ug/g ug/g	0.02			0.05 0.05	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05
Dibromochloromethane	ug/g	0.02			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Dichlorobenzene, 1,2- Dichlorobenzene, 1,3-	ug/g	0.05 0.05			0.05 0.05	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05
Dichlorobenzene, 1,3-	ug/g ug/g	0.05			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Dichlorodifluoromethane	ug/g	0.05			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Dichloroethane, 1,1- Dichloroethane, 1,2-	ug/g ug/g	0.02			0.05 0.05	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05
Dichloroethylene, 1,1-	ug/g	0.02			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Dichloroethylene, 1,2-cis- Dichloroethylene, 1,2-trans-	ug/g ug/g	0.02			0.05 0.05	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05
Dichloropropane, 1,2-	ug/g ug/g	0.02			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Dichloropropene, 1,3-	ug/g	0.05			0.05#5	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Ethylene dibromide Hexane	ug/g ug/g	0.02			0.05 0.05	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05
Methyl Ethyl Ketone	ug/g	0.5			0.5	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	-	<0.5
Methyl Isobutyl Ketone Methylene chloride	ug/g ug/g	0.5			0.5 0.05	-	-	-	-	-	-	-	-	-	-	<0.5 <0.05	<0.5 <0.05	<0.5 <0.05	-	<0.5 <0.05
Methyl tert-Butyl Ether	ug/g	0.05			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Styrene Tetraphlareathana 1122	ug/g	0.05			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Tetrachloroethane, 1,1,2,2- Tetrachloroethane, 1,1,1,2-	ug/g ug/g	0.05			0.05 0.05	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05
Tetrachloroethylene	ug/g	0.05			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Trichloroethane, 1,1,1- Trichloroethane, 1,1,2-	ug/g ug/g	0.02			0.05 0.05	-	-	-	-	-	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	<0.05 <0.05
Trichloroethylene	ug/g	0.05			0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	-	<0.05
Trichlorofluoromethane Vinyl chloride	ug/g ug/g	0.02			0.25 0.02	-	-	-	-	-	-	-	-	-	-	<0.05 <0.02	<0.05 <0.02	<0.05 <0.02	-	<0.05 <0.02
PAHs .	ug/g	0.02														10.02	1 40.02	10.02		10.02
Acenaphthene Acenaphthylene	ug/g	0.05 0.05			0.072 0.093	-	-	-	-	-	-	-	<0.05 <0.05	-	<0.05 <0.05	-	-	-	-	-
Anthracene	ug/g ug/g	0.05			0.093	-	-	-	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-
Benz(a)anthracene	ug/g	0.05			0.36	-	-	-	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-
Benzo(a)pyrene Benzo(b)fluoranthene	ug/g ug/g	0.05			0.3 0.47 ^{#6}	-	-	-	-	-	-	-	<0.05 <0.05	-	<0.05 <0.05	-	-	-	-	-
Benzo(g,h,i)perylene	ug/g	0.05			0.68	-	-	-	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-
Benzo(k)fluoranthene Chrysene	ug/g ug/g	0.05			0.48 2.8	-	-	-	-	-	-	-	<0.05 <0.05	-	<0.05 <0.05	-	-	-	-	-
Dibenz(a,h)anthracene	ug/g ug/g	0.05			0.1	-	-	-	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-
Fluoranthene	ug/g	0.05			0.69	-	-	-	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-
Fluorene Indeno(1,2,3-c,d)pyrene	ug/g ug/g	0.05 0.05			0.19 0.23	-	-	-	-	-	-	-	<0.05 <0.05	-	<0.05 <0.05	-	-	-	-	-
Methylnaphthalene, 1-	ug/g	0.05			0.59#7	-	-	-	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-
Methylnaphthalene, 2- Methylnaphthalene, 2-,1-	ug/g	0.05 0.05			0.59 ^{#7}	-	-	-	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-
Naphthalene	ug/g ug/g	0.05			0.59 ^{#7} 0.09	-	-	-	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-
Phenanthrene	ug/g	0.05			0.69	-	-	-	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-
Pyrene Metals	ug/g	0.05			1	-	-	-	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-
Antimony	ug/g	0.5			1.3	-	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-
Arsenic Barium	ug/g ug/g	0.5			18 220	-	-	-	-	29	-	<1 6	-	-	-	-	-	-	-	-
Boron	ug/g	0.5		36 ^{#8}		-	-	-	-	10	-	<10	-	-	-	-	-	-	-	-
Boron (hot water soluble)	ug/g	0.02	1.5 ^{#9}		0.5	-	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-
Beryllium Cadmium	ug/g ug/g	0.2			2.5 1.2	-	-	-	-	<1 <0.5	-	<1 <0.5	-	-	-	-	-	-	-	-
Chromium (VI)	ug/g	0.5			0.66	-	-	-	-	<0.5	-	<0.5	-	-	-	-	-	-	-	-
Chromium (III+VI) Cobalt	ug/g ug/g	1			70 22	-	-	-	-	20	-	6 2	-	-	-	-	-	-	-	-
Cyanide (Free)	ug/g ug/g	0.03			0.051	-	-	-	-	<0.03	-	<0.03	-	-	-	-	-	-	-	-
Copper	ug/g	1			92	-	-	-	-	7	-	2	-	-	-	-	-	-	-	-
Lead Mercury	ug/g ug/g	5 0.1			120 0.27	-	-	-	-	15 <0.1	-	<1 <0.1	-	-	-	-	-	-	-	-
Molybdenum	ug/g	1			2	-	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-
Nickel Selenium	ug/g ug/g	0.5			82 1.5	-	-	-	-	11 <1	-	3 <1	-	-	-	-	-	-	-	-
Silver	ug/g ug/g	0.2			0.5	-	-	-	-	<0.2	-	<0.2	-	-	-	-	-	-	-	-
Thallium	ug/g	0.1	\vdash		1	-	-	-	-	<1	-	<1	-	-	-	-	-	-	-	-
Uranium Vanadium	ug/g ug/g	0.1			2.5 86	-	-	-	-	<0.5 23	-	<0.5 23	-	-	-	-	-	-	-	-
Zinc	ug/g	3			290	-	-	-	-	27	-	6	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls PCBs (Total)	ug/g	0.3			0.3 ^{#10}	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Inorganics																				
Electrical conductivity *(lab) Sodium Absorption Ratio	mS/cm				0.7 5	-	-	-	-	0.15 0.24	-	0.06 0.12	-	-	-	-	-	-	-	-
Journal Appolition Kallo	pH_Units		5-9	5-11	J	-	-	-	-	7.3	-	7.1	-	-	-	-	-	-	-	-

Env Stds Description

Table 8 - All Types of Property Use:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to total xylenes; m & p-xylenes and o-xylenes should be summed for comparison.

#2:Standard is applicable to PHC in the F1 range minus BTEX.
#3:Standard is applicable to PHC F2 minus naphthalene. If naphthalene is not analyzed, the standard is applied to F2.

#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not been measured, the standard is applied to F3.

#5:Standard is applicable to 1,3-Dichloropropene. Individual isomers (cis + trans) should be

added for comparison.
#6:Standard is for benzo(b)fluoranthene; however, the laboratory can not distinguish between

benzo(b)fluoranthene and benzo(j)fluoranthene.
#7:Standard is applicable to Methylnaphthalene, 1- and Methylnaphthalene, 2-. If both are

detected, the sum of the two must not exceed the standard. #8:Total Boron standard is for sub-surface soil (>1.5 m).

#9:HWS Boron standard is for surface soil (<1.5 m).
#10:Standard is applicable to total PCBs, Individual arcclors should be added for comparison.

					Location	BH201	BH201	BH201	BH201	BH201	BH201	BH201	BH202	BH202
					Date	8/26/19 BH 201 0.9-1.5m	8/26/19	8/26/19	8/26/19	8/26/19	8/26/19	8/26/19 QA/QC 4	8/26/19	8/26/19
					Laboratory	Caduceon	QA/QC 8 Caduceon	BH 201 1.8-2.1m Caduceon	BH 201 3.0-3.7m Caduceon	Caduceon	BH 201 4.1-4.6m Caduceon	Caduceon	BH 202 0.6-1.5m Caduceon	Caduceon
					Lab Report Number	B19-27055	B19-27055	B19-27055	B19-27055	B19-28088	B19-28084	B19-28088	B19-27055	B19-27055
			T-51	- 0 AUT	Type	Normal	Field_D	Normal	Normal	Normal	Normal	Field_D	Normal	Normal
			rable	e 8 - All I	ypes of Property Use									
Parameter	Unit	RDL	≤1.5 m	>1.5 m	>0 m									
BTEX Benzene	ug/g	0.02		I	0.02	-	_	_	<0.02		_	Ι.	_	<0.02
Toluene	ug/g	0.02			0.02	-	-	-	<0.02	-	-	-	-	<0.2
Ethylbenzene	ug/g	0.05			0.05	-	-	-	<0.05	-	-	-	-	<0.05
Xylene Total	ug/g	0.03			0.05#1	-	-	-	<0.03	-	-	-	-	<0.03
PHCs PHC F1	ua/a	10			10#2	-	-	-	<10		<10	T -	-	<10
PHC F2	ug/g µg/g	5			10 ^{#3}	-	-	-	<5	-	<5	-	-	<5
PHC F3	µg/g	10			50#4	-	-	-	18	-	<10	-	-	<10
PHC F4	μg/g	10			50	-	-	-	47	-	<10	-	-	<10
PHC F4g	ug/g	50			50	-	-	-	260	-	-	-	-	-
VOCs Acetone	ug/g	0.5		1	0.5	-	-	-	<0.5		-	T -	-	<0.5
Bromodichloromethane	ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Bromoform	ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Bromomethane Carbon tetrachloride	ug/g	0.05			0.05	-	-	-	<0.05	-	-	-	-	<0.05
Chlorobenzene	ug/g ug/g	0.05			0.05 0.05	-	-	-	<0.05 <0.02	-	-	-	-	<0.05 <0.02
Chloroform	ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Dibromochloromethane	ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Dichlorobenzene, 1,2-	ug/g	0.05		-	0.05 0.05	-	-	-	<0.05 <0.05	-	-	-	-	<0.05 <0.05
Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-	ug/g ug/g	0.05		 	0.05	-	-	-	<0.05 <0.05	<u> </u>	-	-	-	<0.05
Dichlorodifluoromethane	ug/g	0.05			0.05	-	-	-	<0.05	-	-	-	-	<0.05
Dichloroethane, 1,1-	ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Dichloroethane, 1,2- Dichloroethylene, 1,1-	ug/g ug/g	0.02			0.05 0.05	-	-	-	<0.02 <0.02	-	-	-	-	<0.02 <0.02
Dichloroethylene, 1,2-cis-	ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Dichloroethylene,1,2-trans-	ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Dichloropropane, 1,2-	ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Dichloropropene, 1,3- Ethylene dibromide	ug/g	0.05		-	0.05 ^{#5} 0.05	-	-	-	<0.02	-	-	-	-	<0.02
Hexane	ug/g ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Methyl Ethyl Ketone	ug/g	0.5			0.5	-	-	-	<0.5	-	-	-	-	<0.5
Methyl Isobutyl Ketone	ug/g	0.5			0.5	-	-	-	<0.5	-	-	-	-	<0.5
Methylene chloride	ug/g	0.05			0.05 0.05	-	-	-	-0.05	-	-	-	-	-0.05
Methyl tert-Butyl Ether Styrene	ug/g ug/g	0.05			0.05	-	-	-	<0.05 <0.05	-	-	-	-	<0.05 <0.05
Tetrachloroethane, 1,1,2,2-	ug/g	0.05			0.05	-	-	-	<0.05	-	-	-	-	<0.05
Tetrachloroethane, 1,1,1,2-	ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Tetrachloroethylene Trichloroethane, 1,1,1-	ug/g	0.05			0.05 0.05	<u>-</u> -	-	-	<0.05 <0.02	-	-	-	-	<0.05 <0.02
Trichloroethane, 1,1,2-	ug/g ug/g	0.02			0.05	-	-	-	<0.02	-	-	-	-	<0.02
Trichloroethylene	ug/g	0.05			0.05	-	-	-	<0.05	-	-	-	-	<0.05
Trichlorofluoromethane	ug/g	0.02			0.25	-	-	-	<0.02	-	-	-	-	<0.02
Vinyl chloride PAHs	ug/g	0.02			0.02	-	-	-	<0.02	-	-	-	-	<0.02
Acenaphthene	ug/g	0.05			0.072	-	-	-	-	-	-	-	<0.05	-
Acenaphthylene	ug/g	0.05			0.093	-	-	-	-	-	-	-	<0.05	-
Anthracene	ug/g	0.05			0.22	-	-	-	-	-	-	-	<0.05	-
Benz(a)anthracene Benzo(a)pyrene	ug/g ug/g	0.05			0.36 0.3	-	-	-	-	-	-	-	<0.05 <0.05	-
Benzo(b)fluoranthene	ug/g	0.05			0.47 ^{#6}	-	-	-	-	-	-	-	<0.05	-
Benzo(g,h,i)perylene	ug/g	0.05			0.68	-	-	-	-	-	-	-	<0.05	-
Benzo(k)fluoranthene Chrysene	ug/g	0.05			0.48 2.8	-	-	-	-	-	-	-	<0.05 <0.05	-
Dibenz(a,h)anthracene	ug/g ug/g	0.05			0.1	-	-	-	-	-	-	-	<0.05	-
Fluoranthene	ug/g	0.05			0.69	-	-	-	-	-	-	-	<0.05	-
Fluorene	ug/g	0.05			0.19	-	-	-	-	-	-	-	<0.05 <0.05	-
Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1-	ug/g ug/g	0.05			0.23 0.59 ^{#7}	-	-	-	-	-	-	-	<0.05	
Methylnaphthalene, 2-	ug/g	0.05			0.59#7	-	-	-	-	-	-	-	<0.05	-
Methylnaphthalene, 2-,1-	ug/g	0.05			0.59#7	-	-	-	-	-	-	-	<0.05	-
Naphthalene	ug/g	0.05			0.09	-	-	-	-	-	-	-	<0.05	-
Phenanthrene Pyrene	ug/g ug/g	0.05			0.69	<u>-</u>	-	-	-	-	-	-	<0.05 <0.05	-
Metals	,a-a													
Antimony	ug/g	0.5			1.3	-	-	<0.5	-	-	-	-	<0.5	•
Arsenic Barium	ug/g ug/g	0.5			18 220	-	-	0.6 8	-	-	-	-	1 31	-
Boron	ug/g	0.5		36#8	220	-	-	11.1	-	-	-	-	12.9	-
Boron (hot water soluble)	ug/g	0.02	1.5 ^{#9}			-	-	0.25		-	-	-	0.19	-
Beryllium	ug/g	0.2			2.5	-	-	<0.2	-	-	-	-	0.2	-
Cadmium Chromium (VI)	ug/g	0.5		-	1.2 0.66	-	-	<0.5	-	-	-	-	<0.5	-
Chromium (VI) Chromium (III+VI)	ug/g ug/g	0.0			70	-	-	-	-	-	-	-	-	-
Cobalt	ug/g	1			22	-	-	2	-	-	-	-	3	-
Cyanide (Free)	ug/g	0.03			0.051	-	-	-	-	-	-	-	-	-
Copper Lead	ug/g ug/g	5			92 120	-	-	2 <5	-	-	-	-	5 <5	· ·
Mercury	ug/g	0.1			0.27	-	-	-	-	-	-	-	-	-
Molybdenum	ug/g	1			2	-	-	-	-	-	-	-	-	•
Nickel	ug/g	1			82	-	-	2	-	-	-	-	5	-
Selenium Silver	ug/g ug/g	0.5		 	1.5 0.5	-	-	<0.5 <0.2	-	-	-	-	<0.5 <0.2	-
Thallium	ug/g	0.1			1	-	-	<0.1	-	-	-	-	<0.1	-
Uranium	ug/g	0.1			2.5	-	-	0.4	-	-	-	-	0.4	-
Vanadium Zinc	ug/g ug/g	3		-	86 290	-	-	24 10	-	-	-	-	17 22	-
Polychlorinated Biphenyls	l ug/g	3			290	-	-	10	-	-	-			-
PCBs (Total)	ug/g	0.3		L	0.3 ^{#10}	-	-	-	-	<0.3	-	<0.3	-	-
Inorganics														
Electrical conductivity *(lab)	mS/cm			<u> </u>	0.7	-	-	-	-	-	-	-	-	•
Sodium Absorption Ratio					5	-	-	-	-	-	-	-	-	-
pH (Lab)	pH_Units		5-9	5-11		7.81	7.79	-	7.72	-	-	-	- '	_

Table 8 - All Types of Property Use:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to total xylenes; m & p-xylenes and o-xylenes should be summed for comparison.

#2:Standard is applicable to PHC in the F1 range minus BTEX.
#3:Standard is applicable to PHC F2 minus naphthalene. If naphthalene is not analyzed, the standard is applied to F2.

#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not been measured, the standard is applied to F3.

#5:Standard is applicable to 1,3-Dichloropropene. Individual isomers (cis + trans) should be added for comparison.
#6:Standard is for benzo(b)fluoranthene; however, the laboratory can not distinguish between

benzo(b)fluoranthene and benzo(j)fluoranthene.
#7:Standard is applicable to Methylnaphthalene, 1- and Methylnaphthalene, 2-. If both are

detected, the sum of the two must not exceed the standard. #8:Total Boron standard is for sub-surface soil (>1.5 m).

#9:HWS Boron standard is for surface soil (<1.5 m).
#10:Standard is applicable to total PCBs, Individual arcclors should be added for comparison.

					Location Date	BH203 8/26/19	BH203 8/26/19	BH204 8/22/19	BH204 8/22/19	BH204 8/22/19	BH204 8/22/19	BH205 8/22/19	BH205 8/22/19	BH207 8/22/19
					Field ID Laboratory	BH 203 0.6-1.5m Caduceon	QA/QC 5 Caduceon	BH 204 1.50-2.18m Caduceon	BH 204 3.05-4.14m Caduceon	QA/QC 2 Caduceon	QA/QC 3 Caduceon	BH 205 0.0-1.52m Caduceon	BH 205 3.04-4.57m Caduceon	BH 207 3.05-3.40n Caduceon
					Lab Report Number	B19-27055	B19-27055	B19-27055	B19-27055	B19-27055	B19-27055	B19-27055	B19-27055	B19-27055
			Table	8 - All Tv	Type pes of Property Use	Normal	Field_D	Normal	Normal	Field_D	Field_D	Normal	Normal	Normal
			rabio	7 ,	ypos or rioporty coo									
Parameter BTEX	Unit	RDL	≤1.5 m	>1.5 m	>0 m									
Benzene	ug/g	0.02			0.02	-	-	-	<0.02	-	<0.02	-	<0.02	<0.02
Toluene Ethylbenzene	ug/g ug/g	0.2			0.2 0.05	-	-	-	<0.2 <0.05	-	<0.2 <0.05	-	<0.2 <0.05	<0.2 <0.05
Xylene Total	ug/g	0.03			0.05 ^{#1}	-	-	-	<0.03	-	<0.03	-	<0.03	<0.03
PHCs PHC F1		10			#2	-	T -	ı	<10	-	<10	ı	<10	<10
PHC F2	ug/g µg/g	5			10 ^{#2} 10 ^{#3}	-	-	-	<5	-	<5	-	<6	<5
PHC F3	μg/g	10			50#4	-	-	-	<10	-	<10	-	<10	<10
PHC F4 PHC F4g	μg/g ug/g	10 50			50 50	-	-	-	<10	-	<10	-	<10	<10
VOCs	ugrg							I.	l.					
Acetone Bromodichloromethane	ug/g ug/g	0.5			0.5 0.05	-	-	-	<0.5 <0.02	-	<0.5 <0.02	-	<0.5 <0.02	<0.5 <0.02
Bromoform	ug/g ug/g	0.02			0.05	-	-	-	<0.02	-	<0.02	-	<0.02	<0.02
Bromomethane Carbon tetraphlarida	ug/g	0.05			0.05	-	-	-	<0.05	-	<0.05	-	<0.05	<0.05
Carbon tetrachloride Chlorobenzene	ug/g ug/g	0.05			0.05 0.05	-	-	-	<0.05 <0.02	-	<0.05 <0.02	-	<0.05 <0.02	<0.05 <0.02
Chloroform	ug/g	0.02			0.05	-	-	-	<0.02	-	<0.02	-	<0.02	<0.02
Dibromochloromethane Dichlorobenzene, 1,2-	ug/g ug/g	0.02	1		0.05 0.05	-	-	-	<0.02 <0.05	-	<0.02 <0.05	-	<0.02 <0.05	<0.02 <0.05
Dichlorobenzene, 1,3-	ug/g	0.05			0.05	-	-	-	<0.05	-	<0.05	-	<0.05	<0.05
Dichlorobenzene, 1,4- Dichlorodifluoromethane	ug/g ug/g	0.05			0.05 0.05	-	-	-	<0.05 <0.05	-	<0.05 <0.05	-	<0.05 <0.05	<0.05 <0.05
Dichloroethane, 1,1-	ug/g ug/g	0.05			0.05	-	-	-	<0.05	-	<0.05	-	<0.05	<0.05
Dichloroethylene 1.1-	ug/g	0.02			0.05 0.05	-	-	-	<0.02 <0.02	-	<0.02 <0.02	-	<0.02	<0.02 <0.02
Dichloroethylene, 1,1- Dichloroethylene, 1,2-cis-	ug/g ug/g	0.02			0.05	-	-	-	<0.02 <0.02	-	<0.02	-	<0.02 <0.02	<0.02 <0.02
Dichloroethylene,1,2-trans-	ug/g	0.02			0.05	-	-	-	<0.02	-	<0.02	-	<0.02	<0.02
Dichloropropane, 1,2- Dichloropropene, 1,3-	ug/g ug/g	0.02	1		0.05 0.05 ^{#5}	-	-	-	<0.02	-	<0.02	-	<0.02	<0.02
Ethylene dibromide	ug/g	0.02			0.05	-	-	-	<0.02	-	<0.02	-	<0.02	<0.02
Hexane Methyl Ethyl Ketone	ug/g ug/g	0.02			0.05 0.5	-	-	-	<0.02 <0.5	-	<0.02 <0.5	-	<0.02 <0.5	<0.02 <0.5
Methyl Isobutyl Ketone	ug/g ug/g	0.5			0.5	-	-	-	<0.5	-	<0.5	-	<0.5	<0.5
Methylene chloride	ug/g	0.05			0.05	-	-	-	- 0.05	-	- 0.05	-	- 0.05	-
Methyl tert-Butyl Ether Styrene	ug/g ug/g	0.05			0.05 0.05	-	-	-	<0.05 <0.05	-	<0.05 <0.05	-	<0.05 <0.05	<0.05 <0.05
Tetrachloroethane, 1,1,2,2-	ug/g	0.05			0.05	-	-	-	<0.05	-	<0.05	-	<0.05	<0.05
Tetrachloroethane, 1,1,1,2- Tetrachloroethylene	ug/g ug/g	0.02			0.05 0.05	-	-	-	<0.02 <0.05	-	<0.02 <0.05	-	<0.02 <0.05	<0.02 <0.05
Trichloroethane, 1,1,1-	ug/g	0.02			0.05	-	-	-	<0.02	-	<0.02	-	<0.02	<0.02
Trichloroethylene	ug/g	0.02			0.05	-	-	-	<0.02	-	<0.02 <0.05	-	<0.02	<0.02
Trichloroethylene Trichlorofluoromethane	ug/g ug/g	0.03			0.05 0.25	-	-	-	<0.05 <0.02	-	<0.02	-	<0.05 <0.02	<0.05 <0.02
Vinyl chloride PAHs	ug/g	0.02			0.02	-	-	-	<0.02	-	<0.02	-	<0.02	<0.02
Acenaphthene	ug/g	0.05			0.072	<0.05	<0.05	<0.05	-	-	-	<0.05	-	-
Acenaphthylene	ug/g	0.05			0.093	<0.05	<0.05	<0.05	-	-	-	<0.05	-	-
Anthracene Benz(a)anthracene	ug/g ug/g	0.05			0.22 0.36	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	<0.05 <0.05	-	-
Benzo(a)pyrene	ug/g	0.05			0.3	<0.05	<0.05	<0.05	-	-	-	<0.05	-	-
Benzo(b)fluoranthene Benzo(g,h,i)perylene	ug/g ug/g	0.05			0.47 ^{#6} 0.68	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	<0.05 <0.05	-	-
Benzo(k)fluoranthene	ug/g	0.05			0.48	<0.05	<0.05	<0.05	-	-	-	<0.05	-	-
Chrysene Dibenz(a,h)anthracene	ug/g ug/g	0.05			2.8 0.1	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	<0.05 <0.05	-	-
Fluoranthene	ug/g	0.05			0.69	<0.05	<0.05	<0.05	-	-	-	<0.05	-	-
Fluorene	ug/g	0.05			0.19	<0.05	<0.05	<0.05	-	-	-	<0.05	-	-
Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1-	ug/g ug/g	0.05 0.05			0.23 0.59 ^{#7}	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	<0.05 <0.05	-	-
Methylnaphthalene, 2-	ug/g	0.05			0.59 ^{#7}	<0.05	<0.05	<0.05	-	-	-	<0.05	-	-
Methylnaphthalene, 2-,1- Naphthalene	ug/g	0.05 0.05	-		0.59 ^{#7} 0.09	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	<0.05 <0.05	-	-
Phenanthrene	ug/g ug/g	0.05			0.69	<0.05	<0.05	<0.05	-	-	-	<0.05 <0.05	-	-
Pyrene	ug/g	0.05			1	<0.05	<0.05	<0.05	-	-	-	<0.05	-	-
Metals Antimony	ug/g	0.5			1.3	<0.5	-	<0.5	-	<0.5		<0.5	-	-
Arsenic	ug/g	0.5			18	1	-	0.7	-	0.7	-	0.9	-	-
Barium Boron	ug/g ug/g	0.5	 	36#8	220	26 12.6	-	12 10	-	10	-	18 11	-	-
Boron (hot water soluble)	ug/g ug/g	0.02	1.5 ^{#9}	JU		0.19	-	0.21	-	0.16	-	0.26	-	
Beryllium	ug/g	0.2			2.5	0.2	-	<0.2	-	<0.2	-	<0.2	-	-
Cadmium Chromium (VI)	ug/g ug/g	0.5 0.5			1.2 0.66	<0.5	-	<0.5	-	<0.5	-	<0.5	-	-
Chromium (III+VI)	ug/g				70	-	-	-	-	-	-	-	-	-
Cobalt Cyanide (Free)	ug/g ug/g	0.03			22 0.051	3	-	2	-	2	-	2	-	-
Copper Copper	ug/g ug/g	1			92	6	-	2	-	1	-	2	-	-
Lead	ug/g	5			120 0.27	<5	-	<5	-	<5	-	13	-	-
Mercury Molybdenum	ug/g ug/g	0.1			2	-	-	-	-	-	-	-	-	-
Nickel	ug/g	1			82	5	-	3	-	2	-	4	-	-
Selenium Silver	ug/g ug/g	0.5			1.5 0.5	<0.5 <0.2	-	<0.5 <0.2	-	<0.5 <0.2	-	<0.5 <0.2	-	-
Thallium	ug/g	0.1			1	<0.1	-	<0.1	-	<0.1	-	<0.1	-	-
Uranium Vanadium	ug/g ug/g	0.1			2.5 86	0.4 18	-	0.4	-	0.3 28	-	0.3 27	-	-
Zinc	ug/g ug/g	3			290	18	-	13	-	9	-	18	-	-
Polychlorinated Biphenyls	us/c	0.2			0 6#10									
PCBs (Total) Inorganics	ug/g	0.3			0.3 ^{#10}	-	-	-	-	-	-	-	-	-
Electrical conductivity *(lab)	mS/cm				0.7	-	-	-	-	-	-	-	-	-
Sodium Absorption Ratio	nH Units		5.0	5_11	5	-	-	-	-	-	-	-	-	-
pH (Lab)	pH_Units		5-9	5-11		-	-	-	-	-	-	-	-	-

Table 8 - All Types of Property Use:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to total xylenes; m & p-xylenes and o-xylenes should be summed for comparison.

#2:Standard is applicable to PHC in the F1 range minus BTEX.
#3:Standard is applicable to PHC F2 minus naphthalene. If naphthalene is not analyzed, the standard is applied to F2.

#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not been measured, the standard is applied to F3.

#5:Standard is applicable to 1,3-Dichloropropene. Individual isomers (cis + trans) should be

added for comparison.
#6:Standard is for benzo(b)fluoranthene; however, the laboratory can not distinguish between

benzo(b)fluoranthene and benzo(j)fluoranthene.
#7:Standard is applicable to Methylnaphthalene, 1- and Methylnaphthalene, 2-. If both are

detected, the sum of the two must not exceed the standard. #8:Total Boron standard is for sub-surface soil (>1.5 m).

#9:HWS Boron standard is for surface soil (<1.5 m).
#10:Standard is applicable to total PCBs, Individual aroclors should be added for comparison.

					Location	BH208
					Date Field ID	8/22/19
					Laboratory	BH 208 4.57-5.47m Caduceon
					Lab Report Number	B19-27055
					Туре	Normal
			Table	e 8 - All Ty	ypes of Property Use	
Davamatar	l limit	DDI	-4 F	. 1 5	. 0	
Parameter BTEX	Unit	RDL	\$1.5 M	>1.5 m	>0 m	
Benzene	ug/g	0.02		I	0.02	<0.02
Toluene	ug/g	0.2			0.2	<0.2
Ethylbenzene	ug/g	0.05			0.05	<0.05
Xylene Total	ug/g	0.03			0.05 ^{#1}	<0.03
PHCs						
PHC F1	ug/g	10			10 ^{#2}	<10
PHC F2	μg/g	5			10#3	<5
PHC F3	μg/g	10			50#4	<10
PHC F4	μg/g	10			50	<10
PHC F4g VOCs	ug/g	50			50	-
Acetone	ug/g	0.5		Г	0.5	<0.5
Bromodichloromethane	ug/g	0.02			0.05	<0.02
Bromoform	ug/g	0.02			0.05	<0.02
Bromomethane	ug/g	0.05			0.05	<0.05
Carbon tetrachloride	ug/g	0.05			0.05	<0.05
Chloroform	ug/g	0.02	<u> </u>	-	0.05	<0.02
Chloroform	ug/g	0.02			0.05	<0.02
Dibromochloromethane Dichlorobenzene, 1,2-	ug/g ug/g	0.02			0.05 0.05	<0.02 <0.05
Dichlorobenzene, 1,3-	ug/g ug/g	0.05			0.05	<0.05
Dichlorobenzene, 1,4-	ug/g	0.05		İ	0.05	<0.05
Dichlorodifluoromethane	ug/g	0.05			0.05	<0.05
Dichloroethane, 1,1-	ug/g	0.02			0.05	<0.02
Dichloroethane, 1,2-	ug/g	0.02			0.05	<0.02
Dichloroethylene, 1,1-	ug/g	0.02			0.05	<0.02
Dichloroethylene, 1,2-cis-	ug/g	0.02			0.05	<0.02
Dichloroethylene,1,2-trans-	ug/g	0.02			0.05	<0.02
Dichloropropane, 1,2- Dichloropropene, 1,3-	ug/g ug/g	0.02			0.05 0.05 ^{#5}	<0.02
Ethylene dibromide	ug/g	0.02			0.05	<0.02
Hexane	ug/g	0.02			0.05	<0.02
Methyl Ethyl Ketone	ug/g	0.5			0.5	<0.5
Methyl Isobutyl Ketone	ug/g	0.5			0.5	<0.5
Methylene chloride	ug/g	0.05			0.05	-
Methyl tert-Butyl Ether	ug/g	0.05			0.05	<0.05
Styrene	ug/g	0.05			0.05	<0.05
Tetrachloroethane, 1,1,2,2-	ug/g	0.05			0.05	<0.05
Tetrachloroethane, 1,1,1,2- Tetrachloroethylene	ug/g ug/g	0.02			0.05 0.05	<0.02 <0.05
Trichloroethane, 1,1,1-	ug/g	0.02			0.05	<0.02
Trichloroethane, 1,1,2-	ug/g	0.02			0.05	<0.02
Trichloroethylene	ug/g	0.05			0.05	<0.05
Trichlorofluoromethane	ug/g	0.02			0.25	<0.02
Vinyl chloride	ug/g	0.02			0.02	<0.02
PAHs		0.05			0.072	
Acenaphthene Acenaphthylene	ug/g ug/g	0.05			0.072 0.093	-
Anthracene	ug/g	0.05			0.22	-
Benz(a)anthracene	ug/g	0.05			0.36	-
Benzo(a)pyrene	ug/g	0.05			0.3	-
Benzo(b)fluoranthene	ug/g	0.05			0.47 ^{#6}	-
Benzo(g,h,i)perylene	ug/g	0.05			0.68	-
Benzo(k)fluoranthene	ug/g	0.05			0.48	-
Chrysene Dibanz (a h) anthroppin	ug/g	0.05			2.8 0.1	-
Dibenz(a,h)anthracene Fluoranthene	ug/g ug/g	0.05			0.69	-
Fluorene	ug/g	0.05			0.19	-
Indeno(1,2,3-c,d)pyrene	ug/g	0.05		<u> </u>	0.23	-
Methylnaphthalene, 1-	ug/g	0.05			0.59#7	-
Methylnaphthalene, 2-	ug/g	0.05			0.59#7	-
Methylnaphthalene, 2-,1-	ug/g	0.05			0.59#7	-
Naphthalene	ug/g	0.05			0.09	-
Phenanthrene	ug/g	0.05			0.69	-
Pyrene Metals	ug/g	0.05	—		1	-
Antimony	ug/g	0.5			1.3	-
Arsenic	ug/g	0.5			18	-
Barium	ug/g	1			220	-
Boron	ug/g	0.5		36#8		-
Boron (hot water soluble)	ug/g	0.02	1.5#9			-
Beryllium	ug/g	0.2			2.5	-
Chromium (1/1)	ug/g	0.5	<u> </u>	-	1.2	-
Chromium (VI)	ug/g	0.5		-	0.66 70	-
Chromium (III+VI) Cobalt	ug/g ug/g	1			70	-
Cyanide (Free)	ug/g ug/g	0.03			0.051	-
Copper	ug/g	1			92	-
Lead	ug/g	5			120	-
Mercury	ug/g	0.1			0.27	-
Molybdenum	ug/g	1	<u> </u>		2	-
Nickel	ug/g	1		-	82	-
Selenium Silver	ug/g ug/g	0.5		-	1.5 0.5	-
Thallium	ug/g ug/g	0.2			0.5	-
Uranium	ug/g ug/g	0.1			2.5	-
Vanadium	ug/g	1		İ	86	-
Zinc	ug/g	3			290	-
Polychlorinated Biphenyls						
	ug/g	0.3			0.3 ^{#10}	-
PCBs (Total)	-9-9					
PCBs (Total) Inorganics						
PCBs (Total) Inorganics Electrical conductivity *(lab)	mS/cm				0.7	-
PCBs (Total) Inorganics			5-9	5-11	0.7 5	- - -

Table 8 - All Types of Property Use:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to total xylenes; m & p-xylenes and o-xylenes should be summed for comparison.

#2:Standard is applicable to PHC in the F1 range minus BTEX.
#3:Standard is applicable to PHC F2 minus naphthalene. If naphthalene is not analyzed, the standard is applied to F2.

#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not been measured, the standard is applied to F3.

#5:Standard is applicable to 1,3-Dichloropropene. Individual isomers (cis + trans) should be added for comparison.
#6:Standard is for benzo(b)fluoranthene; however, the laboratory can not distinguish between

benzo(b)fluoranthene and benzo(j)fluoranthene.
#7:Standard is applicable to Methylnaphthalene, 1- and Methylnaphthalene, 2-. If both are

detected, the sum of the two must not exceed the standard. #8:Total Boron standard is for sub-surface soil (>1.5 m).

#9:HWS Boron standard is for surface soil (<1.5 m).
#10:Standard is applicable to total PCBs, Individual aroclors should be added for comparison.

Table 6 - Summary of Groundwater Quality

			Location					BH01	BH01	BH01	BH01	BH02	BH02	BH02
			Date Field ID		9/12/19 Trip Blank	10/24/19	2/12/20 Trip Blank	2/26/16 MW1	5/26/16 MW1	10/25/17 MW1/BH1	8/29/19 MWBH 1	2/26/16 MW/BH2	5/26/16 MW2	10/25/17 MW2/BH2
			Laboratory		 	Caduceon	Caduceon	Exova	Exova	Maxxam	Caduceon	Exova	Exova	Maxxam
							B20-04290 rev 1	1602890	1602890	B8M2783	B19-27446	1602890	1602890	
			Sample Type Table 8 - within 30 m of	Trip_B	Trip_B	Trip_B	Trip_B	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Parameter	Unit	RDL	a Water Body											
BTEX Benzene	μg/L	0.5	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Toluene	μg/L	0.5	22	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.4
Ethylbenzene	μg/L	0.5	2.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Xylene Total	μg/L	1.1	300#1	<1.1	<1.1	<1.1	<1.1	<0.5	<0.5	<0.5	<1.1	<0.5	<0.5	<0.2
PHCs PHC F1	μg/L	50	420#2	<50	-	-	-	30	-	-	-	<20	- 1	-
PHC F2	μg/L	50	150 ^{#3}	-	-	-	-	<20	-	-	-	<20	-	-
PHC F3	μg/L	400	500#4	-	-	-	-	<50	-	-	-	<50	-	-
PHC F4 VOCs	μg/L	400	500	-	-	-	-	<50	-	-	-	<50	-	-
Acetone	μg/L	30	2700	<30	<30	<30	<30	<30	<30	<50	<30	<30	<30	<20
Bromodichloromethane	μg/L	2	16	<2	<2	<2	<2	<0.3	<0.3	<0.5	<2	<0.3	<0.3	<0.2
Bromoform Bromomethane	μg/L μg/L	5 0.5	25 0.89	<5 <0.5	<5 <0.5	<5 <0.5	<5 <0.5	<0.4 <0.5	<0.4 <0.5	<1 <2.5	<5 <0.5	<0.4 <0.5	<0.4 <0.5	<0.4 <1
Carbon tetrachloride	μg/L	0.2	0.79	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	μg/L	0.1	30	-	-	-	-	<0.2	<0.2	<0.5	-	<0.2	<0.2	<0.2
Chloroform Dibromochloromethane	μg/L μg/L	2	2.4 25	<1 <2	<1 <2	<1 <2	<1 <2	<0.5 <0.3	<0.5 <0.3	<0.5 <1	<1 <2	<0.5 <0.3	<0.5 <0.3	<0.2 <0.4
Dichlorobenzene, 1,2-	μg/L	0.5	3	<0.5	<0.5	<0.5	<0.5	-	<0.4	<1	<0.5	<0.4	<0.4	<0.4
Dichlorobenzene, 1,3-	μg/L	0.5	59	<0.5	<0.5	<0.5	<0.5	-	<0.4	<1	<0.5	<0.4	<0.4	<0.4
Dichlorobenzene, 1,4- Dichlorodifluoromethane	μg/L μg/L	0.5 2	590	<0.5 <2	<0.5 <2	<0.5 <2	<0.5 <2	- <0.5	<0.4 <0.5	<1 <2.5	<0.5 <2	<0.4 <0.5	<0.4 <0.5	<0.4 <1
Dichloroethane, 1,1-	μg/L	0.5	5	<0.5	<0.5	<0.5	<0.5	<0.4	<0.4	<0.5	<0.5	<0.4	<0.4	<0.2
Dichloroethane, 1,2-	μg/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<1	<0.5	<0.2	<0.2	<0.4
Dichloroethylene, 1,1- Dichloroethylene, 1,2-cis-	μg/L μg/L	0.5 0.5	1.6 1.6	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	1.2 175	1 157	1 130	0.9 148	<0.5 23.3	0.8 102	0.42 42
Dichloroethylene,1,2-trans-	μg/L μg/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	1.1	1.1	1.7	1.6	<0.4	1	0.7
Dichloropropane, 1,2-	μg/L	0.5	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Dichloropropene, 1,3- Ethylene dibromide	μg/L μg/L	0.2	0.5 0.2	- <0.2	<0.2	- <0.2	<0.2	<0.2 <0.2	<0.2 <0.2	<1.4 <1	<1 <0.2	<0.2 <0.2	<0.2 <0.2	<0.57 <0.4
Hexane	μg/L	5	51	<5	<5	<5	<5	<5	<5	<2.5	<5	<5	<5	<1
Methyl Ethyl Ketone	μg/L	20	1800	<20	<20	<20	<20	<10	<10	<25	<20	<10	<10	<10
Methyl Isobutyl Ketone Methylene chloride	µg/L	20	640 50	<20 -	<20	<20	<20	<10 <4	<10 <4	<25 <2.5	<20	<10 <4	<10 <4	<10 <1
Methyl tert-Butyl Ether	μg/L μg/L	2	15	<2	<2	<2	<2	<2	<2	<1	<2	<2	<2	<0.4
Styrene	μg/L	0.5	5.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.4
Tetrachloroethane, 1,1,2,2-	μg/L	0.5 0.5	1	<0.5 <0.5	-0.5	- 0.5	-0.5	<0.5	<0.5 <0.5	<1 <1	<0.5	<0.5	<0.5	<0.4
Tetrachloroethane, 1,1,1,2- Tetrachloroethylene	μg/L μg/L	0.5	1.1 1.6	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.3	<0.5	<0.5	<0.5 <0.5	<0.5 <0.3	<0.5 <0.3	<0.4
Trichloroethane, 1,1,1-	μg/L	0.5	200	<0.5	<0.5	<0.5	<0.5	<0.4	<0.4	<0.5	<0.5	<0.4	<0.4	<0.2
Trichloroethane, 1,1,2-	μg/L	0.5	4.7	<0.5	<0.5	<0.5	<0.5	<0.4	<0.4	<1	<0.5	<0.4	<0.4	<0.4
Trichloroethylene Trichlorofluoromethane	μg/L μg/L	0.5 5	1.6 150	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	132 <0.5	172 <0.5	89 <1	70.3 <5	24.7 <0.5	139 <0.5	39 < 0.4
Vinyl chloride	μg/L	0.2	0.5	<0.2	<0.2	<0.2	<0.2	9	6.6	5.7	6.2	1.4	5.1	2.2
PAHs Assessment the second sec	//	0.05	4.4		I	I					-0.05	I		
Acenaphthene Acenaphthylene	μg/L μg/L	0.05 0.05	4.1	-	-	-	<u>-</u>	-	-	-	<0.05 <0.05	-	-	-
Anthracene	μg/L	0.05	1	-	-	-		-	-	_	<0.05			-
Benz(a)anthracene Benzo(a)pyrene		0.05	1 1				-					-	-	
	µg/L			-	-	-	-	-	-	-	<0.05	-	-	-
	μg/L	0.01	0.01 0.1	- - -	-	- - -			- -		<0.01			- -
Benzo(b)fluoranthene Benzo(g,h,i)perylene		0.01 0.05 0.05	0.01 0.1 0.2	-	-	-	-	-	-	-	<0.01 <0.05 <0.05	-	-	-
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	µg/L µg/L µg/L µg/L	0.01 0.05 0.05 0.05	0.01 0.1 0.2 0.1	- - -	- - -		- - - -	- - -	- - -	- - - -	<0.01 <0.05 <0.05 <0.05	- - - -	- - -	- - -
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	μg/L μg/L μg/L μg/L μg/L	0.01 0.05 0.05	0.01 0.1 0.2	- - -	- - -	- - -	- - - -	- - -		- - -	<0.01 <0.05 <0.05 <0.05 <0.05	- - -	- - -	- - -
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	µg/L µg/L µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	- - - -	- - - -	- - - -
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120	- - - - - -		- - - - - -					<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2	- - - - - -	- - - - -	- - - - -	- - - - - - -	- - - - -	- - - - -	- - - - - -	<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	- - - - - -		- - - - -
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5}	- - - - - - -	- - - - - - -	- - - - - - -	- - - - - - - - -				<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	- - - - - - -		
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1-	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5}				- - - - - - - - -				<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	- - - - - - - - - - - - -		-
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5}				- - - - - - - - -	- - - - - - - - - - - - -			<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	- - - - - - - - - - - - - - - - - - -		
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorenthene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1-	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5}				- - - - - - - - - - - - - - - - - - -				<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	- - - - - - - - - - - - -		
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals	рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1				- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	- - - - - - - - - - - - - - - - - - -		
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1				- - - - - - - - - - - - - - - - - - -				<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	- - - - - - - - - - - - - - - - - - -		
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals	рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1				- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	- - - - - - - - - - - - - - - - - - -		
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Barium (Filtered) Boron (Filtered)	µg/L µg/L	0.01 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000				- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Barium (Filtered) Beryllium (Filtered) Beryllium (Filtered)	µg/L µg/L	0.01 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000				- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <-0.05 <0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0.05 <-0			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Barium (Filtered) Boron (Filtered)	µg/L µg/L	0.01 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000					- - - - - - - - - - - - - - - - - - -			<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (VI) Chromium (VII) Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50					- - - - - - - - - - - - - - - - - - -			<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05		- - - - - - - - - - - - - - - - - - -	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2- Methylnaphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (VI) Chromium (VII) Chromium (VIII-VII) (Filtered) Cobalt (Filtered) Cobalt (Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8					- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2- Methylnaphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (VI) Chromium (VI) Chromium (VII)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50					- - - - - - - - - - - - - - - - - - -			<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05		- - - - - - - - - - - - - - - - - - -	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (VI) Chopper (Filtered) Lead (Filtered) Lead (Filtered) Mercury (Filtered) Mercury (Filtered) Mercury (Filtered) Mercury (Filtered) Mercury (Filtered) Mercury (Filtered) Mercury (Filtered) Mercury (Filtered) Mercury (Filtered) Mercury (Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ⁴⁵ 3.2 ⁴⁵ 3.2 ⁴⁵ 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29					- - - - - - - - - - - - - - - - - - -			<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (VI) Choper (Filtered) Lead (Filtered) Mercury (Filtered) Mercury (Filtered) Molybdenum (Filtered) Molybdenum (Filtered) Mercury (Filtered) Mercury (Filtered) Molybdenum (Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70								<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (VI) Chopper (Filtered) Lead (Filtered) Lead (Filtered) Mercury (Filtered) Mercury (Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ⁴⁵ 3.2 ⁴⁵ 3.2 ⁴⁵ 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29					- - - - - - - - - - - - - - - - - - -			<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2- Methylnaphthalene Phenanthrene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Carmium (VI) Chromium (VI) Chromium (III+VI) (Filtered) Copper (Filtered) Lead (Filtered) Molybdenum (Filtered) Sodium (Filtered) Sodium (Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70 100 490000 10								<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (IIII-VI) (Filtered) Cobalt (Filtered) Lead (Filtered) Mercury (Filtered) Mercury (Filtered) Sodium (Filtered) Sodium (Filtered) Sodium (Filtered) Sodium (Filtered) Solium (Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ⁸⁵ 3.2 ⁸⁵ 3.2 ⁸⁵ 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70 1000 490000 10 1.2								<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Beryllium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (IIII+VI) (Filtered) Cobalt (Filtered) Lead (Filtered) Mercury (Filtered) Mercury (Filtered) Sodium (Filtered) Sodium (Filtered) Solium (Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ⁸⁵ 3.2 ⁸⁵ 3.2 ⁸⁵ 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70 100 490000 10 1.2 2								<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (VII) Chromium (III+VI) (Filtered) Copper (Filtered) Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Sodium (Filtered) Sodium (Filtered) Selenium (Filtered) Selenium (Filtered) Selenium (Filtered) Silver (Filtered) Thallium (Filtered) Vanadium (Filtered) Vanadium (Filtered) Vanadium (Filtered) Vanadium (Filtered) Vanadium (Filtered) Vanadium (Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.41 120 0.2 3.2 ⁸⁵ 3.2 ⁸⁵ 3.2 ⁸⁵ 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70 1000 490000 10 1.2								<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Boron (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (III+VI) (Filtered) Copper (Filtered) Lead (Filtered) Mercury (Filtered) Nickel (Filtered) Sodium (Filtered) Sodium (Filtered) Solium (Filtered) Thallium (Filtered) Uranium (Filtered) Uranium (Filtered)	µg/L µg/L	0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.01 0.1 0.2 0.1 0.2 0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70 100 490000 10 1.2 2								<0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05			

Env Stds Description

Table 8 - within 30 m of a Water Body:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to total xylenes; m & p-xylenes and o-xylenes should be summed for

comparison. #2:Standard is applicable to PHC in the F1 range minus BTEX.
#3:Standard is applicable to PHC F2 minus naphthalene. If naphthalene is not analyzed, the

#3.Standard is applicable to PHC F2 minus napritrialerie. Il napritrialerie is not analyzed, the standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not been measured, the standard is applied to F3.

#5:Standard is applicable to Methylnaphthalene, 1- and Methylnaphthalene, 2-. If both are detected, the sum of the two must not exceed the standard.

#6:Standard is applicable to total PCBs, Individual aroclors should be added for comparison.

Table 6 - Summary of Groundwater Quality

			Location Date		BH02 10/10/19	BH03 2/26/16	BH03 5/26/16	BH03 10/25/17	BH101 10/25/17	BH102 10/25/17	BH102 8/29/19	BH102 8/29/19	BH102 10/10/19	BH103 10/25/17
			Field ID Laboratory	MWBH 2 Caduceon	BH2 Caduceon	MW3 Exova	MW3 Exova	MW3/BH3 Maxxam	MW101 Maxxam	MW102 Maxxam	BH 102 Caduceon	QA/QC #3 Caduceon	BH102 Caduceon	MW103 Maxxam
			Lab Report Sample Type		B19-32768 Normal	1602890 Normal	1602890 Normal	B8M2783 Normal	B8M2783 Normal	B8M2783 Normal	B19-27446 Normal	B19-27446 Field_D	B19-32768 Normal	B8M2783 Normal
Parameter	Unit	RDL	Table 8 - within 30 m of a Water Body											
BTEX Benzene	μg/L	0.5	5	<0.5	-	<0.5	<0.5	<0.1	<0.1	1.5	1.9	1.8	-	<0.1
Toluene Ethylbenzene	μg/L μg/L	0.5 0.5	22 2.4	<0.5 <0.5	-	0.6 <0.5	<0.5 <0.5	<0.2 <0.1	0.23 <0.1	<0.2 <0.1	<0.5 <0.5	<0.5 <0.5	-	0.37 0.13
Xylene Total	μg/L	1.1	300 ^{#1}	<1.1	-	<0.5	<0.5	<0.1	0.11	<0.1	<1.1	<1.1	-	0.13
PHCs PHC F1	ug/l	50	420#2	-	I	<20	-	l <u>-</u>	-		<50	l <u>-</u>		
PHC F2	μg/L μg/L	50	420 ^{#2} 150 ^{#3}	-	-	<20	-	-	-	-	<50 <50	-	-	-
PHC F3	μg/L	400	500#4	-	-	<50	-	-	-	-	<400	-	-	-
PHC F4 VOCs	μg/L	400	500	-	-	<50	-	-	-	-	<400	-	-	-
Acetone	μg/L	30	2700	<30	-	<30	<30	<10	<10	<10	-	-	-	<10
Bromodichloromethane Bromoform	μg/L μg/L	2 5	16 25	<2 <5	-	<0.3 <0.4	<0.3 <0.4	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	-	-	-	<0.1
Bromomethane	μg/L	0.5	0.89	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	<0.5
Carbon tetrachloride Chlorobenzene	μg/L μg/L	0.2 0.1	0.79	<0.2	-	<0.2 <0.2	<0.2 <0.2	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	-	-	-	<0.1 <0.1
Chloroform	µg/L	1	2.4	<1	-	<0.5	<0.5	<0.1	<0.1	<0.1	-	-	-	<0.1
Dibromochloromethane Dichlorobenzene, 1,2-	μg/L μg/L	0.5	25 3	<2 <0.5	-	<0.3 <0.4	<0.3 <0.4	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	-	-	-	<0.2 <0.2
Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-	μg/L	0.5 0.5	59 1	<0.5 <0.5	-	<0.4	<0.4 <0.4	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	-	-	-	<0.2 <0.2
Dichlorodifluoromethane	μg/L μg/L	2	590	<2	-	<0.4	<0.5	<0.5	<0.5	<0.5	-	-	-	<0.5
Dichloroethane, 1,1- Dichloroethane, 1,2-	μg/L μg/L	0.5 0.5	5 1.6	<0.5 <0.5	-	<0.4 <0.2	<0.4 <0.2	<0.1 <0.2	<0.1 <0.2	1.7 0.27	-	-	-	<0.1 <0.2
Dichloroethylene, 1,1-	μg/L	0.5	1.6	<0.5	-	<0.5	<0.5	<0.1	<0.1	0.35	-	-	-	<0.1
Dichloroethylene, 1,2-cis- Dichloroethylene,1,2-trans-	μg/L μg/L	0.5 0.5	1.6 1.6	51.3 0.6	-	6.1 <0.4	48.5 <0.4	9 <0.1	<0.1 <0.1	1.8 <0.1	-	-	-	0.58 <0.1
Dichloropropane, 1,2-	μg/L	0.5	5	<0.5	-	<0.5	<0.5	<0.1	<0.1	<0.1	-	-	-	<0.1
Dichloropropene, 1,3- Ethylene dibromide	μg/L μg/L	0.2	0.5 0.2	<1 <0.2	-	<0.2 <0.2	<0.2 <0.2	<0.28 <0.2	<0.28 <0.2	<0.28 <0.2	-	-	-	<0.28 <0.2
Hexane	μg/L	5	51	<5	-	<5	<5	<0.5	<0.5	<0.5	-	-	-	<0.5
Methyl Ethyl Ketone Methyl Isobutyl Ketone	μg/L μg/L	20 20	1800 640	<20 <20	-	<10 <10	<10 <10	<5 <5	<5 <5	<5 <5	-	-	-	<5 <5
Methylene chloride	μg/L		50	-	-	<4	<4	<0.5	<0.5	<0.5	-	-	-	<0.5
Methyl tert-Butyl Ether Styrene	μg/L μg/L	0.5	15 5.4	<2 <0.5	-	<2 <0.5	<2 <0.5	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	-	-	-	<0.2 <0.2
Tetrachloroethane, 1,1,2,2-	μg/L	0.5	1	<0.5	-	<0.5	<0.5	<0.2	<0.2	<0.2	-	-	-	<0.2
Tetrachloroethane, 1,1,1,2- Tetrachloroethylene	μg/L μg/L	0.5 0.5	1.1	<0.5 <0.5	-	<0.5 <0.3	<0.5 <0.3	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	-	-	-	<0.2 <0.1
Trichloroethane, 1,1,1-	μg/L	0.5	200	<0.5	-	<0.4	<0.4	<0.1	<0.1	<0.1	-	-	-	<0.1
Trichloroethane, 1,1,2- Trichloroethylene	μg/L μg/L	0.5 0.5	4.7 1.6	<0.5 39.9	-	<0.4 4.7	<0.4 35.2	<0.2 4.9	<0.2 <0.1	<0.2 1.5	-	-	-	<0.2 0.41
Trichlorofluoromethane	μg/L	5	150	<5	-	<0.5	<0.5	<0.2	<0.2	<0.2	-	-	-	<0.2
Vinyl chloride PAHs	μg/L	0.2	0.5	2.5	-	0.4	3.2	0.46	<0.2	<0.2	-	-	-	<0.2
Acenaphthene	µg/L	0.05	4.1	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene Anthracene	μg/L μg/L	0.05 0.05	1 1	-	-	-	-	-	-	-	-	-	-	-
Benz(a)anthracene Benzo(a)pyrene	μg/L	0.05 0.01	1 0.01	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	μg/L μg/L	0.01	0.01	-	-	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)perylene Benzo(k)fluoranthene	μg/L μg/L	0.05 0.05	0.2 0.1	-	-	-	-	-	-	-	-	-	-	-
Chrysene	μg/L	0.05	0.1	-	-	-	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene Fluoranthene	μg/L μg/L	0.05 0.05	0.2 0.41	-	-	-	-	-	-	-	-	-	-	-
Fluorene	μg/L μg/L	0.05	120	-	-	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1-	μg/L μg/L	0.05 0.05	0.2 3.2 ^{#5}	-	-	-	-	-	-	-	-	-	-	-
Methylnaphthalene, 2-	μg/L	0.08	3.2 ^{#5}	-	-	-	-	-	-	-	-	-	-	-
Methylnaphthalene, 2-,1- Naphthalene	μg/L μg/L	0.05	3.2 ^{#5}	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	μg/L	0.05	1	-	-	-	-	-	-	-	-	-	-	-
Pyrene Metals	µg/L	0.05	4.1	-	-	-	-	-	-	-	-	-	-	-
Antimony (Filtered)	μg/L	0.1	6	<0.1	<0.1	-	-	-	-	-	-	-	<0.1	-
Arsenic (Filtered) Barium (Filtered)	μg/L μg/L	0.1	25 1000	0.4 150	0.5 176	-	-	-	-	-	-	-	0.3 808	-
Boron (Filtered)	μg/L	5	5000	16	15	-	-	-	-	-	-	-	30	-
Beryllium (Filtered) Cadmium (Filtered)	μg/L μg/L	0.5 0.015	2.1	0.022	- <0.015	-	-	-	-	-	-	-	- <0.015	-
Chromium (VI)	μg/L	10	25	-	-	-	-	-	-	-	-	-	-	-
Chromium (III+VI) (Filtered) Cobalt (Filtered)	μg/L μg/L	0.1	50 3.8	<2 0.2	0.2	-	-	-	-	-	-	-	- <0.1	-
Copper (Filtered)	μg/L	2	69	<2	<2	-	-	-	-	-	-	-	<2	-
Lead (Filtered) Mercury (Filtered)	μg/L μg/L	0.02	10 0.29	0.1 <0.02	<0.02 <0.02	-	-	-	-	-	-	-	0.03 <0.02	-
Molybdenum (Filtered)	μg/L	0.1	70	0.8	0.8	-	-	-	-	-	-	-	0.3	-
Nickel (Filtered) Sodium (Filtered)	μg/L μg/L	0.2 200	100 490000	1.9	0.5 190,000	-	-	-	-	-	-	-	0.3 113,000	-
Selenium (Filtered)	μg/L	1	10	<1	<1	-	-	-	-	-	-	-	<1	-
Silver (Filtered) Thallium (Filtered)	μg/L μg/L	0.1 0.05	1.2	<0.1 <0.05	<0.1 <0.05	-	-	-	-	-	-	-	<0.1 <0.05	-
Uranium (Filtered)	μg/L	0.05	20	0.17	0.17	-	-	-	-	-	-	-	0.08	-
Vanadium (Filtered) Zinc (Filtered)	μg/L μg/L	0.1 5	6.2 890	0.6 <5	0.6 <5	-	-	-	-	-	-	-	0.1 <5	-
Polychlorinated Biphenyls														
PCBs (Total)	μg/L	0.05	0.2 ^{#6}			1			_			l -		

Env Stds Description

Table 8 - within 30 m of a Water Body:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to total xylenes; m & p-xylenes and o-xylenes should be summed for

comparison.

comparison.

#2:Standard is applicable to PHC in the F1 range minus BTEX.

#3:Standard is applicable to PHC F2 minus naphthalene. If naphthalene is not analyzed, the standard is applied to F2.

#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not been measured, the standard is applied to F3.

#5:Standard is applicable to Methylnaphthalene, 1- and Methylnaphthalene, 2-. If both are detected, the sum of the two must not exceed the standard.

#6:Standard is applicable to total PCBs, Individual aroclors should be added for comparison.

Table 6 - Summary of Groundwater Quality

			Location		BH201	BH201	BH201	BH201	BH201	BH202	BH203	BH204	BH204	BH205
			Date Field ID	MW104	8/29/19 BH 201	8/29/19 BH 201	8/29/19 QA/QC #2	-	9/12/19 BH 201	8/29/19 BH 202	8/29/19 BH 203	8/29/19 BH 204	8/29/19 QA/QC #1	
			Laboratory Lab Report		Caduceon B19-27446	Caduceon B19-27448	Caduceon B19-27446	Caduceon B19-27448	Caduceon B19-29080		Caduceon B19-27446	Caduceon B19-27446		Caduceor
			Sample Type		Normal	Normal	Field_D	Field_D	Normal	Normal	Normal	Normal	Field_D	Normal
Parameter	Unit	RDL	Table 8 - within 30 m of a Water Body											
BTEX											0.5	2.5		
Benzene Toluene	μg/L μg/L	0.5 0.5	5 22	<0.1 0.63	<0.5 <0.5	-	<0.5 <0.5	-	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	<0.5 <0.5
Ethylbenzene	μg/L	0.5	2.4	0.22	<0.5	-	<0.5	-	-	<0.5	<0.5	<0.5	-	<0.5
Xylene Total PHCs	μg/L	1.1	300#1	0.48	<1.1	-	<1.1	-	-	<1.1	<1.1	<1.1	-	<1.1
PHC F1	μg/L	50	420 ^{#2}	-	<50	-	<50	-	-	<50	-	<50	-	<50
PHC F2	μg/L	50	150#3	-	<50	-	<50	-	-	<50	-	<50	-	<50
PHC F3 PHC F4	μg/L μg/L	400 400	500 ^{#4} 500	-	<400 <400	-	<400 <400	-	-	<400 <400	-	<400 <400	-	<400 <400
VOCs	μg/L	400	300	-	<400	-	<400	-	-	<400	-	<400	-	<u> <400</u>
Acetone	μg/L	30	2700	<10	<30	-	<30	-	-	<30	<30	<30	-	<30
Bromodichloromethane Bromoform	μg/L μg/L	<u>2</u> 5	16 25	<0.1 <0.2	<2 <5	-	<2 <5	-	-	<2 <5	<2 <5	<2 <5	-	<2 <5
Bromomethane	μg/L	0.5	0.89	<0.5	<0.5	-	<0.5	-	-	<0.5	<0.5	<0.5	-	<0.5
Carbon tetrachloride Chlorobenzene	μg/L μg/L	0.2	0.79 30	<0.1 <0.1	<0.2	-	<0.2	-	-	<0.2	<0.2	<0.2	-	<0.2
Chloroform	μg/L μg/L	1	2.4	0.29	<1	-	<1	-	-	<1	<1	<1	-	<1
Dibromochloromethane	μg/L	2	25	<0.2	<2	-	<2	-	-	<2	<2	<2	-	<2
Dichlorobenzene, 1,2- Dichlorobenzene, 1,3-	µg/L	0.5 0.5	3 59	<0.2 <0.2	<0.5 <0.5	-	<0.5 <0.5	-	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	<0.5 <0.5
Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-	μg/L μg/L	0.5	1	<0.2	<0.5	-	<0.5	-	-	<0.5	<0.5 <0.5	<0.5	-	<0.5
Dichlorodifluoromethane	μg/L	2	590	<0.5	<2	-	<2	-	-	<2	<2	<2	-	<2
Dichloroethane, 1,1- Dichloroethane, 1,2-	μg/L μg/L	0.5 0.5	5 1.6	<0.1 <0.2	<0.5 <0.5	-	<0.5 <0.5	-	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	<0.5 <0.5
Dichloroethylene, 1,1-	μg/L	0.5	1.6	0.2	<0.5	-	<0.5	-	-	<0.5	<0.5	<0.5	-	<0.5
Dichloroethylene, 1,2-cis-	μg/L	0.5	1.6	23	<0.5	-	<0.5	-	-	<0.5	<0.5	37.4	-	13.9
Dichloroethylene,1,2-trans- Dichloropropane, 1,2-	μg/L μg/L	0.5 0.5	1.6 5	0.47 <0.1	<0.5 <0.5	-	<0.5 <0.5	-	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	<0.5 <0.5
Dichloropropene, 1,3-	μg/L		0.5	<0.28	<1	-	<1	-	-	<1	<1	<1	-	<1
Ethylene dibromide Hexane	µg/L	0.2 5	0.2 51	<0.2 0.59	<0.2 <5	-	<0.2 <5	-	-	<0.2 <5	<0.2 <5	<0.2 <5	-	<0.2 <5
Methyl Ethyl Ketone	μg/L μg/L	20	1800	<5	<20	-	<20	-	-	<20	<20	<5 <20	-	<20
Methyl Isobutyl Ketone	μg/L	20	640	<5	<20	-	<20	-	-	<20	<20	<20	-	<20
Methylene chloride Methyl tert-Butyl Ether	μg/L μg/L	2	50 15	<0.5 <0.2	- <2	-	- <2	-	-	- <2	- <2	- <2	-	<2
Styrene	µg/L	0.5	5.4	<0.2	<0.5	-	<0.5	-	-	<0.5	<0.5	<0.5	-	<0.5
Tetrachloroethane, 1,1,2,2-	μg/L	0.5	1	<0.2	<0.5	-	<0.5	-	-	<0.5	<0.5	<0.5	-	<0.5
Tetrachloroethylene	μg/L μg/L	0.5 0.5	1.1 1.6	<0.2 <0.1	<0.5 <0.5	-	<0.5 <0.5	-	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-	<0.5 <0.5
Trichloroethane, 1,1,1-	μg/L	0.5	200	<0.1	<0.5	-	<0.5	-	-	<0.5	<0.5	<0.5	-	<0.5
Trichloroethane, 1,1,2-	μg/L	0.5	4.7	<0.2	<0.5	-	<0.5	-	-	<0.5	<0.5	<0.5	-	<0.5
Trichloroethylene Trichlorofluoromethane	μg/L μg/L	0.5 5	1.6 150	36 <0.2	<0.5 <5	-	<0.5 <5	-	-	<0.5 <5	<0.5 <5	16.4 <5	-	8.5 <5
Vinyl chloride	µg/L	0.2	0.5	0.64	<0.2	-	<0.2	-	-	<0.2	<0.2	1.7	-	0.7
PAHs Acenaphthene	ug/l	0.05	4.1		_	-			<0.05		_	<0.05	<0.05	
Acenaphthylene	μg/L μg/L	0.05	1	-	-	-	-	-	<0.05	-	-	<0.05	<0.05	-
Anthracene	μg/L	0.05	1	-	-	-	-	-	<0.05	-	-	<0.05	<0.05	-
Benz(a)anthracene Benzo(a)pyrene	μg/L μg/L	0.05 0.01	0.01	-	-	-	-	-	<0.05 <0.01	-	-	<0.05 <0.01	<0.05 <0.01	-
Benzo(b)fluoranthene	µg/L	0.05	0.1	-	-	-	-	-	<0.05	-	-	<0.05	<0.05	-
Benzo(g,h,i)perylene	μg/L	0.05	0.2	-	-	-	-	-	<0.05	-	-	<0.05	<0.05	-
Benzo(k)fluoranthene Chrysene	μg/L μg/L	0.05 0.05	0.1 0.1	-	-	-	-	-	<0.05 <0.05	-	-	<0.05 <0.05	<0.05 <0.05	-
Dibenz(a,h)anthracene	μg/L	0.05	0.2	-	-	-	-	-	<0.05	-	-	<0.05	<0.05	-
Fluoranthene	μg/L	0.05 0.05	0.41 120	-	-	-	-	-	<0.05 <0.05	-	-	<0.05 <0.05	<0.05 <0.05	-
Fluorene Indeno(1,2,3-c,d)pyrene	μg/L μg/L	0.05	0.2	-	-	-	-	-	<0.05	-	-	<0.05	<0.05	-
Methylnaphthalene, 1-	μg/L	0.05	3.2 ^{#5}	-	-	-	-	-	<0.05	-	-	<0.05	<0.05	-
Methylnaphthalene, 2-	μg/L	0.08	3.2#5	-	-	-	-	-	<0.08	-	-	<0.08	<0.08	-
Methylnaphthalene, 2-,1- Naphthalene	μg/L μg/L	0.05	3.2 ^{#5} 11	-	-	-	-	-	<1 <0.05	-	-	<1 <0.05	<1 <0.05	-
Phenanthrene	μg/L	0.05	1	-	-	-	-	-	<0.05	-	-	<0.05	<0.05	-
Pyrene	μg/L	0.05	4.1	-	-	-	-	-	<0.05	-	-	<0.05	<0.05	-
Metals Antimony (Filtered)	μg/L	0.1	6	-	0.2	-	0.2	-	-	-	-	0.2	-	0.4
Arsenic (Filtered)	μg/L	0.1	25	-	0.2	-	0.2	-	-	-	-	0.3	-	0.2
Barium (Filtered) Boron (Filtered)	μg/L	1 5	1000 5000	-	62 29	-	63 30	-	-	-	-	86 31	-	90 25
Beryllium (Filtered)	μg/L μg/L	0.5	4	-	- 29	-	-	-	-	-	-	-	-	- 25
Cadmium (Filtered)	μg/L	0.015	2.1	-	<0.015	-	0.015	-	-	-	-	0.038	-	0.042
Chromium (VI) Chromium (III+VI) (Filtered)	μg/L μg/L	10 2	25 50	-	- <2	-	- <2	-	-	-	-	- <2	-	- <2
Cobalt (Filtered)	μg/L μg/L	0.1	3.8	-	0.7	-	0.7	-	-	-	-	0.5	-	0.4
O(F:\t\)	μg/L	2	69	-	<2	-	<2	-	-	-	-	<2	-	<2
Copper (Filtered)	μg/L	0.02	10 0.29	-	<0.02 <0.02	-	<0.02 <0.02	-	-	-	-	<0.02 <0.02	-	<0.02 <0.02
Lead (Filtered)	ua/l			-	4.8	-	4.7	-	-	-	-	2.2	-	4.7
Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered)	μg/L μg/L	0.1	70				0.7	-	_	-	-	2.8	-	2.1
Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Nickel (Filtered)	μg/L μg/L	0.1 0.2	100	-	3.7	-	3.7	_						
Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Nickel (Filtered) Sodium (Filtered)	μg/L μg/L μg/L	0.1		-	-	- - -	-	-	-	-	-	-	- - -	- <1
Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Nickel (Filtered) Sodium (Filtered) Selenium (Filtered) Silver (Filtered)	µg/L µg/L µg/L µg/L µg/L	0.1 0.2 200 1 0.1	100 490000 10 1.2	-	- <1 <0.1	-	- <1 <0.1	-	-			- <1 <0.1	-	- <1 <0.1
Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Nickel (Filtered) Sodium (Filtered) Selenium (Filtered) Silver (Filtered) Thallium (Filtered)	µg/L µg/L µg/L µg/L µg/L µg/L	0.1 0.2 200 1 0.1 0.05	100 490000 10 1.2 2	- - -	- <1 <0.1 <0.05	- - -	- <1 <0.1 <0.05	- - -		- -		<1 <0.1 <0.05	- - -	- <1 <0.1 <0.05
Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Nickel (Filtered) Sodium (Filtered) Selenium (Filtered) Silver (Filtered)	µg/L µg/L µg/L µg/L µg/L µg/L	0.1 0.2 200 1 0.1	100 490000 10 1.2	- - -	- <1 <0.1	- - -	- <1 <0.1 <0.05 0.22	- -	- - -	-	-	- <1 <0.1	- - -	- <1 <0.1
Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Nickel (Filtered) Sodium (Filtered) Selenium (Filtered) Silver (Filtered) Thallium (Filtered) Uranium (Filtered)	µg/L µg/L µg/L µg/L µg/L µg/L	0.1 0.2 200 1 0.1 0.05 0.05	100 490000 10 1.2 2	- - - -	- <1 <0.1 <0.05 0.22	- - - -	- <1 <0.1 <0.05	- - - -	- - - -	- - -	- - -	- <1 <0.1 <0.05 0.24	- - - -	- <1 <0.1 <0.05 0.22

Env Stds Description

Table 8 - within 30 m of a Water Body:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to total xylenes; m & p-xylenes and o-xylenes should be summed for comparison.

comparison.

#2:Standard is applicable to PHC in the F1 range minus BTEX.

#3:Standard is applicable to PHC F2 minus naphthalene. If naphthalene is not analyzed, the standard is applied to F2.

#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not been measured, the standard is applied to F3.

#5:Standard is applicable to Methylnaphthalene, 1- and Methylnaphthalene, 2-. If both are detected, the sum of the two must not exceed the standard.

#6:Standard is applicable to total PCBs, Individual aroclors should be added for comparison.

Table 6 - Summary of Groundwater Quality

			Location Date		BH207 8/29/19	BH208 8/29/19	BH208 9/12/19	BH208 9/12/19	BH301 10/24/19	BH401 2/12/20	BH402 2/12/20	BH402 2/12/20
			Field ID	BH 206	BH 207	BH 208	BH 208	QA/QC	BH 301	BH401	BH402	QA/QC
			Laboratory Lab Report			Caduceon B19-27446	Caduceon B19-29080	Caduceon B19-29080	Caduceon B19-34508	Caduceon B20-04290 rev 1	Caduceon B20-04290 rev 1	Caduceon B20-04290 rev
			Sample Type		Normal	Normal	Normal	Field_D	Normal	Normal	Normal	Field_D
Parameter	Unit	RDL	Table 8 - within 30 m of a Water Body	l								
BTEX												
Benzene Toluene	μg/L μg/L	0.5 0.5	5 22	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Ethylbenzene	μg/L	0.5	2.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene Total	μg/L	1.1	300#1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
PHCs PHC F1	μg/L	50	420#2		<50	<50	l <u>-</u>	_	- 1	-	-	-
PHC F2	µg/L	50	150 ^{#3}	-	<50	<50	-	-	-	-	-	-
PHC F3	μg/L	400	500#4	-	<400	<400	-	-	-	-	-	-
PHC F4	μg/L	400	500		<400	<400	-	-	-	-	-	-
VOCs Acetone	μg/L	30	2700	<30	<30	<30	<30	<30	<30	<30	<30	<30
Bromodichloromethane	μg/L	2	16	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bromoform Bromomethane	μg/L μg/L	5 0.5	25 0.89	<5 <0.5	<5 <0.5	<5 <0.5	<5 <0.5	<5 <0.5	<5 <0.5	<5 <0.5	<5 <0.5	<5 <0.5
Carbon tetrachloride	μg/L	0.3	0.79	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	μg/L	0.1	30	-	-	-	-	-	-	-	-	-
Chloroform Dibromochloromethane	μg/L μg/L	2	2.4 25	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2
Dichlorobenzene, 1,2-	μg/L	0.5	3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorobenzene, 1,3-	μg/L	0.5	59	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorobenzene, 1,4- Dichlorodifluoromethane	μg/L μg/L	0.5 2	1 590	<0.5 <2	<0.5 <2	<0.5 <2	<0.5 <2	<0.5 <2	<0.5 <2	<0.5 <2	<0.5 <2	<0.5 <2
Dichloroethane, 1,1-	μg/L μg/L	0.5	5	1.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichloroethane, 1,2-	μg/L	0.5	1.6	<0.5	<0.5	0.8	0.8	0.7	<0.5	<0.5	<0.5	<0.5
Dichloroethylene, 1,1- Dichloroethylene, 1,2-cis-	μg/L μg/L	0.5 0.5	1.6 1.6	<0.5	<0.5 <0.5	<0.5 1.2	<0.5 1.2	<0.5 0.9	<0.5 0.9	<0.5 2	<0.5 63.7	<0.5 57.8
Dichloroethylene,1,2-trans-	μg/L	0.5	1.6	3.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	18.8	17.1
Dichloropropane, 1,2-	μg/L	0.5	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichloropropene, 1,3- Ethylene dibromide	μg/L μg/L	0.2	0.5 0.2	<1 <0.2	<1 <0.2	<1 <0.2	<1 <0.2	<1 <0.2	<1 <0.2	<1 <0.2	<1 <0.2	<1 <0.2
Hexane	μg/L μg/L	5	51	<0.2 <5	<5	<5	<5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5
Methyl Ethyl Ketone	μg/L	20	1800	<20	<20	<20	<20	<20	<20	<20	<20	<20
Methylogo oblorido	μg/L	20	640 50	<20	<20	<20 -	<20	<20	<20	<20 -	<20	<20 -
Methylene chloride Methyl tert-Butyl Ether	μg/L μg/L	2	15	<2	<2	<2	<2	- <2	<2	<2	<2	<2
Styrene	μg/L	0.5	5.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethane, 1,1,2,2-	μg/L	0.5	1	<0.5	<0.5	<0.5	- 0.5	-	- 0.5	-	-	-
Tetrachloroethane, 1,1,1,2- Tetrachloroethylene	μg/L μg/L	0.5 0.5	1.1 1.6	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Trichloroethane, 1,1,1-	µg/L	0.5	200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethane, 1,1,2-	μg/L	0.5	4.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene Trichlorofluoromethane	μg/L μg/L	0.5 5	1.6 150	0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	<0.5 <5	1 <5	29.7 <5	5.4 <5	5.3 <5
Vinyl chloride	μg/L	0.2	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	2.6	2.3
PAHs Accordable to a constant of the constant	//	0.05	44			I	I					
Acenaphthene Acenaphthylene	μg/L μg/L	0.05 0.05	4.1	-	-	-	-	-	-	-	-	-
Anthracene	μg/L	0.05	1	-	-	-	-	-	-	-	-	-
Benz(a)anthracene Benzo(a)pyrene	μg/L	0.05 0.01	0.01	-	-	-	-	-	-	-	-	
Benzo(b)fluoranthene	μg/L μg/L	0.01	0.01	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)perylene	μg/L	0.05	0.2	-	_	-		-	-	_		
Benzo(k)fluoranthene Chrysene	μg/L	0.05		`		_	-	-		-	-	-
Dibenz(a,h)anthracene			0.1	-	-	-	-	-	-	-		-
	μg/L ug/L	0.05	0.1	- - -							-	
Fluoranthene	μg/L μg/L	0.05 0.05 0.05	0.1 0.2 0.41	-	-	-	-	-	-	- -	- - -	-
Fluorene	μg/L μg/L μg/L	0.05 0.05 0.05 0.05	0.1 0.2 0.41 120	- - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - -	- - - - -	- - - -
	μg/L μg/L	0.05 0.05 0.05	0.1 0.2 0.41 120 0.2	- - -	- - -	- - -	- - -	- - -	- - -	- - -	- - - -	- - -
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2-	µg/L µg/L µg/L µg/L µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5}	- - - -	- - - - -	- - - -	- - - -	- - - -	- - - - -			- - - -
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1-	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.08	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5}	- - - - - -	- - - - - - -	- - - - - - -	- - - - - - -	- - - - - - -				- - - - - - - -
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.08 1	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5}	- - - - -	-	- - - - - -		- - - - - -		- - - - - - -	- - - - - - - - -	- - - - - - - - -
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1-	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.08	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5}	- - - - - - -	- - - - - - - -		- - - - - - -				- - - - - - - - - - - -	
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1		- - - - - - - - - -					- - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - -
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05	0.1 0.2 0.41 120 0.2 3.2*5 3.2*5 11 1 4.1		- - - - - - - - -	- - - - - - - - - - - - - - - - - - -				- - - - - - - -	- - - - - - - - - -	- - - - - - - - - -
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1		- - - - - - - - - - -						- - - - - - - - - - - - - - - - - - -	
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Boron (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05	0.1 0.2 0.41 120 0.2 3.2*5 3.2*5 11 1 4.1 6 25 1000 5000		- - - - - - - - - - - - - - - - - - -					- - - - - - - - - - - - - - - - - - -		
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Boron (Filtered) Beryllium (Filtered) Beryllium (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000		- - - - - - - - - - - - - - - - - - -							- - - - - - - - - - - - - - - - - - -
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Cadmium (Filtered) Chromium (VI)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1		- - - - - - - - - - - - - - - - - - -					- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (III+VI) (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50		- - - - - - - - - - - - - - - - - - -							
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Cahromium (VI) Chromium (III+VI) (Filtered) Cobalt (Filtered) Cobalt (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.1 1 5 0.5 0.015 0.10 2 0.1	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8		- - - - - - - - - - - - - - - - - - -							
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Boron (Filtered) Cadmium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (III+VI) (Filtered) Copper (Filtered) Lead (Filtered) Lead (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	0.1 0.2 0.41 120 0.2 3.2*5 3.2*5 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10		- - - - - - - - - - - - - - - - - - -							
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (III+VI) (Filtered) Copper (Filtered) Lead (Filtered) Mercury (Filtered) Mercury (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05 0.01 1 5 0.5 0.015 10 2 0.1 2 0.02 0.02	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29		- - - - - - - - - - - - - - - - - - -							
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Boron (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (VI) Chromium (VI) Cobalt (Filtered) Copper (Filtered) Lead (Filtered) Mercury (Filtered) Mercury (Filtered) Molybdenum (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70									
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Boron (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (III+VI) (Filtered) Copper (Filtered) Lead (Filtered) Lead (Filtered) Mercury (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05 0.01 1 5 0.5 0.015 10 2 0.1 2 0.02 0.02	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29		- - - - - - - - - - - - - - - - - - -							
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (VI) Chromium (III+VI) (Filtered) Copper (Filtered) Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Nickel (Filtered) Sodium (Filtered) Selenium (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.1 1 2 0.1 2 0.02 0.02 0.1 0.2 200 1	0.1 0.2 0.41 120 0.2 3.2** 3.2** 3.2** 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70 100 490000 10		- - - - - - - - - - - - - - - - - - -							
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Carmium (VI) Chromium (VI) Chromium (III+VI) (Filtered) Cobalt (Filtered) Lead (Filtered) Mercury (Filtered) Mercury (Filtered) Sodium (Filtered) Sodium (Filtered) Sodium (Filtered) Sodium (Filtered) Selenium (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.01 0.1 1 5 0.5 0.015 0.01 2 0.02 0.02 0.1 0.1 0.2 200 1 0.1	0.1 0.2 0.41 120 0.2 3.2 ^{#5} 3.2 ^{#5} 3.2 ^{#5} 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70 1000 490000 10 1.2									
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Carmium (VI) Chromium (VI) Chromium (VII) Choper (Filtered) Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Nickel (Filtered) Sodium (Filtered) Selenium (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.01 0.1 1 5 0.5 0.015 0.01 2 0.02 0.1 0.1 0.2 200 1 0.1 0.05	0.1 0.2 0.41 120 0.2 3.2** 3.2** 3.2** 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70 100 490000 10									
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (VI) Chromium (III+VI) (Filtered) Copper (Filtered) Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Nickel (Filtered) Selenium (Filtered) Selenium (Filtered) Silver (Filtered) Thallium (Filtered) Uranium (Filtered) Vanadium (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05 0.01 1 5 0.5 0.015 10 2 0.02 0.1 2 0.02 0.1 0.2 200 1 0.1 0.1 0.05 0.05	0.1 0.2 0.41 120 0.2 3.2** 3.2** 3.2** 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70 1000 490000 10 1.2 2 2 2 6.2									
Fluorene Indeno(1,2,3-c,d)pyrene Methylnaphthalene, 1- Methylnaphthalene, 2- Methylnaphthalene, 2-,1- Naphthalene Phenanthrene Pyrene Metals Antimony (Filtered) Arsenic (Filtered) Barium (Filtered) Boron (Filtered) Beryllium (Filtered) Cadmium (Filtered) Chromium (VI) Chromium (III+VI) (Filtered) Cobalt (Filtered) Lead (Filtered) Mercury (Filtered) Molybdenum (Filtered) Nickel (Filtered) Sodium (Filtered) Sodium (Filtered) Solium (Filtered) Selenium (Filtered) Selenium (Filtered) Thallium (Filtered) Irallium (Filtered) Irallium (Filtered) Irallium (Filtered) Irallium (Filtered) Irallium (Filtered)	µg/L µg/L	0.05 0.05 0.05 0.05 0.05 0.05 0.08 1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	0.1 0.2 0.41 120 0.2 3.2** 3.2** 3.2** 3.2** 11 1 4.1 6 25 1000 5000 4 2.1 25 50 3.8 69 10 0.29 70 1000 490000 10 1.2 2									

Env Stds Description

Table 8 - within 30 m of a Water Body:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to total xylenes; m & p-xylenes and o-xylenes should be summed for

comparison.

comparison.

#2:Standard is applicable to PHC in the F1 range minus BTEX.

#3:Standard is applicable to PHC F2 minus naphthalene. If naphthalene is not analyzed, the standard is applied to F2.

#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not been measured, the standard is applied to F3.

#5:Standard is applicable to Methylnaphthalene, 1- and Methylnaphthalene, 2-. If both are detected, the sum of the two must not exceed the standard.

#6:Standard is applicable to total PCBs, Individual aroclors should be added for comparison.

			Lagation	I	I	I		BH01	BH01	BH01	BH01	BH02	BH02	BH02
			Location Date	8/29/19	9/12/19	10/24/19	2/12/20	2/26/16	5/26/16	10/25/17	8/29/19	2/26/16	5/26/16	10/25/17
			Field ID		Trip Blank	Trip Blank	Trip Blank	MW1	MW1	MW1/BH1	MWBH 1	MW/BH2	MW2	MW2/BH2
			Laboratory		Caduceon	Caduceon	Caduceon	Exova	Exova	Maxxam	Caduceon	Exova	Exova	Maxxam
				B19-27446			B20-04290 rev 1	1602890	1602890	B8M2783	B19-27446		1602890	
			Sample Type		Trip_B	Trip_B	Trip_B	Normal	Normal	Normal	Normal	Normal	Normal	Normal
			Table 6 - All Types of										•	
			Property Use											
Parameter	Unit	RDL	1											
BTEX	- Oilit	RDL												
Benzene	μg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Toluene	µg/L	0.5	24	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.4
Ethylbenzene	μg/L	0.5	2.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Xylene Total	μg/L	1.1	72 ^{#1}	<1.1	<1.1	<1.1	<1.1	<0.5	<0.5	<0.5	<1.1	<0.5	<0.5	<0.2
PHCs	1.0													
PHC F1	μg/L	50	420#2	<50	-	-	-	30	-	-	-	<20	-	-
PHC F2	µg/L	50	150 ^{#3}	-	-	-	-	<20	-	-	-	<20	-	-
PHC F3	µg/L	400	500#4		-	-	-	<50	-	-	-	<50	-	-
PHC F4	μg/L	400	500	-	_	-	-	<50	-		_	<50	-	-
VOCs	μg/∟		300					_ \00				_ \00		
Acetone	μg/L	30	2700	<30	<30	<30	<30	<30	<30	<50	<30	<30	<30	<20
Bromodichloromethane	μg/L	2	16	<2	<2	<2	<2	<0.3	<0.3	<0.5	<2	<0.3	<0.3	<0.2
Bromoform	μg/L	5	5	<5	<5	<5	<5	<0.4	<0.4	<1	<5	<0.4	<0.4	<0.4
Bromomethane	μg/L	0.5	0.89	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.5	<0.5	<0.5	<0.5	<1
Carbon tetrachloride	µg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	µg/L	0.2	30	-	-	-	-	<0.2	<0.2	<0.5	-	<0.2	<0.2	<0.2
Chloroform	µg/L	1	2	<1	<1	<1	<1	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.2
Dibromochloromethane	µg/L	2	25	<2	<2	<2	<2	<0.3	<0.3	<1	<2	<0.3	<0.3	<0.4
Dichlorobenzene, 1,2-	μg/L	0.5	3	<0.5	<0.5	<0.5	<0.5	-	<0.4	<1	<0.5	<0.4	<0.4	<0.4
Dichlorobenzene, 1,3-	μg/L	0.5	59	<0.5	<0.5	<0.5	<0.5	-	<0.4	<1	<0.5	<0.4	<0.4	<0.4
Dichlorobenzene, 1,4-	µg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	-	<0.4	<1	<0.5	<0.4	<0.4	<0.4
Dichlorodifluoromethane	µg/L	2	590	<2	<2	<2	<2	<0.5	<0.5	<2.5	<2	<0.5	<0.5	<1
Dichloroethane, 1,1-	µg/L	0.5	5	<0.5	<0.5	<0.5	<0.5	<0.4	<0.4	<0.5	<0.5	<0.4	<0.4	<0.2
Dichloroethane, 1,2-	μg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<1	<0.5	<0.2	<0.2	<0.4
Dichloroethylene, 1,1-	μg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	1.2	1	1	0.9	<0.5	0.8	0.42
Dichloroethylene, 1,2-cis-	μg/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	175	157	130	148	23.3	102	42
Dichloroethylene,1,2-trans-	μg/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	1.1	1.1	1.7	1.6	<0.4	1	0.7
Dichloropropane, 1,2-	μg/L	0.5	0.58	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2
Dichloropropene, 1,3-	μg/L		0.5	-	-	-	-	<0.2	<0.2	<1.4	<1	<0.2	<0.2	<0.57
Ethylene dibromide	μg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1	<0.2	<0.2	<0.2	<0.4
Hexane	μg/L	5	5	<5	<5	<5	<5	<5	<5	<2.5	<5	<5	<5	<1
Methyl Ethyl Ketone	μg/L	20	1800	<20	<20	<20	<20	<10	<10	<25	<20	<10	<10	<10
Methyl Isobutyl Ketone	μg/L	20	640	<20	<20	<20	<20	<10	<10	<25	<20	<10	<10	<10
Methylene chloride	μg/L		26	-	-	-	-	<4	<4	<2.5	-	<4	<4	<1
Methyl tert-Butyl Ether	μg/L	2	15	<2	<2	<2	<2	<2	<2	<1	<2	<2	<2	<0.4
Styrene	μg/L	0.5	5.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.4
Tetrachloroethane, 1,1,2,2-	μg/L	0.5	0.5	<0.5	- 0.5	- 0.5	-	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.4
Tetrachloroethane, 1,1,1,2-	µg/L	0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.4
Tetrachloroethylene	µg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.3	<0.3	<0.5	<0.5	<0.3	<0.3	<0.2
Trichloroethane, 1,1,1-	µg/L	0.5	23	<0.5	<0.5	<0.5	<0.5	<0.4	<0.4	<0.5	<0.5	<0.4	<0.4	<0.2
Trichloroethane, 1,1,2-	µg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.4	<0.4	<1	<0.5	<0.4	<0.4	<0.4
Trichloroethylene Trichloroffyloromethana	µg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	132	172	89	70.3	24.7	139	39
Trichlorofluoromethane Vipyl chlorido	µg/L	5	150 0.5	<5	<5 <0.2	<5 <0.2	<5 <0.2	<0.5	<0.5	<1 5.7	<5	<0.5	<0.5	<0.4
Vinyl chloride PAHs	μg/L	0.2	U.5	<0.2	<0.2	<0.2	<0.2	9	6.6	5.7	6.2	1.4	5.1	2.2
Acenaphthylene	μg/L	0.05	1	_	_	_	-		- 1	-	<0.05	-	l -	l -
Anthracene	μg/L μg/L	0.05	1	-	-	-	-	-	-	-	<0.05	-	-	-
Benz(a)anthracene	μg/L μg/L	0.05	1	-	-	-	-	-	-	-	<0.05	-	-	-
Fluorene	μg/L μg/L	0.05	120	-	-	-	-	-	-	-	<0.05	-	-	-
Methylnaphthalene, 2-,1-	μg/L μg/L	1	3.2 ^{#5}	H :	-	-	-	-	-	-	<0.05	-	-	-
Naphthalene	μg/L μg/L	0.05	7	-	-	-	<u>-</u>	-	-	-	<0.05	-	-	-
Phenanthrene	μg/L μg/L	0.05	1	-	-	-	-	-	-	-	<0.05	-	-	-
	μg/L	0.05	4.1	-	-	-	-	-	-	-	<0.05	-	-	-
Pyrene										_	\ \0.00			
Pyrene Metals	ру/с	0.00												

Env Stds Description
Table 6 - All Types of Property Use:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to total xylenes; m & p-xylenes and o-xylenes should be summed for comparison.
#2:Standard is applicable to PHC in the F1 range minus BTEX.
#3:Standard is applicable to PHC F2 minus naphthalene. If naphthalene is not analyzed, the standard is applied to F2.
#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not

#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not been measured, the standard is applied to F3.

			Location	BH02	BH02	BH03	BH03	BH03	BH101	BH102	BH102	BH102	BH102	BH103
			Date	8/29/19	10/10/19	2/26/16	5/26/16	10/25/17	10/25/17	10/25/17	8/29/19	8/29/19	10/10/19	10/25/17
			Field ID	MWBH 2	BH2	MW3	MW3	MW3/BH3	MW101	MW102	BH 102	QA/QC #3	BH102	MW103
			Laboratory	Caduceon	Caduceon	Exova	Exova	Maxxam	Maxxam	Maxxam	Caduceon	Caduceon	Caduceon	Maxxam
				B19-27446	B19-32768	1602890	1602890	B8M2783	B8M2783	B8M2783	B19-27446	B19-27446	B19-32768	B8M2783
			Sample Type	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Field_D	Normal	Normal
			Table 6 - All Types of											
			Property Use											
			' '											
	1 11 1		-											
Parameter	Unit	RDL												
BTEX	- //	0.5				0.5	0.5	0.4	0.4	4.5	4.0	4.0		0.4
Benzene	μg/L	0.5	0.5	<0.5	-	<0.5	<0.5	<0.1	<0.1	1.5	1.9	1.8	-	<0.1
Toluene	μg/L	0.5	24	<0.5	-	0.6	<0.5	<0.2	0.23	<0.2	<0.5	<0.5	-	0.37
Ethylbenzene	μg/L	0.5	2.4	<0.5	-	<0.5	<0.5	<0.1	<0.1	<0.1	<0.5	<0.5	-	0.13
Xylene Total	μg/L	1.1	72 ^{#1}	<1.1	-	<0.5	<0.5	<0.1	0.11	<0.1	<1.1	<1.1	-	0.21
PHCs														
PHC F1	μg/L	50	420 ^{#2}	-	-	<20	-	-	-	-	<50	-	-	-
PHC F2	μg/L	50	150 ^{#3}	-	-	<20	-	-	-	-	<50	-	-	-
PHC F3	μg/L	400	500#4	-	-	<50	-	-	-	-	<400	-	-	-
PHC F4	µg/L	400	500	-	-	<50	-	-	-	-	<400	-	-	-
VOCs	, F-3'-													
Acetone	μg/L	30	2700	<30	-	<30	<30	<10	<10	<10	_	_	-	<10
Bromodichloromethane	μg/L	2	16	<2	-	<0.3	<0.3	<0.1	<0.1	<0.1	_	_	-	<0.1
Bromoform	μg/L	5	5	<u> </u>	-	<0.4	<0.4	<0.1	<0.1	<0.1	-		-	<0.1
Bromomethane		0.5	0.89	<0.5	-	<0.4	<0.4	<0.2	<0.5	<0.5	-	-	-	<0.5
Carbon tetrachloride	µg/L	0.3	0.89	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	
Chlorobenzene	µg/L				-						-	-	-	<0.1
	µg/L	0.2	30	- 4	-	<0.2	<0.2	<0.1	<0.1	<0.1	-	-	-	<0.1
Chloroform	μg/L	1	2	<1	-	<0.5	<0.5	<0.1	<0.1	<0.1	-	-	-	<0.1
Dibromochloromethane	μg/L	2	25	<2	-	<0.3	<0.3	<0.2	<0.2	<0.2	-	-	-	<0.2
Dichlorobenzene, 1,2-	μg/L	0.5	3	<0.5	-	<0.4	<0.4	<0.2	<0.2	<0.2	-	-	-	<0.2
Dichlorobenzene, 1,3-	μg/L	0.5	59	<0.5	-	<0.4	<0.4	<0.2	<0.2	<0.2	-	-	-	<0.2
Dichlorobenzene, 1,4-	μg/L	0.5	0.5	<0.5	-	<0.4	<0.4	<0.2	<0.2	<0.2	-	-	-	<0.2
Dichlorodifluoromethane	μg/L	2	590	<2	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	<0.5
Dichloroethane, 1,1-	μg/L	0.5	5	<0.5	-	<0.4	<0.4	<0.1	<0.1	1.7	-	-	-	<0.1
Dichloroethane, 1,2-	μg/L	0.5	0.5	<0.5	-	<0.2	<0.2	<0.2	<0.2	0.27	-	-	-	<0.2
Dichloroethylene, 1,1-	μg/L	0.5	0.5	<0.5	-	<0.5	<0.5	<0.1	<0.1	0.35	-	-	-	<0.1
Dichloroethylene, 1,2-cis-	μg/L	0.5	1.6	51.3	-	6.1	48.5	9	<0.1	1.8	-	-	-	0.58
Dichloroethylene,1,2-trans-	μg/L	0.5	1.6	0.6	-	<0.4	<0.4	<0.1	<0.1	<0.1	-	-	-	<0.1
Dichloropropane, 1,2-	μg/L	0.5	0.58	<0.5	-	<0.5	<0.5	<0.1	<0.1	<0.1	-	-	-	<0.1
Dichloropropene, 1,3-	μg/L		0.5	<1	-	<0.2	<0.2	<0.28	<0.28	<0.28	-	-	-	<0.28
Ethylene dibromide	μg/L	0.2	0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-	<0.2
Hexane	μg/L	5	5	<5	-	<5	<5	<0.5	<0.5	<0.5	-	-	-	<0.5
Methyl Ethyl Ketone	µg/L	20	1800	<20	-	<10	<10	<5	<5	<5	-	-	-	<5
Methyl Isobutyl Ketone	µg/L	20	640	<20	-	<10	<10	<5	<5	<5	_	-	-	<5
Methylene chloride	µg/L		26	-	-	<4	<4	<0.5	<0.5	<0.5	_	-	_	<0.5
Methyl tert-Butyl Ether	µg/L	2	15	<2	-	<2	<2	<0.2	<0.2	<0.2	-	-	-	<0.2
Styrene	μg/L	0.5	5.4	<0.5	-	<0.5	<0.5	<0.2	<0.2	<0.2	-	-	-	<0.2
Tetrachloroethane, 1,1,2,2-		0.5	0.5	<0.5	-	<0.5	<0.5	<0.2	<0.2	<0.2	_	-	-	<0.2
Tetrachloroethane, 1,1,1,2-	μg/L μg/L	0.5	1.1	<0.5	-	<0.5	<0.5	<0.2	<0.2	<0.2	-	-	-	<0.2
Tetrachloroethylene	μg/L	0.5	0.5	<0.5	-	<0.3	<0.3	<0.2	<0.2	<0.1	-	-	-	<0.2
Trichloroethane, 1,1,1-	μg/L	0.5	23	<0.5	-	<0.3	<0.4	<0.1	<0.1	<0.1	-	-	-	<0.1
Trichloroethane, 1,1,2-	μg/L	0.5	0.5	<0.5	-	<0.4	<0.4	<0.1	<0.1	<0.1	-	-	-	<0.1
Trichloroethylene		0.5	0.5	39.9	-	4.7	35.2	4.9	<0.2	1.5	-	-	-	0.41
	μg/L		150											
Trichlorofluoromethane Vinyl chloride	µg/L	5	0.5	<5 2.5	-	<0.5	<0.5 3.2	<0.2 0.46	<0.2	<0.2	-	-	-	<0.2
PAHs	μg/L	0.2	υ.5	2.0	-	0.4	3.2	0.46	<0.2	<0.2	-			<0.2
		0.05	_							1				ı
Acenaphthylene	μg/L	0.05	1	-	-	-	-	-	-	-	-	-	-	-
Anthracene	μg/L	0.05	1	-	-	-	-	-	-	-	-	-	-	-
Benz(a)anthracene	μg/L	0.05	1	-	-	-	-	-	-	-	-	-	-	-
Fluorene	μg/L	0.05	120	-	-	-	-	-	-	-	-	-	-	-
Methylnaphthalene, 2-,1-	μg/L	1	3.2 ^{#5}	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	μg/L	0.05	7	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	μg/L	0.05	1	-	-	-	-	-	-	-	-	-	-	-
Pyrene	μg/L	0.05	4.1	-	-	-	-	-	-	-	-	-	-	-
Metals														
Mercury (Filtered)	μg/L	0.02	0.1	<0.02	<0.02	-	-	_	_	-	_	-	<0.02	-

Env Stds Description
Table 6 - All Types of Property Use:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to PHC F2 minus naphthalene. If naphthalene). If PAHs have not #4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not

been measured, the standard is applied to F3.

Parameter Unit BTEX µg/L Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromoform µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	8DL 0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	Field ID Laboratory	10/25/17 MW104 Maxxam B8M2783 Normal 	BH201 8/29/19 BH 201 Caduceon B19-27446 Normal	819-27446 Field_D	BH201 9/12/19 BH 201 Caduceon B19-29080 Normal	Normal	BH203 8/29/19 BH 203 Caduceon B19-27446 Normal		B19-27446 Field_D	Normal	Normal	BH207 8/29/19 BH 207 Caduceon B19-27446 Normal
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S PHC F1 PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	Field ID Laboratory Lab Report Sample Type Table 6 - All Types of Property Use 0.5 24 2.4 72#1 420#2 150#3 500#4	MW104 Maxxam B8M2783 Normal <0.1 0.63 0.22 0.48 -	BH 201 Caduceon B19-27446 Normal <0.5 <0.5 <0.5	QA/QC #2 Caduceon B19-27446 Field_D	BH 201 Caduceon B19-29080 Normal	BH 202 Caduceon B19-27446 Normal	BH 203 Caduceon B19-27446 Normal	BH 204 Caduceon B19-27446 Normal	QA/QC #1 Caduceon B19-27446 Field_D	BH 205 Caduceon B19-27446 Normal	BH 206 Caduceon B19-27446 Normal	BH 207 Caduceon B19-27446
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S PHC F1 PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	Laboratory Lab Report Sample Type Table 6 - All Types of Property Use 0.5 24 2.4 72** 420**2 150**3 500**4	Maxxam B8M2783 Normal <0.1 0.63 0.22 0.48 -	Caduceon B19-27446 Normal	Caduceon B19-27446 Field_D	Caduceon B19-29080 Normal	Caduceon B19-27446 Normal	Caduceon B19-27446 Normal	Caduceon B19-27446 Normal	Caduceon B19-27446 Field_D	Caduceon B19-27446 Normal	Caduceon B19-27446 Normal	Caduceon B19-27446
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorotethane, 1,1- µg/L Dichlorotethane, 1,2- µg/L Dichlorotethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	Lab Report Sample Type Table 6 - All Types of Property Use 0.5 24 2.4 72*1 420*2 150*3 500*4	<0.1 0.63 0.22 0.48	S19-27446 Normal Normal S19-27446 Normal S19-27446 S19-2746 S19-2766 S	819-27446 Field_D	B19-29080 Normal	B19-27446 Normal	B19-27446 Normal	B19-27446 Normal	B19-27446 Field_D	Normal	B19-27446 Normal	B19-27446
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S PHC F1 PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	Sample Type Table 6 - All Types of Property Use 0.5 24 2.4 72*1 420*2 150*3 500*4	<0.1 0.63 0.22 0.48	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	Normal -	Normal	Normal	Normal	Field_D	Normal	Normal	
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S PHC F1 PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	0.5 24 2.4 72*1 420*2 150*3 500*4	<0.1 0.63 0.22 0.48	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	-	<0.5						Normal
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorotethane, 1,1- µg/L Dichlorotethane, 1,2- µg/L Dichlorotethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	0.5 24 2.4 72 ^{#1} 420 ^{#2} 150 ^{#3} 500 ^{#4}	0.63 0.22 0.48	<0.5 <0.5	<0.5 <0.5			<∩ 5	-05				
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorotethane, 1,1- µg/L Dichlorotethane, 1,2- µg/L Dichlorotethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	0.5 24 2.4 72 ^{#1} 420 ^{#2} 150 ^{#3} 500 ^{#4}	0.63 0.22 0.48	<0.5 <0.5	<0.5 <0.5			<0.5	-0.E				
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorotethane, 1,1- µg/L Dichlorotethane, 1,2- µg/L Dichlorotethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	24 2.4 72 ^{#1} 420 ^{#2} 150 ^{#3} 500 ^{#4}	0.63 0.22 0.48	<0.5 <0.5	<0.5 <0.5			<0.5	-0 E				
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorotethane, 1,1- µg/L Dichlorotethane, 1,2- µg/L Dichlorotethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	24 2.4 72 ^{#1} 420 ^{#2} 150 ^{#3} 500 ^{#4}	0.63 0.22 0.48	<0.5 <0.5	<0.5 <0.5			<0.5	-0 E				
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorotethane, 1,1- µg/L Dichlorotethane, 1,2- µg/L Dichlorotethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	24 2.4 72 ^{#1} 420 ^{#2} 150 ^{#3} 500 ^{#4}	0.63 0.22 0.48	<0.5 <0.5	<0.5 <0.5			<0.5	-0.E				
BTEX Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHC S µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorotethane, 1,1- µg/L Dichlorotethane, 1,2- µg/L Dichlorotethylene, 1,1- µg/L	0.5 0.5 0.5 1.1 50 400 400 30 2 5 0.5	24 2.4 72 ^{#1} 420 ^{#2} 150 ^{#3} 500 ^{#4}	0.63 0.22 0.48	<0.5 <0.5	<0.5 <0.5			<0.5	-0 F				
Benzene µg/L Toluene µg/L Ethylbenzene µg/L Xylene Total µg/L PHCs µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L VOCs Acetone Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	0.5 0.5 1.1 50 50 400 400 30 2 5 0.5	24 2.4 72 ^{#1} 420 ^{#2} 150 ^{#3} 500 ^{#4}	0.63 0.22 0.48	<0.5 <0.5	<0.5 <0.5			<0.5	-0 F				
Toluene	0.5 0.5 1.1 50 50 400 400 30 2 5 0.5	24 2.4 72 ^{#1} 420 ^{#2} 150 ^{#3} 500 ^{#4}	0.63 0.22 0.48	<0.5 <0.5	<0.5 <0.5					1 - 1	<0.5	<0.5	<0.5
Ethylbenzene µg/L Xylene Total µg/L PHCs µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L VOCs Acetone Acetone µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	0.5 1.1 50 50 400 400 30 2 5 0.5	2.4 72 ^{#1} 420 ^{#2} 150 ^{#3} 500 ^{#4}	0.22 0.48 - -	<0.5	<0.5		.O.E						
Xylene Total	1.1 50 50 400 400 30 2 5 0.5	72 ^{#1} 420 ^{#2} 150 ^{#3} 500 ^{#4}	0.48 - -				<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
PHCs µg/L PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L VOCs Acetone µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorodifluoromethane µg/L Dichlorothane, 1,1- µg/L Dichloroethane, 1,1- µg/L Dichloroethylene, 1,1- µg/L	50 50 400 400 30 2 5 0.5	420 ^{#2} 150 ^{#3} 500 ^{#4}	-	<1.1		-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
PHC F1 µg/L PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L VOCs Acetone µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorodenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorotethane, 1,1- µg/L Dichlorotethane, 1,2- µg/L Dichlorotethylene, 1,1- µg/L	50 400 400 30 2 5 0.5	150 ^{#3} 500 ^{#4}	-		<1.1	-	<1.1	<1.1	<1.1	-	<1.1	<1.1	<1.1
PHC F2 µg/L PHC F3 µg/L PHC F4 µg/L VOCs µg/L Acetone µg/L Bromodichloromethane µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorotethane, 1,1- µg/L Dichlorotethane, 1,2- µg/L Dichlorotethylene, 1,1- µg/L	50 400 400 30 2 5 0.5	150 ^{#3} 500 ^{#4}	-										
PHC F3 µg/L PHC F4 µg/L VOCs µg/L Acetone µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodethane, 1,1- µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	400 400 30 2 5 0.5	500#4		<50	<50	-	<50	-	<50	-	<50	-	<50
PHC F3 µg/L PHC F4 µg/L VOCs µg/L Acetone µg/L Bromodichloromethane µg/L Bromoferm µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorotethane, 1,1- µg/L Dichlorotethane, 1,2- µg/L Dichlorotethylene, 1,1- µg/L	30 2 5 0.5	500#4		<50	<50	-	<50	-	<50	-	<50	-	<50
PHC F4 μg/L VOCs Acetone μg/L Bromodichloromethane μg/L Bromoform μg/L Bromomethane μg/L Carbon tetrachloride μg/L Chlorobenzene μg/L Chloroform μg/L Dibromochloromethane μg/L Dichlorobenzene, 1,2- μg/L Dichlorobenzene, 1,4- μg/L Dichlorodifluoromethane μg/L Dichlorotethane, 1,1- μg/L Dichlorotethane, 1,2- μg/L Dichlorotethylene, 1,1- μg/L	30 2 5 0.5		- 1	<400	<400	-	<400	-	<400	-	<400	-	<400
VOCs µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	30 2 5 0.5		-	<400	<400	-	<400	-	<400	- 1	<400	-	<400
Acetone µg/L Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	2 5 0.5			- 100	1.00		1.00				1.00		- 1.00
Bromodichloromethane µg/L Bromoform µg/L Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	2 5 0.5	2700	<10	<30	<30	_	<30	<30	<30		<30	<30	<30
Bromoform μg/L Bromomethane μg/L Carbon tetrachloride μg/L Chlorobenzene μg/L Chloroform μg/L Dibromochloromethane μg/L Dichlorobenzene, 1,2- μg/L Dichlorobenzene, 1,3- μg/L Dichlorodifluoromethane μg/L Dichloroethane, 1,1- μg/L Dichloroethane, 1,2- μg/L Dichloroethylene, 1,1- μg/L	5 0.5		<0.1	<2	<2	-		<2	<2		<2	<2	<2
Bromomethane µg/L Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,1- µg/L Dichloroethylene, 1,1- µg/L	0.5	16 5		< <u><</u> 2	<2 <5		<2 <5	<2 <5	<2 <5				<2 <5
Carbon tetrachloride µg/L Chlorobenzene µg/L Chloroform µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L			<0.2			-				-	<5	<5	
Chlorobenzene µg/L Chloroform µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,1- µg/L Dichloroethylene, 1,2- µg/L		0.89	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
Chloroform µg/L Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	0.2	0.2	<0.1	<0.2	<0.2	-	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2
Dibromochloromethane µg/L Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	0.2	30	<0.1	-	-	-	-	-	-	-	-	-	-
Dichlorobenzene, 1,2- µg/L Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	1	2	0.29	<1	<1	-	<1	<1	<1	-	<1	<1	<1
Dichlorobenzene, 1,3- µg/L Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	2	25	<0.2	<2	<2	-	<2	<2	<2	-	<2	<2	<2
Dichlorobenzene, 1,4- µg/L Dichlorodifluoromethane µg/L Dichloroethane, 1,1- µg/L Dichloroethane, 1,2- µg/L Dichloroethylene, 1,1- µg/L	0.5	3	<0.2	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
Dichlorodifluoromethane μg/L Dichloroethane, 1,1- μg/L Dichloroethane, 1,2- μg/L Dichloroethylene, 1,1- μg/L	0.5	59	<0.2	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
Dichloroethane, 1,1- μg/L Dichloroethane, 1,2- μg/L Dichloroethylene, 1,1- μg/L	0.5	0.5	<0.2	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
Dichloroethane, 1,2- μg/L Dichloroethylene, 1,1- μg/L	2	590	<0.5	<2	<2	-	<2	<2	<2	-	<2	<2	<2
Dichloroethylene, 1,1- µg/L	0.5	5	<0.1	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	1.3	<0.5
	0.5	0.5	<0.2	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
	0.5	0.5	0.2	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
Dichloroethylene, 1,2-cis- μg/L	0.5	1.6	23	<0.5	<0.5	-	<0.5	<0.5	37.4	- 1	13.9	13	<0.5
Dichloroethylene,1,2-trans- µg/L	0.5	1.6	0.47	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	3.9	<0.5
Dichloropropane, 1,2- µg/L	0.5	0.58	<0.1	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
Dichloropropene, 1,3- µg/L		0.5	<0.28	<1	<1	-	<1	<1	<1	-	<1	<1	<1
Ethylene dibromide µg/L	0.2	0.2	<0.2	<0.2	<0.2	_	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2
Hexane µg/L	5	5	0.59	<5	<5	_	<5	<5	<5	- 1	<5	<5	<5
Methyl Ethyl Ketone µg/L	20	1800	<5	<20	<20	_	<20	<20	<20	- 1	<20	<20	<20
Methyl Isobutyl Ketone µg/L	20	640	<5	<20	<20	_	<20	<20	<20	-	<20	<20	<20
	20	26	<0.5	- <20	- <20	-	- <20	- <20	- <20	-	- <20	- <20	- <20
	2	15	<0.5	- <2	- <2		- <2	<2	<2	-	<2	<2	<2
Methyl tert-Butyl Ether µg/L	0.5	5.4	<0.2	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	
Styrene µg/L	0.5	0.5	<0.2			-						<0.5	<0.5 <0.5
Tetrachloroethane, 1,1,2,2- µg/L			_	<0.5	<0.5	-	<0.5	<0.5	<0.5	_ -	<0.5		
Tetrachloroethane, 1,1,1,2- μg/L	0.5	1.1	<0.2	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
Tetrachloroethylene µg/L	0.5	0.5	<0.1	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
Trichloroethane, 1,1,1- µg/L	0.5	23	<0.1	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
Trichloroethane, 1,1,2- μg/L	0.5	0.5	<0.2	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5
Trichloroethylene μg/L	0.5	0.5	36	<0.5	<0.5	-	<0.5	<0.5	16.4	-	8.5	0.5	<0.5
Trichlorofluoromethane μg/L	5	150	<0.2	<5	<5	-	<5	<5	<5	-	<5	<5	<5
Vinyl chloride µg/L	0.2	0.5	0.64	<0.2	<0.2	-	<0.2	<0.2	1.7	-	0.7	<0.2	<0.2
PAHs													
Acenaphthylene µg/L	0.05	1	-	-	-	< 0.05	-	-	<0.05	<0.05	-	-	-
Anthracene µg/L	0.05	1	-	-	-	<0.05	-	-	<0.05	<0.05	-	-	-
Benz(a)anthracene µg/L	0.05	1	-	-	-	<0.05	-	-	<0.05	<0.05	-	-	-
Fluorene µg/L	0.05	120	-	-	-	<0.05	-	-	<0.05	<0.05	-	-	-
Methylnaphthalene, 2-,1- µg/L	1	3.2 ^{#5}	-	-	-	<1	-	-	<1	<1	-	-	-
Naphthalene µg/L	0.05	7		_	_	<0.05	_	-	<0.05	<0.05	_	_	_
	0.05	1		-	-	<0.05	-	-	<0.05	<0.05	-	-	-
	0.05	4.1		-	-				<0.05		-	-	-
Pyrene μg/L	0.05	4.1	-		-	<0.05	-	-	<0.05	<0.05			-
Metals Mercury (Filtered)	0.02	0.4	<u> </u>	<0.02	<0.02								
Mercury (Filtered) μg/L	" () (Y')	0.1	- 1			-	-	_	<0.02		<0.02	- 1	-

Env Stds Description
Table 6 - All Types of Property Use:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to PHC F2 minus naphthalene. If naphthalene) If DAMA bays nat-#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not

been measured, the standard is applied to F3.

			1	DLIGGG	DUIDOO	DUIDOO	DUIDOA	DUIANA	DILIAGO	DUITO
			Location Date	BH208 8/29/19	BH208 9/12/19	BH208 9/12/19	BH301 10/24/19	BH401 2/12/20	BH402 2/12/20	BH402 2/12/20
			Field ID	BH 208	9/12/19 BH 208	QA/QC	BH 301	BH401	BH402	QA/QC
			Laboratory		Caduceon	Caduceon	Caduceon	Caduceon	Caduceon	Caduceon
			Lab Report		B19-29080	B19-29080		B20-04290 rev 1		B20-04290 rev 1
			Sample Type	Normal	Normal	Field_D	Normal	Normal	Normal	Field D
			Table 6 - All Types of	INOIIIIai	INOITHAL	l leiu_D	INUIIIIai	INOIIIIai	INOITIAI	Tielu_D
			Property Use							
			1 Topolty OSC							
Parameter	Unit	RDL								
BTEX		0.5			0.5	0.5	0.5	0.5	0.5	0.5
Benzene	µg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	μg/L	0.5	24	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	2.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene Total	μg/L	1.1	72 ^{#1}	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
PHCs								1		ı
PHC F1	μg/L	50	420#2	<50	-	-	-	-	-	-
PHC F2	μg/L	50	150 ^{#3}	<50	-	-	-	-	-	-
PHC F3	μg/L	400	500#4	<400	-	-	-	-	-	-
PHC F4	μg/L	400	500	<400	-	-	-	-	-	-
VOCs										
Acetone	μg/L	30	2700	<30	<30	<30	<30	<30	<30	<30
Bromodichloromethane	μg/L	2	16	<2	<2	<2	<2	<2	<2	<2
Bromoform	µg/L	5	5	<5	<5	<5	<5	<5	<5	<5
Bromomethane	µg/L	0.5	0.89	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon tetrachloride	μg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	µg/L	0.2	30		-	-		-	-	-
Chloroform	μg/L	1	2	<1	<1	<1	<1	<1	<1	<1
Dibromochloromethane	µg/L	2	25	<2	<2	<2	<2	<2	<2	<2
Dichlorobenzene, 1,2-	μg/L	0.5	3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorobenzene, 1,3-	µg/L	0.5	59	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorobenzene, 1,4-	µg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	µg/L	0.5	590 5	<2 <0.5	<2 <0.5	<2 <0.5	<2 <0.5	<2 <0.5	<2 <0.5	<2
Dichloroethane, 1,1-	μg/L	0.5	0.5	<0.5 0.8	<0.5 0.8	<0.5 0.7	<0.5	<0.5	<0.5	<0.5
Dichloroethane, 1,2- Dichloroethylene, 1,1-	μg/L μg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5
Dichloroethylene, 1,2-cis-		0.5	1.6	1.2	1.2	0.9	0.9	2	63.7	57.8
Dichloroethylene,1,2-trans-	μg/L μg/L	0.5	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	18.8	17.1
Dichloropropane, 1,2-	μg/L	0.5	0.58	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichloropropene, 1,3-	µg/L	0.5	0.5	<1	<1	<1	<1	<1	<1	<1
Ethylene dibromide	µg/L	0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Hexane	μg/L	5	5	<5	<5	<5	<5	<5	<5	<5
Methyl Ethyl Ketone	µg/L	20	1800	<20	<20	<20	<20	<20	<20	<20
Methyl Isobutyl Ketone	µg/L	20	640	<20	<20	<20	<20	<20	<20	<20
Methylene chloride	µg/L		26	-	-	-	-	-	-	-
Methyl tert-Butyl Ether	μg/L	2	15	<2	<2	<2	<2	<2	<2	<2
Styrene	μg/L	0.5	5.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethane, 1,1,2,2-	μg/L	0.5	0.5	<0.5	-	-	-	-	-	-
Tetrachloroethane, 1,1,1,2-	μg/L	0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	μg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethane, 1,1,1-	μg/L	0.5	23	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethane, 1,1,2-	μg/L	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	μg/L	0.5	0.5	<0.5	<0.5	<0.5	1	29.7	5.4	5.3
Trichlorofluoromethane	μg/L	5	150	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	μg/L	0.2	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	2.6	2.3
PAHs								I	T	ı
Acenaphthylene	µg/L	0.05	1	-	-	-	-	-	-	-
Anthracene	μg/L	0.05	1	-	-	-	-	-	-	-
Benz(a)anthracene	µg/L	0.05	1	-	-	-	-	-	-	-
Fluorene	μg/L	0.05	120	-	-	-	-	-	-	-
Methylnaphthalene, 2-,1-	μg/L	1	3.2 #5	-	-	-	-	-	-	-
Naphthalene	μg/L	0.05	7	-	-	-	-	-	-	-
Phenanthrene	μg/L	0.05	1	-	-	-	-	-	-	-
Pyrene	µg/L	0.05	4.1	-	-	-	-	-	-	-
Metals (Filtered)		0.00		0.00				ı		I
Mercury (Filtered)	μg/L	0.02	0.1	<0.02	-	-	-	-	-	-

Env Stds Description
Table 6 - All Types of Property Use:Soil, Ground Water and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act (MOE 2011).

#1:Standard is applicable to PHC F2 minus naphthalene. If naphthalene) If DAMA bays nat-

#4:Standard is applicable to PHC F3 minus PAHs (other than naphthalene). If PAHs have not been measured, the standard is applied to F3.

Table 8 - Summary of Soil Vapour Quality

Sample Location						BH201	BH202	ВН	204		BH205
Sample ID	Note	Units	RDL	IAC 1	Modified IAC ²	BH201	BH202	BH204	QA/QC	RPD (%)	BH205
Sample Date (dd-mmm-yy)	_					21-Feb-20	21-Feb-20	21-Feb-20	21-Feb-20		21-Feb-20
Acetone		μg/m3	1	2503	125150	7.6	8.9	6.4	2.7	NC	8
Bromomethane		μg/m3	3.1	1.04	52	5.1	<3.1	<3.1	<3.1	NC	<3.1
Benzene		μg/m3	0.21	0.506	25.3	0.39	0.48	0.73	0.44	NC	0.38
Methyl Ethyl Ketone		μg/m3	0.52	1003	50150	18	1.6	<0.52	<0.52	NC	<0.52
Carbon Tetrachloride		μg/m3	0.1	0.417	20.85	<0.1	0.22	0.14	<0.1	NC	<0.1
Chlorobenzene		μg/m3	0.1	209	10450	<0.1	<0.1	<0.1	<0.1	NC	<0.1
Chloroform		μg/m3	0.1	20.9	1045	<0.1	0.2	<0.1	<0.1	NC	<0.1
Ethylene dibromide		μg/m3	0.052	0.00185	0.0925	< 0.052	< 0.052	< 0.052	< 0.052	NC	<0.052
Dichlorobenzene, 1,2-		μg/m3	0.1	125	6250	<0.1	<0.1	<0.1	<0.1	NC	<0.1
Dichlorobenzene, 1,4-		μg/m3	0.1	0.278	13.9	<0.1	<0.1	<0.1	<0.1	NC	<0.1
Dichloroethane, 1,1-		μg/m3	0.1	34.4	1720	<0.1	<0.1	<0.1	<0.1	NC	<0.1
Dichloroethane, 1,2-		μg/m3	0.063	0.0428	2.14	< 0.063	< 0.063	< 0.063	< 0.063	NC	< 0.063
Dichloroethylene, 1,1-		μg/m3	0.1	14.6	730	0.62	<0.1	<0.1	<0.1	NC	<0.1
Dichloroethylene, 1,2-cis-		μg/m3	0.1	31.3	1565	<0.1	<0.1	2.9	2.6	11	0.28
Dichloroethylene, 1,2-trans-		μg/m3	0.1	12.5	625	<0.1	<0.1	<0.1	<0.1	NC	<0.1
Methylene Chloride		μg/m3	1	48.4	2420	<1	<1	<1	<1	NC	<1
Dichloropropane, 1,2-		μg/m3	0.1	0.834	41.7	<0.1	<0.1	<0.1	<0.1	NC	<0.1
Dichloropropene,1,3-		μg/m3	0.21	0.278	13.9	<0.21	<0.21	<0.21	<0.21	NC	<0.21
Ethylbenzene		μg/m3	0.52	209	10450	<0.52	<0.52	<0.52	<0.52	NC	<0.52
Hexane (n)		μg/m3	1	521	26050	2.8	2.6	2	2.5	NC	1.3
Methyl tert-Butyl Ether (MTBE)		μg/m3	0.21	4.28	214	<0.21	<0.21	<0.21	<0.21	NC	<0.21
Methyl Isobutyl Ketone		μg/m3	0.21	602	30100	<0.21	<0.21	<0.21	<0.21	NC	<0.21
Styrene		μg/m3	0.1	54.2	2710	0.43	0.54	0.25	0.23	NC	0.27
Tetrachloroethane, 1,1,1,2-		μg/m3	0.1	0.15	7.5	<0.1	<0.1	<0.1	<0.1	NC	<0.1
Tetrachloroethane, 1,1,2,2-		μg/m3	0.073	0.0192	0.96	< 0.073	< 0.073	< 0.073	< 0.073	NC	< 0.073
Tetrachloroethylene		μg/m3	0.52	4.28	214	1.2	0.83	<0.52	<0.52	NC	0.69
Toluene		μg/m3	1	1043	52150	2.8	3.1	3.1	2.4	NC	1.8
Trichloroethane, 1,1,1-		μg/m3	0.1	209	10450	0.1	<0.1	<0.1	<0.1	NC	<0.1
Trichloroethane, 1,1,2-		μg/m3	0.1	0.0695	3.475	<0.1	<0.1	<0.1	<0.1	NC	<0.1
Trichloroethylene		μg/m3	0.052	0.271	13.55	< 0.052	0.083	1.9	1.7	11	1.1
Vinyl Chloride		μg/m3	0.21	0.126	6.3	<0.21	<0.21	<0.21	<0.21	NC	<0.21
Xylene Mixture		μg/m3	1.6	146	7300	1.8	2.4	2.3	2	NC	<1.6
Petroleum Hydrocarbons F1		μg/m3	100	2491	124550	230	200	<100	<100	NC	120
Aliphatic C6-C8		μg/m3	-	9594	479700	-	-	-	-	-	-
Aliphatic C>8-C10		μg/m3	-	521	26050	-	-	-	-	-	-
Aromatic C>8-C10		μg/m3	-	104	5200	-	-	-	-	-	-
Petroleum Hydrocarbons F2		μg/m3	330	471	23550	<330	<330	<330	<330	NC	<330
Aliphatic C>10-C12		μg/m3	-	521	26050	-	-	-	-	-	-
Aliphatic C>12-C16		μg/m3	-	521	26050	-	-	-	-	-	-
Aromatic C>10-C12		μg/m3	_	104	5200	-	-	-	-	-	-
Aromatic C>12-C16		μg/m3	-	104	5200	-	-	-	-	-	-

Notes:

- 1. Health-Based Indoor Air Criteria for Residential Property Use, Lowest Risk Level of the Modified Generic Risk Assessment Model (Ministry, 2016).
- 2. Attenuation coefficient of 0.02 (50-fold dilution) used to approximate sub-slab vapour concentrations for comparison to human health IAC.

Chayell Hotels Ltd.

Cambium Ref. No.: 9326-001

2020-04-20

A	pp	endi	ix A
Plan	of	Sur	vey

Chayell Hotels Ltd.

Cambium Ref. No.: 9326-001

2020-04-20

		Α	pp	endix	B
Grain S	ize Dis	stributio	on	Resu	lts

Project Number: 9326-002 Client: ChayHotels Ltd.

Project Name: Geotech & Hydro-G - 220 Bradford Street, Barrie, ON

Sample Date: October 16-18 & 21, 2019 Sampled By: Chris Malliaros - Cambium Inc.

Location: BH 301-19 SS 3 **Depth:** 1.5 m to 2 m **Lab Sample No:** S-19-0932

UNIFIED SOIL CLASSIFICATION SYSTEM								
CLAV 8 CH T (0 075)	SAND (<4.	75 mm to 0.075 mm)	GRAVE	L (>4.75 mm)				
CLAY & SILT (<0.075 mm)	FINE	MEDIUM	COARSE	FINE	COARSE			

MIT SOIL CLASSIFICATION SYSTEM								
CLAY SILT	FINE MEDIUM COARSE			FINE	MEDIUM	COARSE	DOLU DEDO	
CLAT	CLAY SILT		SAND			GRAVEL		BOULDERS

Borehole No.	Sample No.		Depth		Gravel		Sand	Silt	Clay	Moisture
BH 301-19	SS 3		1.5 m to 2 m		10		83	7	,	16.4
	Description		Classification		D ₆₀		D ₃₀	D ₁₀	Cu	C _c
Sand some	Gravel trace Silt trace	Clay	SP		0.2200		0.1400	0.0840	2.62	1.06

lssued By:	Stat Band	Date Issued:	November 11, 2019	
	(Senior Project Manager)			

Project Number: 9326-002 Client: ChayHotels Ltd.

Project Name: Geotech & Hydro-G - 220 Bradford Street, Barrie, ON

Sample Date: October 16-18 & 21, 2019 Sampled By: Chris Malliaros - Cambium Inc.

Location: BH 302-19 SS 20 **Depth:** 25.9 m to 26.4 m **Lab Sample No:** S-19-0929

UNIFIED SOIL CLASSIFICATION SYSTEM								
OLAY 8 OLT (0 075)	SAND (<4.	75 mm to 0.075 mm)	GRAVE	L (>4.75 mm)				
CLAY & SILT (<0.075 mm)	FINE	MEDIUM	COARSE	FINE	COARSE			

	MIT SOIL CLASSIFICATION SYSTEM									
CLAV	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	BOULDERS			
CLAY	CLAY SILT		SAND			GRAVEL		BOULDERS		

Borehole No.	Sample No.		Depth	Gravel		Sand	Sand Si		Clay		Moisture
BH 302-19	SS 20	2	5.9 m to 26.4 m	0		7		93	3		21.3
	Description		Classification	D ₆₀		D ₃₀		D ₁₀		Cu	C _c
Silt tr	ace Sand trace Clay		ML	0.0490		0.027	5	0.0025		19.60	6.17

lssued By:	Stat Band	Date Issued:	November 11, 2019	
	(Senior Project Manager)			

Project Number: 9326-002 Client: ChayHotels Ltd.

Project Name: Geotech & Hydro-G - 220 Bradford Street, Barrie, ON

Sample Date: October 16-18 & 21, 2019 Sampled By: Chris Malliaros - Cambium Inc.

Location: BH 303-19 SS 1 **Depth:** 0 m to 0.6 m **Lab Sample No:** S-19-0931

UNIFIED SOIL CLASSIFICATION SYSTEM									
CLAV 8 CHT (-0.075 mm)	SAND (<4.75 mm to 0.075 mm) GRAVEL (>4.75 mm)								
CLAY & SILT (<0.075 mm)	FINE	MEDIUM	FINE	COARSE					

MIT SOIL CLASSIFICATION SYSTEM										
CLAY	CUT	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	BOULDERS		
CLAY	SILT	SAND			GRAVEL		BOULDERS			

Borehole No.	Sample No.		Depth		Gravel		Sand		Silt		Clay	Moisture
BH 303-19	SS 1		0 m to 0.6 m		5 77		77	17		7		13.2
	Description		Classification		D ₆₀		D ₃₀		D ₁₀		Cu	C _c
Sand some	Silt trace Gravel trace	Clay	SM		0.2600		0.140	0	0.0130		20.00	5.80

lssued By:	Stat Band	Date Issued:	November 11, 2019	
	(Senior Project Manager)			

Project Number: 9326-002 Client: ChayHotels Ltd.

Project Name: Geotech & Hydro-G - 220 Bradford Street, Barrie, ON

Sample Date: October 16-18 & 21, 2019 Sampled By: Chris Malliaros - Cambium Inc.

Location: BH 304-19 SS 9 **Depth:** 9.5 m to 9.6 m **Lab Sample No:** S-19-0930

UNIFIED SOIL CLASSIFICATION SYSTEM									
OLAY A OUT (A OTS WAY)	SAND (<4.75 mm to 0.075 mm) GRAVEL (>4.75 mm)								
CLAY & SILT (<0.075 mm)	FINE	MEDIUM	FINE	COARSE					

MIT SOIL CLASSIFICATION SYSTEM										
CLAY	CUT	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	BOULDERS		
CLAY SILT	SILI		SAND			GRAVEL		BOULDERS		

Borehole No.	Sample No.		Depth		Gravel		Sand		Silt		Clay	Moisture
BH 304-19	SS 9		9.5 m to 9.6 m		1	67		32		2		19.1
	Description		Classification		D ₆₀		D ₃₀		D ₁₀		Cu	C _c
Silty Sand	d trace Gravel trace Cl	ay	SM		0.1250		0.069	0	0.0065		19.23	5.86

	Stat Band			
lssued By:	MULAUM	Date Issued:	November 11, 2019	
·	(Senior Project Manager)			

Your Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Your C.O.C. #: 679170-01-01

Attention: Melissa Gallagher

Pinchin Ltd Unit 6 875 Main St W Hamilton, ON CANADA L8S 4R9

Report Date: 2018/09/04

Report #: R5385704 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8M2749 Received: 2018/08/28, 15:20

Sample Matrix: Soil # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	4	N/A	2018/09/01		EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Soil (1)	1	N/A	2018/08/31	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (2)	1	2018/08/31	2018/09/01	CAM SOP-00316	CCME CWS m
Moisture	5	N/A	2018/08/31	CAM SOP-00445	Carter 2nd ed 51.2 m
pH CaCl2 EXTRACT	2	2018/08/31	2018/08/31	CAM SOP-00413	EPA 9045 D m
Sieve, 75um	2	N/A	2018/09/04	CAM SOP-00467	Carter 2nd ed m
Volatile Organic Compounds in Soil	4	N/A	2018/08/31	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

 $Results\ relate\ to\ samples\ tested.\ When\ sampling\ is\ not\ conducted\ by\ Maxxam,\ results\ relate\ to\ the\ supplied\ samples\ tested.$

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Your C.O.C. #: 679170-01-01

Attention: Melissa Gallagher

Pinchin Ltd Unit 6 875 Main St W Hamilton, ON CANADA L8S 4R9

Report Date: 2018/09/04

Report #: R5385704 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8M2749 Received: 2018/08/28, 15:20

(1) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager

Email: ABrasil@maxxam.ca

Phone# (905)817-5817

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

RESULTS OF ANALYSES OF SOIL

Maxxam ID		HPE588			HPE589			HPE590		
Sampling Date		2018/08/23			2018/08/23			2018/08/23		
COC Number		679170-01-01			679170-01-01			679170-01-01		
	UNITS	BH101-6	RDL	QC Batch	BH101-8	RDL	QC Batch	BH102-6	RDL	QC Batch
Inorganics										
Moisture	%				19	1.0	5709342			
Miscellaneous Parameters										
Grain Size	%	COARSE	N/A	5711224				COARSE	N/A	5711224
Sieve - #200 (<0.075mm)	%	6	1	5711224				14	1	5711224
Sieve - #200 (>0.075mm)	%	94	1	5711224				86	1	5711224
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Ba	atch									
N/A = Not Applicable										

Maxxam ID		HPE591	HPE591			HPE592	HPE593	
Sampling Date		2018/08/23	2018/08/23			2018/08/23	2018/08/23	
COC Number		679170-01-01	679170-01-01			679170-01-01	679170-01-01	
	UNITS	BH102-8	BH102-8 Lab-Dup	RDL	QC Batch	BH103-2	BH103-6	QC Batch
Inorganics								
Moisture	%	17	16	1.0	5709342			
Available (CaCl2) pH	рН					7.88	7.94	5709024

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch
Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		HPE594	HPE595	HPE596				
Sampling Date		2018/08/23	2018/08/23	2018/08/23				
COC Number		679170-01-01	679170-01-01	679170-01-01				
	UNITS	BH103-7	BH104-7	BH104-8	RDL	QC Batch		
Inorganics								
Moisture	%	18	17	17	1.0	5709342		
RDL = Reportable Detection Limit								
QC Batch = Quality Control Ba	atch							

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		HPE589	HPE591	HPE594		HPE596		
Sampling Date		2018/08/23	2018/08/23	2018/08/23		2018/08/23		
COC Number		679170-01-01	679170-01-01	679170-01-01		679170-01-01		
	UNITS	BH101-8	BH102-8	BH103-7	QC Batch	BH104-8	RDL	QC Batch
Calculated Parameters			l	<u> </u>		<u> </u>		
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	5704625	<0.050	0.050	5706545
Volatile Organics	~6/ 6	10.000	10.000	10.000	070.020	10.000	0.000	3700313
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	5709041	<0.50	0.50	5709041
Benzene	ug/g	<0.020	<0.020	<0.020	5709041	<0.020	0.020	5709041
Bromodichloromethane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Bromoform	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Bromomethane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Chloroform	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	5709041	<0.030	0.030	5709041
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	5709041	<0.040	0.040	5709041
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	5709041	<0.020	0.020	5709041
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Hexane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	5709041	<0.50	0.50	5709041
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	5709041	<0.50	0.50	5709041
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Styrene	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Tetrachloroethylene	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
RDL = Reportable Detection Limit	•	•	•	•	•	•		•
OC Batab Ovality Cantual Batab								

QC Batch = Quality Control Batch

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		HPE589	HPE591	HPE594		HPE596		
Sampling Date		2018/08/23	2018/08/23	2018/08/23		2018/08/23		
COC Number		679170-01-01	679170-01-01	679170-01-01		679170-01-01		
	UNITS	BH101-8	BH102-8	BH103-7	QC Batch	BH104-8	RDL	QC Batch
Toluene	ug/g	<0.020	<0.020	<0.020	5709041	<0.020	0.020	5709041
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Trichloroethylene	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	5709041	<0.050	0.050	5709041
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	5709041	<0.020	0.020	5709041
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	5709041	<0.020	0.020	5709041
o-Xylene	ug/g	<0.020	<0.020	<0.020	5709041	<0.020	0.020	5709041
Total Xylenes	ug/g	<0.020	<0.020	<0.020	5709041	<0.020	0.020	5709041
Surrogate Recovery (%)	•	•	-	•	•	•	3	
4-Bromofluorobenzene	%	105	100	103	5709041	103		5709041
D10-o-Xylene	%	106	106	100	5709041	106		5709041
D4-1,2-Dichloroethane	%	98	95	97	5709041	96		5709041
D8-Toluene	%	110	108	107	5709041	110		5709041
RDL = Reportable Detection Limit								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		HPE595		
Sampling Date		2018/08/23		
COC Number		679170-01-01		
	UNITS	BH104-7	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/g	<0.020	0.020	5709037
Toluene	ug/g	<0.020	0.020	5709037
Ethylbenzene	ug/g	<0.020	0.020	5709037
o-Xylene	ug/g	<0.020	0.020	5709037
p+m-Xylene	ug/g	<0.040	0.040	5709037
Total Xylenes	ug/g	<0.040	0.040	5709037
F1 (C6-C10)	ug/g	<10	10	5709037
F1 (C6-C10) - BTEX	ug/g	<10	10	5709037
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	5709094
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	5709094
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	5709094
Reached Baseline at C50	ug/g	Yes		5709094
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	98		5709037
4-Bromofluorobenzene	%	96		5709037
D10-Ethylbenzene	%	98		5709037
D4-1,2-Dichloroethane	%	93		5709037
o-Terphenyl	%	92		5709094
RDL = Reportable Detection L	imit		•	
QC Batch = Quality Control Ba	atch			

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

GENERAL COMMENTS

Each te	emperature is the ave	erage of up to th	ree cooler temperatures taken at receipt
	Package 1	0.7°C	
			-
Result	s relate only to the it	ems tested.	

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

QUALITY ASSURANCE REPORT

QA/QC		007						001: "
Batch 5709024	Init NYS	QC Type Spiked Blank	Parameter	Date Analyzed	Value	Recovery 97	UNITS %	QC Limits 97 - 103
	NYS	RPD	Available (CaCl2) pH	2018/08/31 2018/08/31	0.84	97		97 - 103 N/A
5709024 5709037	ABD	Matrix Spike	Available (CaCl2) pH 1,4-Difluorobenzene	2018/08/31	0.64	100	%	60 - 140
5709037	ABD	іматтіх эріке	·	2018/08/31			%	
			4-Bromofluorobenzene	• •		96	%	60 - 140
			D10-Ethylbenzene	2018/08/31		97 or	%	60 - 140
			D4-1,2-Dichloroethane	2018/08/31		95	%	60 - 140
			Benzene	2018/08/31		94	%	60 - 140
			Toluene	2018/08/31		88	%	60 - 140
			Ethylbenzene	2018/08/31		89	%	60 - 140
			o-Xylene	2018/08/31		85	%	60 - 140
			p+m-Xylene	2018/08/31		81	%	60 - 140
			F1 (C6-C10)	2018/08/31		80	%	60 - 140
5709037	ABD	Spiked Blank	1,4-Difluorobenzene	2018/08/31		101	%	60 - 140
			4-Bromofluorobenzene	2018/08/31		96	%	60 - 140
			D10-Ethylbenzene	2018/08/31		93	%	60 - 140
			D4-1,2-Dichloroethane	2018/08/31		95	%	60 - 140
			Benzene 	2018/08/31		100	%	60 - 140
			Toluene	2018/08/31		94	%	60 - 140
			Ethylbenzene	2018/08/31		95	%	60 - 140
			o-Xylene	2018/08/31		91	%	60 - 140
			p+m-Xylene	2018/08/31		86	%	60 - 140
			F1 (C6-C10)	2018/08/31		92	%	80 - 120
5709037	ABD	Method Blank	1,4-Difluorobenzene	2018/08/31		99	%	60 - 140
			4-Bromofluorobenzene	2018/08/31		96	%	60 - 140
			D10-Ethylbenzene	2018/08/31		92	%	60 - 140
			D4-1,2-Dichloroethane	2018/08/31		93	%	60 - 140
			Benzene	2018/08/31	<0.020		ug/g	
			Toluene	2018/08/31	<0.020		ug/g	
			Ethylbenzene	2018/08/31	<0.020		ug/g	
			o-Xylene	2018/08/31	<0.020		ug/g	
			p+m-Xylene	2018/08/31	<0.040		ug/g	
			Total Xylenes	2018/08/31	<0.040		ug/g	
			F1 (C6-C10)	2018/08/31	<10		ug/g	
			F1 (C6-C10) - BTEX	2018/08/31	<10		ug/g	
5709037	ABD	RPD	Benzene	2018/08/31	NC		%	50
			Toluene	2018/08/31	NC		%	50
			Ethylbenzene	2018/08/31	NC		%	50
			o-Xylene	2018/08/31	NC		%	50
			p+m-Xylene	2018/08/31	NC		%	50
			Total Xylenes	2018/08/31	NC		%	50
			F1 (C6-C10)	2018/08/31	NC		%	30
			F1 (C6-C10) - BTEX	2018/08/31	NC		%	30
5709041	AYA	Matrix Spike	4-Bromofluorobenzene	2018/09/01		99	%	60 - 140
			D10-o-Xylene	2018/09/01		98	%	60 - 130
			D4-1,2-Dichloroethane	2018/09/01		98	%	60 - 140
			D8-Toluene	2018/09/01		104	%	60 - 140
			Acetone (2-Propanone)	2018/09/01		92	%	60 - 140
			Benzene	2018/09/01		99	%	60 - 140
			Bromodichloromethane	2018/09/01		102	%	60 - 140
			Bromoform	2018/09/01		102	%	60 - 140
			Bromomethane	2018/09/01		110	%	60 - 140
			Carbon Tetrachloride	2018/09/01		107	%	60 - 140

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Chlorobenzene	2018/09/01		98	%	60 - 140
			Chloroform	2018/09/01		104	%	60 - 140
			Dibromochloromethane	2018/09/01		102	%	60 - 140
			1,2-Dichlorobenzene	2018/09/01		100	%	60 - 140
			1,3-Dichlorobenzene	2018/09/01		103	%	60 - 140
			1,4-Dichlorobenzene	2018/09/01		103	%	60 - 140
			Dichlorodifluoromethane (FREON 12)	2018/09/01		107	%	60 - 140
			1,1-Dichloroethane	2018/09/01		106	%	60 - 140
			1,2-Dichloroethane	2018/09/01		98	%	60 - 140
			1,1-Dichloroethylene	2018/09/01		101	%	60 - 140
			cis-1,2-Dichloroethylene	2018/09/01		101	%	60 - 140
			trans-1,2-Dichloroethylene	2018/09/01		104	%	60 - 140
			1,2-Dichloropropane	2018/09/01		101	%	60 - 140
			cis-1,3-Dichloropropene	2018/09/01		104	%	60 - 140
			trans-1,3-Dichloropropene	2018/09/01		111	%	60 - 140
			Ethylbenzene	2018/09/01		95	%	60 - 140
			Ethylene Dibromide	2018/09/01		99	%	60 - 140
			Hexane	2018/09/01		107	%	60 - 140
			Methylene Chloride(Dichloromethane)	2018/09/01		97	%	60 - 140
			Methyl Ethyl Ketone (2-Butanone)	2018/09/01		94	%	60 - 140
			Methyl Isobutyl Ketone	2018/09/01		94	%	60 - 140
			Methyl t-butyl ether (MTBE)	2018/09/01		93	%	60 - 14
			Styrene	2018/09/01		99	%	60 - 14
			1,1,1,2-Tetrachloroethane	2018/09/01		107	%	60 - 14
			1,1,2,2-Tetrachloroethane	2018/09/01		101	%	60 - 14
			Tetrachloroethylene	2018/09/01		105	%	60 - 14
			Toluene	2018/09/01		99	%	60 - 14
			1,1,1-Trichloroethane	2018/09/01		106	%	60 - 14
			1,1,2-Trichloroethane	2018/09/01		100	%	60 - 14
			Trichloroethylene	2018/09/01		102	%	60 - 14
			Trichlorofluoromethane (FREON 11)	2018/09/01		102	% %	60 - 14
			•	2018/09/01		107		60 - 14
			Vinyl Chloride	2018/09/01			%	
			p+m-Xylene			97	%	60 - 14
700044	A \ / A	Cultinal Diami	o-Xylene	2018/09/01		96	%	60 - 14
709041	AYA	Spiked Blank	4-Bromofluorobenzene	2018/08/31		100	%	60 - 14
			D10-o-Xylene	2018/08/31		96	%	60 - 13
			D4-1,2-Dichloroethane	2018/08/31		103	%	60 - 14
			D8-Toluene	2018/08/31		99	%	60 - 14
			Acetone (2-Propanone)	2018/08/31		105	%	60 - 14
			Benzene	2018/08/31		96	%	60 - 13
			Bromodichloromethane	2018/08/31		107	%	60 - 13
			Bromoform	2018/08/31		114	%	60 - 13
			Bromomethane	2018/08/31		104	%	60 - 14
			Carbon Tetrachloride	2018/08/31		106	%	60 - 13
			Chlorobenzene	2018/08/31		98	%	60 - 13
			Chloroform	2018/08/31		100	%	60 - 13
			Dibromochloromethane	2018/08/31		114	%	60 - 13
			1,2-Dichlorobenzene	2018/08/31		103	%	60 - 13
			1,3-Dichlorobenzene	2018/08/31		104	%	60 - 13
			1,4-Dichlorobenzene	2018/08/31		105	%	60 - 13
			Dichlorodifluoromethane (FREON 12)	2018/08/31		105	%	60 - 14
			1,1-Dichloroethane	2018/08/31		98	%	60 - 13

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Datoil	11111	40 1 JPC	1,2-Dichloroethane	2018/08/31	value	101	%	60 - 130
			1,1-Dichloroethylene	2018/08/31		98	%	60 - 130
			cis-1,2-Dichloroethylene	2018/08/31		99	%	60 - 130
			trans-1,2-Dichloroethylene	2018/08/31		98	%	60 - 130
			1,2-Dichloropropane	2018/08/31		99	%	60 - 130
			cis-1,3-Dichloropropene	2018/08/31		107	%	60 - 130
			trans-1,3-Dichloropropene	2018/08/31		113	%	60 - 130
			Ethylbenzene	2018/08/31		99	%	60 - 130
			Ethylene Dibromide	2018/08/31		108	%	60 - 130
			Hexane	2018/08/31		94	%	60 - 130
			Methylene Chloride(Dichloromethane)	2018/08/31		107	%	60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2018/08/31		107	%	60 - 140
			Methyl Isobutyl Ketone	2018/08/31		109	%	60 - 130
			Methyl t-butyl ether (MTBE)	2018/08/31		100	%	60 - 130
			Styrene	2018/08/31		101	%	60 - 130
			1,1,1,2-Tetrachloroethane	2018/08/31		111	%	60 - 130
			1,1,2,2-Tetrachloroethane	2018/08/31		107	%	60 - 130
			Tetrachloroethylene	2018/08/31		98	%	60 - 130
			Toluene	2018/08/31		88	%	60 - 130
			1,1,1-Trichloroethane	2018/08/31		101	%	60 - 130
			1,1,2-Trichloroethane	2018/08/31		103	%	60 - 13
			Trichloroethylene	2018/08/31		98	%	60 - 13
			Trichlorofluoromethane (FREON 11)	2018/08/31		103	%	60 - 13
			Vinyl Chloride	2018/08/31		100	%	60 - 13
			p+m-Xylene	2018/08/31		97	%	60 - 13
			o-Xylene	2018/08/31		98	%	60 - 13
709041	AYA	Method Blank	4-Bromofluorobenzene	2018/08/31		101	%	60 - 14
7703041	717	Wethou blank	D10-o-Xylene	2018/08/31		86	%	60 - 13
			D4-1,2-Dichloroethane	2018/08/31		101	%	60 - 14
			D8-Toluene	2018/08/31		101	%	60 - 14
			Acetone (2-Propanone)	2018/08/31	<0.50	101	ug/g	00 - 14
			Benzene	2018/08/31	<0.020		ug/g ug/g	
			Bromodichloromethane	2018/08/31	<0.050		ug/g ug/g	
			Bromoform	2018/08/31	<0.050		ug/g	
			Bromomethane	2018/08/31	<0.050		ug/g ug/g	
			Carbon Tetrachloride	2018/08/31	<0.050			
			Chlorobenzene	2018/08/31	<0.050		ug/g ug/g	
			Chloroform	2018/08/31	<0.050			
			Dibromochloromethane	2018/08/31	<0.050		ug/g ug/g	
			1,2-Dichlorobenzene	2018/08/31	<0.050		ug/g ug/g	
			1,3-Dichlorobenzene	2018/08/31	<0.050		ug/g ug/g	
			1,4-Dichlorobenzene	2018/08/31	<0.050			
			Dichlorodifluoromethane (FREON 12)	2018/08/31	<0.050		ug/g	
			1,1-Dichloroethane	2018/08/31	<0.050		ug/g	
			1,2-Dichloroethane	2018/08/31	<0.050		ug/g	
			1,1-Dichloroethylene	2018/08/31	<0.050		ug/g	
			cis-1,2-Dichloroethylene	2018/08/31	<0.050		ug/g	
							ug/g	
			trans-1,2-Dichloroethylene	2018/08/31	<0.050		ug/g	
			1,2-Dichloropropane	2018/08/31	<0.050		ug/g	
			cis-1,3-Dichloropropene	2018/08/31	<0.030		ug/g	
			trans-1,3-Dichloropropene	2018/08/31	<0.040		ug/g	
			Ethylbenzene	2018/08/31	<0.020		ug/g	

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Baton		ζο : γρο	Ethylene Dibromide	2018/08/31	<0.050		ug/g	<u> </u>
			Hexane	2018/08/31	<0.050		ug/g	
			Methylene Chloride(Dichloromethane)	2018/08/31	<0.050		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2018/08/31	<0.50		ug/g	
			Methyl Isobutyl Ketone	2018/08/31	<0.50		ug/g	
			Methyl t-butyl ether (MTBE)	2018/08/31	<0.050		ug/g	
			Styrene	2018/08/31	<0.050		ug/g	
			1,1,1,2-Tetrachloroethane	2018/08/31	<0.050		ug/g	
			1,1,2,2-Tetrachloroethane	2018/08/31	<0.050		ug/g	
			Tetrachloroethylene	2018/08/31	<0.050		ug/g	
			Toluene ,	2018/08/31	<0.020		ug/g	
			1,1,1-Trichloroethane	2018/08/31	<0.050		ug/g	
			1,1,2-Trichloroethane	2018/08/31	<0.050		ug/g	
			Trichloroethylene	2018/08/31	<0.050		ug/g	
			Trichlorofluoromethane (FREON 11)	2018/08/31	<0.050		ug/g	
			Vinyl Chloride	2018/08/31	<0.020		ug/g	
			p+m-Xylene	2018/08/31	<0.020		ug/g	
			o-Xylene	2018/08/31	<0.020		ug/g	
			Total Xylenes	2018/08/31	<0.020		ug/g	
5709041	AYA	RPD	Acetone (2-Propanone)	2018/08/31	NC		%	50
5,050.1		2	Benzene	2018/08/31	NC		%	50
			Bromodichloromethane	2018/08/31	NC		%	50
			Bromoform	2018/08/31	NC		%	50
			Bromomethane	2018/08/31	NC		%	50
			Carbon Tetrachloride	2018/08/31	NC		%	50
			Chlorobenzene	2018/08/31	NC		%	50
			Chloroform	2018/08/31	NC		%	50
			Dibromochloromethane	2018/08/31	NC		%	50
			1,2-Dichlorobenzene	2018/08/31	NC		%	50
			1,3-Dichlorobenzene	2018/08/31	NC		%	50
			1,4-Dichlorobenzene	2018/08/31	NC		%	50
			Dichlorodifluoromethane (FREON 12)	2018/08/31	NC		%	50
			1,1-Dichloroethane	2018/08/31	NC		%	50
			1,2-Dichloroethane	2018/08/31	NC		%	50
			1,1-Dichloroethylene	2018/08/31	NC		%	50
			cis-1,2-Dichloroethylene	2018/08/31	NC		%	50
			trans-1,2-Dichloroethylene	2018/08/31	NC		%	50
			1,2-Dichloropropane	2018/08/31	NC		%	50
			cis-1,3-Dichloropropene	2018/08/31	NC		%	50
			trans-1,3-Dichloropropene	2018/08/31	NC		%	50
			Ethylbenzene	2018/08/31	NC		%	50
			Ethylene Dibromide	2018/08/31	NC		%	50
			Hexane	2018/08/31	NC		%	50
			Methylene Chloride(Dichloromethane)	2018/08/31	NC		%	50
			Methyl Ethyl Ketone (2-Butanone)	2018/08/31	NC		%	50
			Methyl Isobutyl Ketone	2018/08/31	NC		%	50
			Methyl t-butyl ether (MTBE)	2018/08/31	NC		%	50
			Styrene	2018/08/31	NC		%	50
			1,1,1,2-Tetrachloroethane	2018/08/31	NC		%	50
			1,1,2,2-Tetrachioroethane	2018/08/31	NC		%	50
			Tetrachloroethylene	2018/08/31	NC		% %	50 50
			Toluene	2018/08/31	NC		70	50 50

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,1,1-Trichloroethane	2018/08/31	NC		%	50
			1,1,2-Trichloroethane	2018/08/31	NC		%	50
			Trichloroethylene	2018/08/31	NC		%	50
			Trichlorofluoromethane (FREON 11)	2018/08/31	NC		%	50
			Vinyl Chloride	2018/08/31	NC		%	50
			p+m-Xylene	2018/08/31	NC		%	50
			o-Xylene	2018/08/31	NC		%	50
			Total Xylenes	2018/08/31	NC		%	50
5709094	AS2	Matrix Spike	o-Terphenyl	2018/09/01		96	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/09/01		99	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2018/09/01		94	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2018/09/01		90	%	50 - 130
5709094	AS2	Spiked Blank	o-Terphenyl	2018/09/01		95	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/09/01		97	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2018/09/01		93	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2018/09/01		89	%	80 - 120
5709094	AS2	Method Blank	o-Terphenyl	2018/09/01		92	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/09/01	<10		ug/g	
			F3 (C16-C34 Hydrocarbons)	2018/09/01	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2018/09/01	<50		ug/g	
5709094	AS2	RPD	F2 (C10-C16 Hydrocarbons)	2018/09/01	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2018/09/01	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2018/09/01	NC		%	30
5709342	GKR	RPD [HPE591-01]	Moisture	2018/08/31	3.6		%	20
5711224	NB3	QC Standard	Sieve - #200 (<0.075mm)	2018/09/04		57	%	53 - 58
			Sieve - #200 (>0.075mm)	2018/09/04		43	%	42 - 47
5711224	NB3	RPD	Sieve - #200 (<0.075mm)	2018/09/04	0.20		%	20
			Sieve - #200 (>0.075mm)	2018/09/04	6.6		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Pinchin Ltd

Client Project #: 227626

Site Location: PHASE II ESA/ 220 BRADFORD

Sampler Initials: KK

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

1ax	Sam 6	Maxxam Analytics Internation 6740 Campobello Road, Miss	issauga Ontario	Canada L5N	2L8 Tel (905) 81				905) 817-57	777 www.m	naxxam ca			DDO IFOT	INFORMATION:			la Brasil	8 I BH	0	nly:	ge of
	INVO	ICE TO:				-	REPORT	TO:					-	A7092		-	B8N	12749		T	Bottle Or	der#:
mpany Name	#47523 Pinchin Ltd	d		Compa	ny Name:	on Online						Quotation #		Arosz		-			0	1	1.11101111	OUTH
ention	Accounts Payable			Attentio	on: Melis	ssa Gallagh	ier		-			P.O #		227626	Š	– UI	КE	ENV-93	38		6791	
ress	Unit 6 875 Main St \			Addres	5				9			Project Project Nan	Sale:	Phas	RIES	A		1	LUC#:		Project Ma	mager:
	Hamilton ON L8S 4	102-2020	F77 6007	-	/905) 577-6206	Ext: 17	21				Site#	16	220	Basepas	BI	ad forch	1 1 1 1 1 1 1 1		111111	Antonella	Brasil
	(905) 577-6206	Fax (905)	577-6207	Tel Email:		llagher@pi						Sampled By	V (1)	KK	State of				C#679170-01-01			
u):	ap@pinchin.com					-								PLEASE B	E SPECIFIC)				Turnaround Tin	ne (TAT) Re	fuired	STOLENS
MOE REG	SULATED DRINKING V SUBMITTED ON	VATER OR WATER IN THE MAXXAM DRINK	TENDED FO ING WATER	CHAIN O	CONSUMPTI	JN MUST E	· C	·							No.	-	1 2	Regular (Sta		C	1.	rt
Regulat	tion 153 (2011)		r Regulations		, Specia	I Instructions	\Box	circle):		5			÷ .		3			Lancas American	f Rush TAT is not specifie 5-7 Working days for mo		day.	1
	Res/Park Medium/F		anitary Sewer Bylanorm Sewer Bylan					Field Filtered (please ci Metals / Hg / Cr VI		L			2 2	- 1	- 1			Diussa note: St	andard TAT for certain les our Project Manager for d	ts such as 80	D and Dioxins/Fu	rans are >
able 2	Ind/Comm Coarse Agri/Other For RSC	band band	cipality					g B	5	·15	(A)		SIZE		1.0			-3 - N	Rush TAT (if applies to		Section!	_
able 3	no.	PWQO						erec	3		7	- 20	<1+	-				Date Required:			Required:	
	(A)	Other						J Fil	7	Ca	00	# d	5.					Rush Confirma		les	II (ab for #)	L.
	Include Criteria o	on Certificate of Analysi	s (Y/N)?					Field	1	PHG		(7	5				1	# or Bottles		Comme	CONTRACTOR OF THE PARTY OF THE	
Samf	ole Barcode Label	Sample (Location) Identifi	cation	Date Sample	Time Sampl	ed Mati	ix			17						-	-	0.1				
		0.1.0	r	rug 23	100	SON	1						X	. 6				21				
		BH101 - K		2618		301	1						-			_	1					
1		BH101-8		1	,	1	- 1		X									3				
		DHIOI		1					/ \				. /			-		A				
	•	BH102-6											X					,				
·				_		1			1									3				
		BH102-8				1 1	- 1	AC.	X)				
-		4										V						1				
		BH103 - 0	2								-					1						
1			2					1				X						1				
1		BH(03-	6			1										-		5				
		n	7						X	1				1				3				
		BH103-	+				-			-						_						
		BH104-	7							X	X							3				
		- POJ MG	T	-		_	1		1		-							7	*	7		
		BH104-8	2	1/			1		X						6.5			3.				
-		DHIGH					Ψ															- 1
				*												*			Use Cole			
	* RELINQUISHED BY: (Sig	(nature/Print)	Date: (YY/MI	M/DD)	Time	REC	EIVED B	Y: (Signature	/Print)		Date: (YY			Time	# jars used a	ord —	ne Sensitive		tory Use Only	Custody S	eal Ye	5
Woli:		1	18/08/0	18	20	01		MAR	1116	w.	7018/	09/28	15	:20	_	1 30	не оппания	Temperati	e (°C) on Recei	Present Intact		7
	1 1			ō													NT 1954	0			hite: Maxxa	Yellow:
LESS OTH	ERWISE AGREED TO IN WRI	ITING, WORK SUBMITTED OF DE OUR TERMS WHICH ARE	N THIS CHAIN OF	CUSTODY	S SUBJECT TO M	XXAM'S STAN	DARD TE	RMS AND CO	NDITIONS.	SIGNING	OF THIS CH	AIN OF CUS	STODY DO	CUMENT IS				-000	C) FROM TIME OF SAN MAXXAM	257,000		

Maxxam Analytics International Corporation o/a Maxxam Analytics

Maxxam Job #: B8M2749 Report Date: 2018/09/04 Maxxam Sample: HPE595 Pinchin Ltd

Client Project #: 227626

Project name: PHASE II ESA/ 220 BRADFORD

Client ID: BH104-7

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Chayell Hotels Ltd.

Cambium Ref. No.: 9326-001

2020-04-20

			App	pendix	C
Slug	Test	Analy	/sis	Repo	rts

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

CAMBION		
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 1 (Slug out)	Test Well: BH202
Test Conducted by: Chirs M.		Test Date: 10/02/19
Analysis Performed by: M.Francis	Slug 1 out	Analysis Date: 10/16/19

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH202	8.65 × 10 ⁻⁵	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

CAMBION		
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 2 (Slug Out)	Test Well: BH202
Test Conducted by: Chirs M.		Test Date: 10/02/19
Analysis Performed by: M.Francis	Slug 2 Out	Analysis Date: 10/16/19

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH202	7.72 × 10 ⁻⁵	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 3 (Slug Out)	Test Well: BH202
Test Conducted by: Chris M.		Test Date: 10/02/19
Analysis Performed by: M.Francis	Slug 3 Out	Analysis Date: 10/16/19

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH202	8.46 × 10 ⁻⁵	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

CAMBION		
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 4 (Slug Out)	Test Well: BH202
Test Conducted by: Chris M.		Test Date: 10/02/19
Analysis Performed by: M.Francis	Slug 4 Out	Analysis Date: 10/16/19

Calculation using	Hvorslev
-------------------	----------

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH202	8.28 × 10 ⁻⁵	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

CAMBION		
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 1 (Slug Out)	Test Well: BH204
Test Conducted by: Chris M.		Test Date: 10/02/19
Analysis Performed by: M. Francis	Slug 1 Out	Analysis Date: 10/17/19

Calculation using	Hvorslev
-------------------	----------

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH204	2.53 × 10 ⁻⁴	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

CAMBIOM	-	
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 2 (Slug Out)	Test Well: BH204
Test Conducted by: Chris M.		Test Date: 10/02/19
Analysis Performed by: M. Francis	Slug 2 Out	Analysis Date: 10/17/19

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH204	2.67 × 10 ⁻⁴	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

CAMBIOM		
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 3 (Slug Out)	Test Well: BH204
Test Conducted by: Chris M.		Test Date: 10/02/19
Analysis Performed by: M. Francis	Slug 3 Out	Analysis Date: 10/17/19

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH204	2.82 × 10 ⁻⁴	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

O) (ITIDIO) (I		
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 4 (Slug Out)	Test Well: BH204
Test Conducted by: Chris M.	Test Date: 10/02/19	
Analysis Performed by: M. Francis	Slug 4 Out	Analysis Date: 10/17/19

Calculation using I	Hvorslev
---------------------	----------

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH204	2.83 × 10 ⁻⁴	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

CAMBION		
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 1 (Slug Out)	Test Well: BH207
Test Conducted by: Chris M.		Test Date: 10/02/19
Analysis Performed by: M. Francis	Slug Out 1	Analysis Date: 10/18/19

Aquifer Thickness: 1.55 m

Calculation using Hvorslev

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH207	1.01 × 10 ⁻⁴	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

CAMBIOM	-	
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 2 (Slug Out)	Test Well: BH207
Test Conducted by: Chris M.		Test Date: 10/02/19
Analysis Performed by: M. Francis	Slug Out 2	Analysis Date: 10/18/19

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH207	1.00 × 10 ⁻⁴	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

CAMBION		
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 3 (Slug Out)	Test Well: BH207
Test Conducted by: Chris M.		Test Date: 10/02/19
Analysis Performed by: C. MacDougall	Slug Out 3	Analysis Date: 10/18/19

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH207	1.15 × 10 ⁻⁴	

Slug Test Analysis Report

Project: Hydrogeological Assessment

Number: 9326-002

Client: Chayell Hotels

CAMBION		
Location: 220 Bradford Street, Barrie, ON	Slug Test: Slug Test 4 (Slug Out	Test Well: BH207
Test Conducted by: Chris M.		Test Date: 10/02/19
Analysis Performed by: C. MacDougall	Slug Out 4	Analysis Date: 10/18/19

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH207	1.10 × 10 ⁻⁴	

Chayell Hotels Ltd.

Cambium Ref. No.: 9326-001

2020-04-20

	Ap	pend	d xib
Sampling	and Analy	ysis	Plan

Prepared for: Chayell Hotels Ltd.

© Cambium 2019 Reference No.: 9326-001

CAMBIUM INC. 866.217.7900 cambium-inc.com

Peterborough | Barrie | Oshawa | Kingston

Ref. No.: 9326-001 2020-01-13

Table of Contents

1.0	Introduction	2
1.1	Objectives	
2.0	Work Proposed	
2.1	Quality Assurance	4
2.2	Sampling Methods	4
2.2.1	Sample Handling and Custody	5
2.2.2	Instrumentation	5
2.3	Quality Control	6
231	Verification and Validation Methods	6

1.0 Introduction

This document outlines the Sampling and Analysis Plan (SAP) for the field work proposed for the Phase Two Environmental Site Assessment (ESA) being completed at 220 Bradford Street in Barrie, Ontario (Site or Phase Two Property). This SAP establishes a quality assurance and quality control (QA/QC) program, data quality objectives, standard operating procedures, and a description of potential physical impediments that may limit the ability to conduct sampling and analysis.

1.1 Objectives

Cambium Inc. (Cambium) completed a Phase One ESA for the Site which identified areas of potential environmental concern (APECs) associated with former uses of the site and surrounding properties.

The purpose of the Phase Two ESA will be to investigate soil and/or groundwater quality in the identified APECs through the drilling of boreholes and installation of monitoring wells, and the collection of soil and groundwater samples.

The contaminants of potential concern (COPCs) associated with the APECs include: volatile organic compounds (VOCs), petroleum hydrocarbon fractions 1 to 4 (PHC F1-F4), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and metals.

The overall objective of the Phase Two work program is to identify areas of contaminants at the Phase Two property, if any, to support the filing of a Record of Site Condition (RSC) in accordance with Ontario Regulation (O.Reg.) 153/04.

2.0 Work Proposed

Proposed boreholes and monitoring well locations and rationale are included in the following table:

Borehole / Test Pit / Monitoring Well ID	Rationale
BH201	Investigate soil and groundwater quality for COPCs in APEC 1 in the central portion of the Site.
BH202	Investigate soil and groundwater quality for COPCs in APECs 2 and 3 along the northeast side of the Site.
BH203	Investigate soil and groundwater quality for COPCs in APECs 2 and 3 along the northeast side of the Site.
BH204	Investigate groundwater quality for COPCs in APECs 3 and 4 along the southeast side of the Site.
BH205	Investigate groundwater quality for COPCs in APECs 3 and 4 along the southeast side of the Site.
BH206	Investigate groundwater quality for COPCs in APEC 3 in the southwest corner of the Site.
BH207	Investigate groundwater quality for COPCs in APEC 3 on the central-west side of the Site.
BH208	Investigate groundwater quality for VOCs.
BH1	Investigate groundwater quality for VOCs and PAHs.
BH2	Investigate groundwater quality for COPCs in APECs 3 along the southeast side of the Site.
BH102	Investigate groundwater quality for PHCs/BTEX and metals.
BH301	Investigate groundwater quality for VOCs.
BH401	Investigate groundwater quality for COPCs in APEC 5.
BH402	Investigate groundwater quality for COPCs in APEC 5.

To meet the objectives outlined above, the Phase Two ESA work program will generally consist of the following:

• Advance eight boreholes to the depth of the water table;

- Advance three boreholes to roughly 10.7 m below ground surface (bgs) to investigate the deeper groundwater for VOCs;
- Collect soil samples continuously at regular intervals using a split spoon or dual tube sampling system;
- Instrument the eight shallow boreholes with monitoring wells with 3.05 m screens;
- Instrument the three deeper boreholes with a monitoring well with a 1.52 m screen; and,
- Collect groundwater samples using a low-flow sampling method.

2.1 Quality Assurance

Cambium will maintain the following quality control measures throughout the Phase Two work program:

- Non-dedicated sampling and monitoring equipment will be decontaminated following each use and between each sampling location.
- A minimum of one duplicate sample will be collected for every ten samples collected, for both soil and groundwater.
- Groundwater trip blanks will be submitted for analysis of VOCs with every groundwater VOC sample submission.

An analytical laboratory accredited by the Canadian Association of Laboratory Accreditation (CALA) will be utilized, and the laboratory will complete additional quality control measures (i.e. duplicates, method spikes) as required by its accreditation.

All laboratory certificates of analysis will be reviewed by Cambium for data integrity and quality control. If anomalies in the reported data are identified, Cambium will resample or collect additional samples, where possible and as required.

2.2 Sampling Methods

Boreholes will be advanced using a track-mounted drill rig. Retrieved soil samples will be inspected for visible and olfactory evidence of contamination. Soil samples will be divided, with

half or more of the sample placed in a dedicated polyethylene sample bag and sealed for field screening, and the remaining sample placed in dedicated sample jars or vials for analytical submission. Samples to be submitted for analysis of VOCs will be collected applying the appropriate techniques, as per O. Reg. 153/04 (i.e. Terra Core sampler and methanol preserved vial).

Two-inch monitoring wells will be installed by a licensed well contractor. Monitoring wells will generally consist of a 3.05 m length of schedule 40 PVC screen with riser to the top of the well. The deeper well will consist of a 1.52 m length of schedule 40 PVC screen. Wells will be completed with a flush-mount casing.

Groundwater samples will be collected following development of the well to ensure representative formation waters. Samples from each well will be collected using low-flow sampling methodology, with dedicated tubing installed in each of the monitoring wells. Groundwater samples requiring filtration will be field filtered using an in-line filter attached to the end of the polyethylene tubing.

Each sample will be handled by a Cambium field technician using dedicated nitrile gloves to minimize the potential for cross-contamination.

2.2.1 Sample Handling and Custody

Samples will be collected in laboratory-supplied sample containers, with preservative as necessary. All samples requiring laboratory analysis will be placed in a cooler and maintained at less than 10°C prior to and during transport to the laboratory.

Samples will be labelled with a unique sample ID, sampling date, and project number. All samples will be shipped to the laboratory under chain of custody protocols.

2.2.2 Instrumentation

The Phase Two work program will require the use of the following non-dedicated instrumentation and equipment: field water quality kit, peristaltic pump, and interface probe. Equipment will be inspected daily for damage or defects, and appropriate measures will be

taken if necessary, prior to commencing field work. The interface probe will be decontaminated between monitoring wells using an Alconox wash, and rinsed with distilled water.

2.3 Quality Control

2.3.1 Verification and Validation Methods

To validate the integrity of the laboratory analytical data as well as sampling methods, Cambium will determine the relative percent difference (RPD) of QA/QC duplicate samples and the corresponding numbered samples. Cambium will also review the analysis of trip blanks and laboratory completed matrix spikes.

RPD is calculated using the following formula:

$$RPD = \frac{|S - D|}{1/2(S + D)} * 100$$

Where

S = numbered sample value

D = duplicate value

Low concentrations are more sensitive to RPD values; as such, RPDs will not be calculated where the parameter concentration in the sample and/or duplicate is less than five times the laboratory RDL.

RPD values will be evaluated based on data quality objectives (DQOs) of 60% for soil and 40% for water.

If an RPD is calculated above the allowable limits, Cambium will attempt to determine the source of the variance, and will assess whether the elevated RPD affects the integrity and usability of the data.

If detectable contaminant concentrations are identified in the trip blank, Cambium will assess the chain of custody protocols and sample transport procedures, and determine if there are impacts to the integrity of the data.

Chayell Hotels Ltd.

Cambium Ref. No.: 9326-001

2020-04-20

Appendix	Ε
Borehole Loc	ıs

Page 1 of 1

Phase Two Environmental Site Assesment Client: Chayell Hotels Ltd. Project Name: Project No.: 9326-001 Date Completed: Contractor: Strata Drilling Group Method: Direct Push 26-08-2019 UTM: 17T, 604128.4, 4914440.5 Elevation: 223.02 masl Location: 220 Bradford Street, Barrie, ON

	100				2000		5003 E20-00 ****			
	SU	JBSURFACE PROFILE	1		SAN	IPLING	INFO			
Depth (ft) Depth (m)	Lithology	Description	Elevation (m)	Number	Туре	% Recovery	CSV (ppm)	OV (ppm)	Well Installation	Remarks
0 = 0 1 = 1 2 = 1		Fill: Medium brown sand and gravel, moist Medium brown silty sand, trace gravel, trace aspahlt, moist Sand: Brown, medium grained, moist	0	1	DP	75%	<5	<1	Cap Flush Mount Bentonite Plug PVC Riser	
4—1 4—1 5—			1 - -	1	DP		<5	<1		
6—2		Wet	_ 2	2	DP		<5	<1		Water Level Oct 3, 2019
8			-	2	DP	65%	<5	1	Sand Pack PVC Screen	36(6, 20 16
10 = -3			3 -	3	DP		>600	1		
12 —			-4	3	DP	90%	<5	<1	Сар	
14 -		Borehole terminated at 4.57 mbgs in sand								
16 - 5										
19 — 6			- - 6							
20 –			1]	<u> </u>			

BH202

Page 1 of 1

Phase Two Environmental Site Assesment Client: Chayell Hotels Ltd. Project Name: Project No.: 9326-001 Date Completed: Contractor: Strata Drilling Group Method: Direct Push 26-08-2019 Location: UTM: 17T, 604134.2, 4914456.3 Elevation: 223.95 masl 220 Bradford Street, Barrie, ON

	SI	UBSURFACE PROFILE			SAM	IPLING	INFO			
Depth (ft) Depth (m)	Lithology	Description	Elevation (m)	Number	Туре	% Recovery	CSV (ppm)	OV (ppm)	Well Installation	Remarks
0 - 0	• 0	Fill: Medium brown sand, trace silt, some organics, moist Light brown, some silt, trace gravel	o	1	DP		<5	5	Cap Flush Mount	
2	000000000000000000000000000000000000000		1	1	DP	55%	<5	1	Bentonite Plug PVC Riser	
5— 6— 1—2 7—		Sand: Medium brown, medium grained, moist	2	2	DP	60%	<5	<1		
93		Wet	- - 3	2	DP		<5	<1	Sand Pack	Water Level
11 - 1			-	3	DP		165	1	PVC Screen	Oct 3, 2019
134			- -4	3	DP	90%	<5	1		
15 — 16 — ————————————————————————————————		Borehole terminated at 4.57 mbgs in sand	_ _ 5						Сар	
18										
20 —		•				ı	1	L		

Page 1 of 1

Phase Two Environmental Site Assesment Client: Chayell Hotels Ltd. Project Name: Project No.: 9326-001 Date Completed: Contractor: Strata Drilling Group Method: Direct Push 26-08-2019 Location: UTM: 17T, 604118.6, 4914444.6 Elevation: 224.11 masl 220 Bradford Street, Barrie, ON

		SI	JBSURFACE PROFILE			SAM	PLING	INFO			
Depth (ft)	Depth (m)	Lithology	Description	Elevation (m)	Number	Туре	% Recovery	CSV (ppm)	OV (ppm)	Well Installation	Remarks
1-	0 	00000	Fill: Medium brown sand, trace silt, some organics, moist Light brown sand, some silt, trace gravel,	0	1	DP		<5	<1	Cap Flush Mount	
3	- - -1	• 0	moist	- 1			50%			Bentonite Plug PVC Riser	
4— 5—	_	0000		_	1	DP		<5	<1		
6	- - - 2	000	Sand: Medium brown, medium grained, moist	_ 2	2	DP		<5	<1		
8-1 9-1	-		Wet	_	2	DP	70%	<5	<1		
10 —	—3			 3						Sand Pack PVC Screen	Water Level
11 -	-			_	3	DP		210	<1	PVC Screen	Oct 3, 2019
12 -	- - - 4			- 4			70%				
14	-			_	3	DP		<5	<1		
15 -	- - 5		Terminated at 4.57 mbgs in sand							- Cap	
17 -	-										
19	-										
20	—6			├-6							

Page 1 of 1

Phase Two Environmental Site Assesment Client: Chayell Hotels Ltd. Project Name: Project No.: 9326-001 Contractor: Strata Drilling Group Method: Direct Push Date Completed: 22-08-2019 UTM: 17T, 604148.3, 4914446 222.46 masl Location: 220 Bradford Street, Barrie, ON Elevation:

		SI	JBSURFACE PROFILE			SAN	IPLING	INFO			
Depth (ft)	Depth (m)	Lithology	Description	Elevation (m)	Number	Туре	% Recovery	CSV (ppm)	OV (ppm)	Well Installation	Remarks
₀¬				⊤ 0		1		1	1		<u> </u>
1-	- -	00.00	Asphalt Fill: Brown sand, moist		1	DP		<5	<1	Cap Flush Mount Bentonite Plug	
3-	- - 1 -	0000000	Black banding	- 1			30%			PVC Riser	
5— 6— 7—	- - - 2	000000	Brick fragments, wet	2	2	DP		<5	<1	Y	Water Level Oct 3, 2019
8— 9—	_	0000		-			42%			Sand Pack PVC Screen	
10 -	— 3 –	• 0	Sand: Brown, wet	3							
12 -	-			-	3	DP	72%	<5	<1	Cap	
14 -	— 4 - -		Black striations	-4						—— Сар	
15 — 16 —	- - 5		Borehole terminated at 4.57 mbgs in sand	5				-			
17 -	-										
19 -	- - -6			6							

www.cambium-inc.com

BH205

Page 1 of 1

Client:Chayell Hotels Ltd.Project Name:Phase Two Environmental Site AssesmentProject No.:9326-001Contractor:Strata Drilling GroupMethod:Direct PushDate Completed:22-08-2019

Page 1 of 1

Phase Two Environmental Site Assesment Client: Chayell Hotels Ltd. Project Name: Project No.: 9326-001 Date Completed: Contractor: Strata Drilling Group Method: Direct Push 22-08-2019 UTM: 17T, 604085.3, 4914392.4 Elevation: 222.05 masl Location: 220 Bradford Street, Barrie, ON

		SI	JBSURFACE PROFILE			SAM	PLING	INFO			
Depth (ft)	Depth (m)	Lithology	Description	Elevation (m)	Number	Туре	% Recovery	CSV (ppm)	OV (ppm)	Well Installation	Remarks
. —								1	ı	N 80004	
0 1	- 0		Sand: Dark brown, trace gravel, moist	0	1	DP		<5	<1	Cap Flush Mount	
2										Bentonite Plug PVC Riser	
3-	_			-			27%			PVC Riser	
	-1			1							Water Level Oct 3, 2019
4-											,
5-	_		Coarse grained, some organics								
6-	- 2			<u>-2</u>	2	DP		<5	<1		
7-	_			-			43%			. 🛮	
8-	-			-			4570			Cond Basis	
9-				-						Sand Pack PVC Screen	
10 =	—3		Trace silt	-3							
11 -	-			-							
12	_				3	DP		<5	<1		
13	- -4			4			58%				
14 –	-			-						Cap	
15	-			}							
	_		Borehole terminated at 4.57 in sand	-							
16 -	—5			-5							
17	-			+							
18 -	_										
19 -	_										
20 🗖	—6			├ -6							

Page 1 of 1

Phase Two Environmental Site Assesment Client: Chayell Hotels Ltd. Project Name: Project No.: 9326-001 Date Completed: Contractor: Strata Drilling Group Method: Direct Push 22-08-2019 Location: UTM: 17T, 604096.9, 4914428.6 Elevation: 224.26 masl 220 Bradford Street, Barrie, ON

	SI	JBSURFACE PROFILE			SAN	IPLING	INFO			
Depth (ft) Depth (m)	Lithology	Description	Elevation (m)	Number	Туре	% Recovery	CSV (ppm)	OV (ppm)	Well Installation	Remarks
0 - 0 1 - 1 2 1 3 1 4 1		Asphalt Sand: Light brown. moist	- - - 1	1	DP	47%	15	<1	Cap Flush Mount Bentonite Plug PVC Riser	
5— 6— 4—2 7— 8—			- 2 -	2	DP	68%	20	<1		
9-3-3-3-11-3-1		Wet	3	3	DP		115	<1	Sand Pack PVC Screen	Water Level Oct 3, 2019
13 - 4			- - -4	4	DP	73%	20	<1		
15 — 16 — 5 17 — 5 18 — 19 — 6 20 — 6		Borehole terminated at 4.57 mbgs in sand							Сар	

Page 1 of 1

Client:Chayell Hotels Ltd.Project Name:Phase Two Environmental Site AssesmentProject No.:9326-001Contractor:Strata Drilling GroupMethod:Direct PushDate Completed:22/26-08-2019

Location: 220 Bradford Street, Barrie, ON UTM: 17T, 604147.8, 4914443 Elevation: 222.51 masl

	tion.		nadiord Street, Darrie, ON				171,00414			Lievation. ZZZZ.OT IIIdol
	Т	SU	JBSURFACE PROFILE			SAN	IPLING	INFO		
Depth (ft)	Depth (m)	Lithology	Description	Elevation (m)	Number	Туре	% Recovery	CSV (ppm)	OV (ppm)	Well Installation Remarks
. ——				-				1	1	N NOODE I
0	0 [• O	Asphalt	∤ °	1	DP		<5	<1	Сар
2	Ì	.00	Fill: Medium brown sand, trace gravel, moist	-	<u>'</u>		40%			Flush Mount Water Level
3	1	• 0		⊢ -1			1070			Oct 3, 2019
5	ĺ	.00		F						
6	,	• 0	Wet	-2	2	DP		<5	<1	
7	^					-	47%			
9		0		t						
-	3	<u>.•</u> .	O IMP	-3						
11 🗐			Sand: Medium brown, wet	ļ.	3	DP		230	<1	
12	.		Grey	.			83%			
14	4		Gley	-4	4	DP		4	<1	
15			T	-						Bentonite Plug
16	5	:::::::	Trace silt	-5	5	DP		250	<1	PVC Riser
17 18				-		Di	100%	200		
19	F	至美	Silty Sand: Dark grey, trace gravel, wet	Ţ	6	DP		<5	<1	
20	6		0.11.0	-6				.0		
21		<u> </u>	Silt: Grey, some sand, wet	F	7	DP		<5	<1	
22 -	7		Clay: Grey, some silt	T ₋₇	8	DP	70%	<5	<1	
24	'			-"			-			
25	ŀ	////	Cont. Once and Francisco Local							
26	8		Sand: Grey, medium grained, wet	-8	9	DP	85%	<5	<1	Bentonite Plug PVC Riser
27				į.						
28 1				-	10	DP	100%	<5	<1	
30	9			⊢-9						
31				-	11	DP		<5	<1	
32	10		Silty Sand: Grey, wet	-10		access?	100%		31	Sand Pack
33 34	"	<u> </u>	Silt: Grey, some fine sand, wet	+ ""	12	DP		<5	<1	PVC Screen
35	ļ	<u></u> -		‡						Cap
	11		Borehole terminated at 10.66 mbgs in silt	-11						
37				ţ						
38				-						
40 ==	12			-12						

BH301

Page 1 of 1

Project No.: Client: Chayell Hotels Ltd. Project Name: 9326-001 Phase Two Environmental Site Assesment Date Completed: Contractor: Walker Drilling Method: Hollow Stem Augers 21-10-2019 Location: 220 Bradford Street, Barrie, ON UTM: 17T, 604094, 491446 Elevation: 224.91 masl

W	auon.		nauloru Street, Barrie, Ori				, 004094,	10.1110		Lievation. 224.51 masi
	,	SI	JBSURFACE PROFILE			SAM	PLING	INFO		
Depth (ft)	Depth (m)	Lithology	Description	Elevation (m)	Number	Туре	% Recovery	CSV (ppm)	OV (ppm)	Well Installation Remarks
0 1	¯0 [• 0	Fill: Brown sand, with organics, trace gravel, moist, very loose	_0	1	SS	40	-	-	Cap Grout
3-4-	-1	<u> </u>	Sand: Brown sand, some gravel, trace organics, moist, loose	- 1	2	SS	50	-	1	Bentonite Plug PVC Riser
2 3 4 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7			Compact		3	SS	70	-	-	
⊐⊢	-2			-2 - -	4	SS	80	-	-	
9 10 11	-3			- 3	5	SS	80	-	1	Sand Pack PVC Screen
12 - 13 - 14 -	-4			- - -4						Sand Pack PVC Screen
15 — 16 — 17 —	-5		Wet	- - 5	6	SS	80	-	-	Сар
18 19 20	-6			- - 6						
21 22			Sandy Silt: Grey sandy silt, trace gravel, trace clay, wet, compact	-	7	SS	90	-	-	
24	-7	::::::::::::::::::::::::::::::::::::::		-7 - -						
25	-8		Loose	- 8	8	SS	90	-	-	
29	-9			- - 9						
30 31 32		<u>::::::</u>	Compact	- - -	9	SS	100	-	-	
33 34 35	- 10		Borehole terminated at 9.6 mbgs in sandy silt	10 - -						
36 37	- 11			- 11 -						
38 39 40	- 12			- - 12						
40 —	1		'				,			'

Page 1 of 1

Project Name: Client: Chayell Hotels Ltd. Phase Two Environmental Site Assessment Project No.: 9326-001 Hollow Stem Augers Contractor: Strata Drilling Group Method: Date Completed: 30-01-2020 Location: 220 Bradford Street, Barrie, ON UTM: 17T, 604146, 4914467 Elevation: 222.75 masl

Page 1 of 1

Client: Chayell Hotels Ltd.

Project Name: Phase Two Environmental Site Assessment Project No.: 9326-001

Contractor: Strata Drilling Group

Method: Hollow Stem Augers

Date Completed: 30-01-2020

Project #: 227626 Logged By: KK

Project: Phase II Environmental Site Assessment

Client: Chayell Hospitality Group Inc.

Location: 220 Bradford Street, Barrie, Ontario

Drill Date: August 23, 2018

			SUBSURFACE PROFILE					5	SAMPLE	
Denth		Symbol	Description	Measured Depth (m)		Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) CGI/PID	Laboratory Analysis
ft	m		Ground Surface	0.00						
1 1 1 2 1	- U - -		Topsoil Black sandy silt, with organics.	0.61] 7	onite		BH101-1	0/0	
ft 0 1 1 1 2 1 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - 1 -		Sand Brown to light brown, damp.		Riser	Bentonite	50	BH101-2	0/0	
5-	-				-Ris			BH101-3	0/0	
5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	- 2 - - -						90	BH101-4	0/0	
10 11 12 12	- 3 - - -		Grey-brown, wet below 3.81 mbgs.			Sand	100	BH101-5	0/0	
13 14 1	- 4 - -				Screen	↑ Silica	100	BH101-6	0/0	Grain Size
15	-		Some silt, wet below 4.88 mbgs.		-Sc			BH101-7	0/0	
16 - 17 - 18 - 19 - 20 - 1	- 5 - - - - - 6			6.10			100	BH101-8	0/1	VOCs
20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 25	- - 7 -		End of Borehole Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).		Wat mea 3.76	er level sured at mbgs on ust 27,				

Contractor: Strata Grade Elevation: NM

Drilling Method: Direct Push Top of Casing Elevation: NM

Project #: 227626 Logged By: KK

Project: Phase II Environmental Site Assessment

Client: Chayell Hospitality Group Inc.

Location: 220 Bradford Street, Barrie, Ontario

Drill Date: August 23, 2018

			SUBSURFACE PROFILE				5	SAMPLE	
4+400	בונל	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) CGI/PID	Laboratory Analysis
ft	m		Ground Surface	0.00					
1-	- U - -		Sand and Gravel Brown to black, some silt, damp.	0.46	<u>i</u> e		BH102-1	0/0	
3 4 5	m - 0 1 2		Silty Sand Brown to light brown, some gravel, damp.		Riser	30	BH102-2	0/0	
6 -	- - 2 -		Dark brown, wet below 1.83 mbgs. Grey-brown wet below 2.29 mbgs.		\	80	BH102-3	0/0	
9-110-1	- - - - 3					80	BH102-4	0/0	
11-	_				a Sand	95	BH102-5	5/0	
13 = 14 = 15 = 15 = 15 = 15 = 15 = 15 = 15	_				Screen	95	BH102-6	0/0	Grain Size
16	_				Š	100	BH102-7	0/0	
18 - 19 - 20 -	- 6			6.10		100	BH102-8	0/0	VOCs
21=	_		End of Borehole		Water level measured at 1.56 mbgs or				
22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 25	- - 7 -		Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).		August 27, 2018.				

Contractor: Strata Grade Elevation: 100.441 mREL

Drilling Method: Direct Push

Top of Casing Elevation: 100.366 mREL

Project #: 227626 Logged By: KK

Project: Phase II Environmental Site Assessment

Client: Chayell Hospitality Group Inc.

Location: 220 Bradford Street, Barrie, Ontario

Drill Date: August 23, 2018

			SUBSURFACE PROFILE					5	SAMPLE	
Depth		Symbol	Description	Measured Depth (m)	Monitoring Well Details		Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) CGI/PID	Laboratory Analysis
oft =	m		Ground Surface	0.00						
1 2		~ ~	Topsoil Dark brown, with organics, damp. Sand			Bentonite	55	BH103-1	0/0	
4	- 1		Brown to grey-brown, damp.		Riser	Ber		BH103-2	0/0	рН
6					R			BH103-3	0/0	
1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	- 2 - - - - 3						75	BH103-4	0/0	
11-			Grey-brown, wet below 3.66 mbgs.		X	Sand		BH103-5	0/0	
13 14 15	- 4 				Screen	Silica Sand	85	BH103-6	0/0	рН
16 17 18	- 5 - 5				S		95	BH103-7	0/9	VOCs
19	- 6			6.10				BH103-8	0/0	
20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 25	- 7 - 7		End of Borehole Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).		Water leve measured 3.25 mbgs August 27 2018.	el at s on				

Contractor: Strata Grade Elevation: 101.996 mREL

Drilling Method: Direct Push Top of Casing Elevation: 102.619 mREL

Project #: 227626 Logged By: KK

Project: Phase II Environmental Site Assessment

Client: Chayell Hospitality Group Inc.

Location: 220 Bradford Street, Barrie, Ontario

Drill Date: August 23, 2018

			SUBSURFACE PROFILE					S	SAMPLE	
Denth		Symbol	Description	Measured Depth (m)	:	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm) CGI/PID	Laboratory Analysis
oft O	m - 0		Ground Surface	0.00	-					
1 1 1	-		Sand and Gravel Dark brown, with asphalt pieces,					BH104-1	0/0	
5 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - - - 1 -		damp. Sand Brown to grey-brown, damp. Grey-brown, wet below 1.83 mbgs.		ser	Bentonite	55	BH104-2	0/0	
5-	-		Grey-brown, wet below 1.00 mbgs.		Riser			BH104-3	0/0	
7 8 1 9 1 10 1 10 1 10 1 10 1 10 1 10 1 1	- 2 - - - - -					Y 1-	75	BH104-4	0/0	
11 12	-					a Sand	100	BH104-5	0/0	
13 - 14 - 15 -	_				Screen	Silica	100	BH104-6	0/2	
16					S		100	BH104-7	1000/2	BTEX, PHCs
18 - 19 - 20 -	-			6.10			100	BH104-8	730/2	VOCs
21 22 23 23	- - -		End of Borehole Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a		meas 1.88	er level sured at mbgs on ist 27,				
24 - 25 -	-		combustible gas indicator (CGI).							

Contractor: Strata Grade Elevation: 101.996 mREL

Drilling Method: Direct Push Top of Casing Elevation: 102.619 mREL

Project No.: THEM # T16-16418-00 Enclosure:

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

Location: 220 Bradford Street, Barrie

Drilled By: Strata Soil Sampling Inc.

Drill Method: Geoprobe 6620 DT

Drill Date: February 23, 2016

Hole Size: 5 cm

Datum: Grade

Sheet: 1 of 2

Drill Date: February 23, 2016

Log of Borehole: MW1/BH1

Sheet: 2 of 2

Project No.: THEM # T16-16418-00 **Enclosure:**

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

Drill Method: Geoprobe 6620 DT

Drill Date: February 23, 2016

Log of Borehole: MW2/BH2

Datum: Grade

Sheet: 1 of 2

Project No.: THEM # T16-16418-00 **Enclosure:**

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

Project No.: THEM # T16-16418-00 **Enclosure:**

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

Drill Method: Geoprobe 6620 DT

Drill Date: February 23, 2016

Log of Borehole: MW3/BH3

Datum: Grade

Sheet: 1 of 2

Project No.: THEM # T16-16418-00 **Enclosure:**

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

Project No.: THEM # T16-16418-00 **Enclosure:**

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

Drilled By: Strata Soil Sampling Inc.

Drill Method: Geoprobe 6620 DT

Drill Date: February 23, 2016

Log of Borehole: BH4

Hole Size: 5 cm

Datum: Grade

Sheet: 1 of 1

Project No.: THEM# T16-16418-00 Enclosure:

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

	,	SUBSURFACE PROFILE	SAMPLE					
Depth	Symbol	Description	Depth/Elev.	Number	Туре	Recovery, %	Vapour, ppm	Well Completion Details
ft m 00		Ground Surface	0.0					
2		Sand Loose, damp, brown sand	-4.0 4.0	4-1		10%		Not applicable

Drill Method: Geoprobe 6620 DT

Drill Date: February 23, 2016

Log of Borehole: BH5

Datum: Grade

Sheet: 1 of 1

Project No.: THEM# T16-16418-00 Enclosure:

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

	;	SUBSURFACE PROFILE		SA	MPLE				
Depth	Symbol	Description	Depth/Elev.	Number	Туре	Recovery, %	Vapour, ppm	Well Completion Details	
ft m 0-0		Ground Surface	0.0						
0—0		Sand 0-2 Granular fill materials 2-4 Loose, moist, brown sand	-4.0 4.0					No samples were submeted to the Lab	
Drille	Drilled By: Strata Soil Sampling Inc. Hole Size: 5 cm								

Log of Borehole: BH6

Project No.: THEM# T16-16418-00 Enclosure:

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

Location: 220 Bradford Street, Barrie

	;	SUBSURFACE PROFILE			SA	MPLE		
Depth	Symbol	Description	Depth/Elev.	Number	Туре	Recovery, %	Vapour, ppm	Well Completion Details
ft m 0-0		Ground Surface	0.0					
2—- - - - - - - - - - - - - - - - - - -		Sand 0-2 Granular fill materials 2-4 Loose, damp, brown sand	-4.0 4.0					Not overlieghte
4		Sand Loose, damp, brown sand	-8.0 8.0	6-2		75%	0.3ppm	Not applicable

Drilled By: Strata Soil Sampling Inc.

Drill Method: Geoprobe 6620 DT

Drill Date: February 23, 2016

Hole Size: 5 cm

Datum: Grade

Sheet: 1 of 1

Drilled By: Strata Soil Sampling Inc.

Drill Method: Geoprobe 6620 DT

Drill Date: February 23, 2016

Log of Borehole: BH7

Hole Size: 5 cm

Datum: Grade

Sheet: 1 of 1

Project No.: THEM# T16-16418-00 Enclosure:

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

	;	SUBSURFACE PROFILE		SA	MPLE	•		
Depth	Symbol	Description	Depth/Elev.	Number	Туре	Recovery, %	Vapour, ppm	Well Completion Details
ft m 0-0		Ground Surface	0.0					
0-0		Sand 0-2 Granular fill materials 2-4 Loose, moist, brown sand	0.0	7-1		70%		
4-		Sand Loose, moist, brown sand	-4.0 4.0					Not applicable
6-						70%		
8-			-8.0 8.0					

93 Skyway Avenue, Suite 101

Log of Borehole: BH8

Project No.: THEM# T16-16418-00 Enclosure:

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

Location: 220 Bradford Street, Barrie

Description Descr	
Granular fill materials 2-4 Loose, moist, brown sand	Completion Details
Sand 0-2 Granular fill materials 2-4 Loose, moist, brown sand	
44.0 Not	t applicable
Sand Loose, damp, brown sand 8-2 -8.0 8.0	т аррисаме

Drilled By: Strata Soil Sampling Inc.

Drill Method: Geoprobe 6620 DT

Drill Date: February 23, 2016

Hole Size: 5 cm

Datum: Grade

Sheet: 1 of 1

93 Skyway Avenue, Suite 101

Log of Borehole: BH9

Project No.: THEM# T16-16418-00 Enclosure:

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

Location: 220 Bradford Street, Barrie

		SUBSURFACE PROFILE		SA	MPLE			
Depth		Description	Depth/Elev.	Number	Type	Recovery, %	Vapour, ppm	Well Completion Details
oft r	m	Ground Surface	0.0					
2		Sand 0-2 Granular fill materials 2-4 Loose, moist, brown sand	-4.0 4.0					Not on the object
6-	- 2	Sand Loose, moist, grey sand		9-2			0.2ppm	Not applicable
8-	1000000	000	-8.0 8.0					

Drilled By: Strata Soil Sampling Inc.

Drill Method: Geoprobe 6620 DT

Drill Date: February 23, 2016

Hole Size: 5 cm

Datum: Grade

Sheet: 1 of 1

Drilled By: Strata Soil Sampling Inc.

Drill Method: Geoprobe 6620 DT

Drill Date: February 23, 2016

Log of Borehole: BH10

Hole Size: 5 cm

Datum: Grade

Sheet: 1 of 1

Project No.: THEM# T16-16418-00 Enclosure:

Project: Limited Phase II ESA Project Manager: Raj Kundu

Client: Mr. Joseph Tascona

Description Descr		,	SUBSURFACE PROFILE			SA	MPLE		
2- Granular fill materials 2-4 Loose, moist, brown-red sand Sand Loose, moist, brown sand A-1 Sand Loose, moist, brown sand A-2 Sand Loose, moist, brown sand		Symbol	Description	Depth/Elev.	Number	Туре	Recovery, %	Vapour, ppm	Well Completion Details
2- Granular fill materials 2-4 Loose, moist, brown-red sand Sand Loose, moist, brown sand A-1 Sand Loose, moist, brown sand A-2 Sand Loose, moist, brown sand	ft m		Ground Surface	0.0					
Loose, moist, brown sand	- - - - - - - - - - - - - - - - - - -		Sand 0-2 Granular fill materials 2-4	0.0	10-1				
Loose, moist, brown sand				-4.0					Not oppliedble
8.0	6-								Not applicable
	8-			8.0					

Cambium Ref. No.: 9326-001

2020-04-20

		Ap	pendix F
Laboratory	Certificates	of	Analysis

Final Report

C.O.C.: G82861-2, G70054 **REPORT No. B19-27055 (i)**

Report To: **Cambium Environmental**

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 27-Aug-19

DATE REPORTED: 04-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO .:

P.O. NUMBER:

9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
pH	3	Holly Lane	LMG	03-Sep-19	A-PH-01 (o)	SM 4500H
Chromium (VI)	6	Holly Lane	LMG	03-Sep-19	D-CRVI-02 (o)	EPA7196A
Mercury	6	Holly Lane	PBK	04-Sep-19	D-HG-01 (o)	EPA 7471A
Boron - HWS	6	Holly Lane	AHM	04-Sep-19	D-HWE's	MOE3470
Metals - ICP-OES	6	Holly Lane	AHM	04-Sep-19	D-ICP-02 (o)	EPA 6010
Metals - ICP-MS	6	Holly Lane	TPR	04-Sep-19	D-ICPMS-01 (o)	EPA 6020

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in µg/g, (F2-napth if requested)

F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is

validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention

time of nC50.

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Lab Manager

Christine Burke

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (i)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 27-Aug-19

DATE REPORTED: 04-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 204 1.50- 2.18m	BH 205 0.0- 1.52m	QA/QC 2	BH 201 1.8- 2.1m	O. Re Tbl. 8 -	g. 153
	Sample I.D		B19-27055-1	B19-27055-3	B19-27055-7	B19-27055-9	RPIICC	
	Date Colle	cted	22-Aug-19	22-Aug-19	22-Aug-19	26-Aug-19		
Parameter	Units	R.L.						
pH @25°C	pH Units							
Antimony	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	
Arsenic	μg/g	0.5	0.7	0.9	0.7	0.6	18	
Barium	μg/g	1	12	18	8	8	220	
Beryllium	μg/g	0.2	< 0.2	< 0.2	< 0.2	< 0.2	2.5	
Boron	μg/g	0.5	10.0	11.0	10.0	11.1	36	
Boron (HWS)	μg/g	0.02	0.21	0.26	0.16	0.25	1.5	
Cadmium	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2	
Chromium	μg/g	1	10	9	9	8	70	
Chromium (VI)	μg/g	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.66	
Cobalt	μg/g	1	2	2	2	2	22	
Copper	μg/g	1	2	2	1	2	92	
Lead	μg/g	5	< 5	13	< 5	< 5	120	
Mercury	μg/g	0.005	0.008	0.025	0.006	< 0.005	0.27	
Molybdenum	μg/g	1	< 1	< 1	< 1	< 1	2	
Nickel	μg/g	1	3	4	2	2	82	
Selenium	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.5	
Silver	µg/g	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.5	
Thallium	μg/g	0.1	< 0.1	< 0.1	< 0.1	< 0.1	1	
Uranium	µg/g	0.1	0.4	0.3	0.3	0.4	2.5	
Vanadium	μg/g	1	31	27	28	24	86	
Zinc	μg/g	3	13	18	9	10	290	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

 $Site\ Analyzed = K-Kingston, W-Windsor, O-Ottawa, R-Richmond\ Hill, B-Barrie$

Final Report

C.O.C.: G82861-2, G70054 **REPORT No. B19-27055 (i)**

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Report To:

Attention: Natalie Wright

DATE RECEIVED: 27-Aug-19

DATE REPORTED: 04-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 201 3.0- 3.7m	BH 203 0.6- 1.5m	BH 202 0.6- 1.5m	BH 201 0.9- 1.5m	O. Re	g. 153
	Sample I.D) .			B19-27055-12	-		
	Date Colle		26-Aug-19	26-Aug-19	26-Aug-19	26-Aug-19	111 1100	
				3				
Parameter	Units	R.L.						
pH @25°C	pH Units		7.72			7.81		
Antimony	μg/g	0.5		< 0.5	< 0.5		1.3	
Arsenic	μg/g	0.5		1.0	1.0		18	
Barium	μg/g	1		26	31		220	
Beryllium	μg/g	0.2		0.2	0.2		2.5	
Boron	μg/g	0.5		12.6	12.9		36	
Boron (HWS)	μg/g	0.02		0.19	0.19		1.5	
Cadmium	μg/g	0.5		< 0.5	< 0.5		1.2	
Chromium	μg/g	1		8	8		70	
Chromium (VI)	μg/g	0.2		< 0.2	< 0.2		0.66	
Cobalt	μg/g	1		3	3		22	
Copper	μg/g	1		6	5		92	
Lead	μg/g	5		< 5	< 5		120	
Mercury	μg/g	0.005		0.009	0.014		0.27	
Molybdenum	μg/g	1		< 1	< 1		2	
Nickel	μg/g	1		5	5		82	
Selenium	μg/g	0.5		< 0.5	< 0.5		1.5	
Silver	μg/g	0.2		< 0.2	< 0.2		0.5	
Thallium	μg/g	0.1		< 0.1	< 0.1		1	
Uranium	μg/g	0.1		0.4	0.4		2.5	
Vanadium	μg/g	1		18	17		86	
Zinc	μg/g	3		18	22		290	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (i)

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Report To:

Attention: Natalie Wright

DATE RECEIVED: 27-Aug-19

DATE REPORTED: 04-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

......

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		QA/QC 8	O. Reg. 153
	Sample I.D) .	B19-27055-16	Tbl. 8 -
	Date Colle	cted	26-Aug-19	RPIICC
Parameter	Units	R.L.		
pH @25°C	pH Units		7.79	
Antimony	μg/g	0.5		1.3
Arsenic	μg/g	0.5		18
Barium	μg/g	1		220
Beryllium	μg/g	0.2		2.5
Boron	μg/g	0.5		36
Boron (HWS)	μg/g	0.02		1.5
Cadmium	μg/g	0.5		1.2
Chromium	μg/g	1		70
Chromium (VI)	μg/g	0.2		0.66
Cobalt	μg/g	1		22
Copper	μg/g	1		92
Lead	μg/g	5		120
Mercury	μg/g	0.005		0.27
Molybdenum	μg/g	1		2
Nickel	μg/g	1		82
Selenium	μg/g	0.5		1.5
Silver	μg/g	0.2		0.5
Thallium	μg/g	0.1		1
Uranium	μg/g	0.1		2.5
Vanadium	μg/g	1		86
Zinc	μg/g	3		290

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (i)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

Attention: Natalie Wright Fax: 705-252-5746

DATE RECEIVED: 27-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 04-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Soil WATERWORKS NO.

Summary of Exceedances

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82861-2, G70054 **REPORT No. B19-27055 (ii)**

Cambium Environmental

Report To:

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 27-Aug-19

DATE REPORTED: 04-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO .:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method	
% Moisture	7	Richmond Hill	FAL	03-Sep-19	A-% moisture RH		
PHC(F2-F4)	7	Kingston	KPR	30-Aug-19	C-PHC-S-001 (k)	CWS Tier 1	
PHC(F2-F4)	1	Kingston	MLY	03-Sep-19	C-PHC-S-001 (k)	CWS Tier 1	
VOC's	7	Richmond Hill	FAL	28-Aug-19	C-VOC-02 (rh)	EPA 8260	
PHC(F1)	7	Richmond Hill	FAL	28-Aug-19	C-VPHS-01 (rh)	CWS Tier 1	

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in µg/g, (F2-napth if requested)

F3 C16-C34 hydrocarbons in μg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (ii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

Attention:Natalie WrightFax: 705-252-5746DATE RECEIVED:27-Aug-19JOB/PROJECT NO.:

DATE RECEIVED: 27-Aug-19

DATE REPORTED: 04-Sep-19

P.O. NUMBER: 9326-001

SAMPLE MATRIX: Soil WATERWORKS NO.

	Client I.D. Sample I.D. Date Collected		BH 204 3.05- 4.14m	BH 205 3.04- 4.57m	BH 207 3.05- 3.40m	BH 208 4.57- 5.47m	O. Reg. 153	
			B19-27055-2	4.57111 B19-27055-4	B19-27055-5	B19-27055-6	Tbl. 8 - RPIICC	
			22-Aug-19	22-Aug-19	22-Aug-19	22-Aug-19	KFIICC	
	Date Colle	cieu	22-Aug-19	22-Aug-19	22-Aug-19	22-Aug-19		
Parameter	Units	R.L.						
Acetone	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Benzene	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	
Bromodichloromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Bromoform	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Bromomethane	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Carbon Tetrachloride	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Monochlorobenzene (Chlorobenzene)	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Chloroform	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Dibromochloromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Dichlorobenzene,1,2-	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Dichlorobenzene,1,3-	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Dichlorobenzene,1,4-	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Dichlorodifluoromethane	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Dichloroethane,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Dichloroethane,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Dichloroethylene,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Dichloroethene, cis-1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Dichloroethene, trans-1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Dichloropropane,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Dichloropropene, cis-1,3-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02		
Dichloropropene, trans- 1,3-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02		
Dichloropropene 1,3- cis+trans	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (ii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

Attention: Natalie Wright Fax: 705-252-5746

DATE RECEIVED: 27-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 04-Sep-19 P.O. NUMBER: 9326-001
SAMPLE MATRIX: Soil WATERWORKS NO.

			BH 204 3.05- 4.14m B19-27055-2	BH 205 3.04- 4.57m B19-27055-4	BH 207 3.05- 3.40m B19-27055-5	BH 208 4.57- 5.47m B19-27055-6	O. Reg Tbl. 8 - RPIICC	g. 153
	Date Collected		22-Aug-19	22-Aug-19	22-Aug-19	22-Aug-19	KFIICC	
	Date Oone	oteu	22-Aug-19	22-Aug-19	22-Aug-19	22-Aug-19		
Parameter	Units	R.L.						
Ethylbenzene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Dibromoethane,1,2- (Ethylene Dibromide)	µg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Hexane	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Methyl Ethyl Ketone	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Methyl Isobutyl Ketone	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Methyl-t-butyl Ether	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Dichloromethane (Methylene Chloride)	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Styrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Tetrachloroethane,1,1,1,2	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Tetrachloroethane,1,1,2,2	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Tetrachloroethylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Toluene	μg/g	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	
Trichloroethane,1,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Trichloroethane,1,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	
Trichloroethylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Trichlorofluoromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.25	
Vinyl Chloride	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	
Xylene, m,p-	μg/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03		
Xylene, o-	μg/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03		
Xylene, m,p,o-	μg/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.05	
PHC F1 (C6-C10)	μg/g	10	< 10	< 10	< 10	< 10	25	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (ii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8

 Barrie ON L4N 5R7
 Tel: 705-252-5743

 Attention:
 Natalie Wright
 Fax: 705-252-5746

DATE RECEIVED: 27-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 04-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Soil WATERWORKS NO.

	Client I.D.	Client I.D.		BH 205 3.04-	BH 207 3.05-	BH 208 4.57-	O. Re	g. 153
				4.57m	3.40m	5.47m	Tbl. 8 -	
	Sample I.D. Date Collected		B19-27055-2	B19-27055-4	B19-27055-5	B19-27055-6	RPIICC	
			22-Aug-19	22-Aug-19	22-Aug-19	22-Aug-19		
Parameter	Units	R.L.						
PHC F2 (>C10-C16)	μg/g	5	< 5	< 6	< 5	< 5	10	
PHC F3 (>C16-C34)	μg/g	10	< 10	< 10	< 10	< 10	240	
PHC F4 (>C34-C50)	μg/g	10	< 10	< 10	< 10	< 10	120	
PHC F4 (Gravimetric)	μg/g	50					120	
% moisture	%		21.3	25.0	14.6	10.8		

¹ F4 Gravimetric analysis required as chromats did not return to baseline.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (ii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8

 Barrie ON L4N 5R7
 Tel: 705-252-5743

 Attention:
 Natalie Wright
 Fax: 705-252-5746

DATE RECEIVED: 27-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 04-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Soil WATERWORKS NO.

	Client I.D.		QA/QC 3	BH 201 3.0- 3.7m	BH 202 3.0- 3.4m	O. Reg. 153 Tbl. 8 -
	Sample I.I) .	B19-27055-8	B19-27055-10	B19-27055-13	RPIICC
	Date Colle	ected	22-Aug-19	26-Aug-19	26-Aug-19	
Parameter	Units	R.L.				
Acetone	μg/g	0.5	< 0.5	< 0.5	< 0.5	0.5
Benzene	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.02
Bromodichloromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Bromoform	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Bromomethane	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Carbon Tetrachloride	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Monochlorobenzene (Chlorobenzene)	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Chloroform	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Dibromochloromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Dichlorobenzene,1,2-	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Dichlorobenzene,1,3-	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Dichlorobenzene,1,4-	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Dichlorodifluoromethane	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Dichloroethane,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Dichloroethane,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Dichloroethylene,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Dichloroethene, cis-1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Dichloroethene, trans-1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Dichloropropane,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Dichloropropene, cis-1,3-	μg/g	0.02	< 0.02	< 0.02	< 0.02	
Dichloropropene, trans- 1,3-	μg/g	0.02	< 0.02	< 0.02	< 0.02	
Dichloropropene 1,3-cis+trans	µg/g	0.02	< 0.02	< 0.02	< 0.02	0.05

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Christine Burke Lab Manager

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (ii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8

 Barrie ON L4N 5R7
 Tel: 705-252-5743

 Attention:
 Natalie Wright

 Fax: 705-252-5746

DATE RECEIVED: 27-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 04-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Soil WATERWORKS NO.

	Client I.D.	Client I.D.		BH 201 3.0-	BH 202 3.0-	O. Reg. 153
	Sample I.I	,	P10 27055 9	3.7m	3.4m B19-27055-13	Tbl. 8 - RPIICC
	Date Colle		22-Aug-19	26-Aug-19	26-Aug-19	RPIICC
	Date Oone	oteu	22-Aug-19	20-Aug-19	20-Aug-19	
Parameter	Units	R.L.				
Ethylbenzene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Dibromoethane,1,2- (Ethylene Dibromide)	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Hexane	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Methyl Ethyl Ketone	μg/g	0.5	< 0.5	< 0.5	< 0.5	0.5
Methyl Isobutyl Ketone	μg/g	0.5	< 0.5	< 0.5	< 0.5	0.5
Methyl-t-butyl Ether	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Dichloromethane (Methylene Chloride)	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Styrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Tetrachloroethane,1,1,1,2	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Tetrachloroethane,1,1,2,2	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Tetrachloroethylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Toluene	μg/g	0.2	< 0.2	< 0.2	< 0.2	0.2
Trichloroethane,1,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Trichloroethane,1,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05
Trichloroethylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05
Trichlorofluoromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.25
Vinyl Chloride	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.02
Xylene, m,p-	μg/g	0.03	< 0.03	< 0.03	< 0.03	
Xylene, o-	μg/g	0.03	< 0.03	< 0.03	< 0.03	
Xylene, m,p,o-	μg/g	0.03	< 0.03	< 0.03	< 0.03	0.05
PHC F1 (C6-C10)	μg/g	10	< 10	< 10	< 10	25

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

 $Site\ Analyzed = K-Kingston, W-Windsor, O-Ottawa, R-Richmond\ Hill, B-Barrie$

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (ii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8

Cedar Pointe Drive, Onit 1009

Barrie ON L4N 5R7

Tel: 705-252-5743

Attention: Natalie Wright

Fax: 705-252-5746

DATE RECEIVED: 27-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 04-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Soil WATERWORKS NO.

	Client I.D.	Client I.D.		BH 201 3.0-	BH 202 3.0-	O. Reg. 153
		Sample I.D.		3.7m	3.4m	Tbl. 8 -
	Sample I.I			B19-27055-10	RPIICC	
	Date Collected		22-Aug-19	26-Aug-19	26-Aug-19	
Parameter	Units	R.L.				
PHC F2 (>C10-C16)	μg/g	5	< 5	< 5	< 5	10
PHC F3 (>C16-C34)	μg/g	10	< 10	18	< 10	240
PHC F4 (>C34-C50)	μg/g	10	< 10	47 1	< 10	120
PHC F4 (Gravimetric)	µg/g	50		260		120
% moisture	%		21.8	18.6	16.0	

¹ F4 Gravimetric analysis required as chromats did not return to baseline.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82861-2, G70054 **REPORT No. B19-27055 (ii)**

Report To: Caduceon Environmental Laboratories

Cambium Environmental 112 Commerce Park Drive 74 Cedar Pointe Drive, Unit 1009 Barrie ON L4N 8W8

Barrie ON L4N 5R7 Tel: 705-252-5743 **Attention:** Natalie Wright Fax: 705-252-5746

JOB/PROJECT NO.: DATE RECEIVED: 27-Aug-19

DATE REPORTED: 04-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Soil WATERWORKS NO.

Summary of Exceedances

Table 8 - Res./Ind./Inst./Commercial/Community							
BH 201 3.0-3.7m	Found Value	Limit					
PHC F4 (Gravimetric) (µg/g)	260	120					

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Final Report

C.O.C.: G82861-2, G70054 **REPORT No. B19-27055 (iii)**

Report To:

Cambium Environmental 74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 27-Aug-19

DATE REPORTED: 04-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO .:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
SVOC	5	Kingston	SCG	03-Sep-19	C-NAB-S-001 (k)	EPA 8270

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in μg/g, (F2-napth if requested)

F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is

validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10.nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention

time of nC50.

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Lab Manager

Christine Burke

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (iii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental 112 Commerce Park Drive
74 Cedar Pointe Drive Unit 1009

Barrio ON LAN 8W8

 74 Cedar Pointe Drive, Unit 1009
 Barrie ON L4N 8W8

 Barrie ON L4N 5R7
 Tel: 705-252-5743

 Attention:
 Natalie Wright

 Fax: 705-252-5746

DATE RECEIVED: 27-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 04-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Soil WATERWORKS NO.

	Client I.D.		BH 204 1.50-	BH 205 0.0-	BH 203 0.6-	BH 202 0.6-	O. Re	g. 153
			2.18m	1.52m	1.5m	1.5m	Tbl. 8 -	
	•	Sample I.D.		B19-27055-3	B19-27055-11	B19-27055-12	RPIICC	
	Date Colle	cted	22-Aug-19	22-Aug-19	26-Aug-19	26-Aug-19		
Parameter	Units	R.L.						
Acenaphthene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.072	
Acenaphthylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.093	
Anthracene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.22	
Benzo(a)anthracene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.360	
Benzo(a)pyrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.3	
Benzo(b)fluoranthene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.47	
Benzo(b+k)fluoranthene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Benzo(g,h,i)perylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.68	
Benzo(k)fluoranthene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.48	
Chrysene	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.8	
Dibenzo(a,h)anthracene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	
Fluoranthene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.69	
Fluorene	µg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.19	
Indeno(1,2,3,-cd)pyrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.23	
Methylnaphthalene,1-	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.59	
Methylnaphthalene,2-	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.59	
Methylnaphthalene 2-(1-)	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.59	
Naphthalene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.09	
Phenanthrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.69	
Pyrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	1	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (iii)

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 27-Aug-19

DATE REPORTED: 04-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		QA/QC 5	O. Reg. 153
	Sample I.D. Date Collected		B19-27055-14	Tbl. 8 -
			26-Aug-19	RPIICC
Parameter	Units	R.L.		
Acenaphthene	μg/g	0.05	< 0.05	0.072
Acenaphthylene	μg/g	0.05	< 0.05	0.093
Anthracene	μg/g	0.05	< 0.05	0.22
Benzo(a)anthracene	μg/g	0.05	< 0.05	0.360
Benzo(a)pyrene	μg/g	0.05	< 0.05	0.3
Benzo(b)fluoranthene	μg/g	0.05	< 0.05	0.47
Benzo(b+k)fluoranthene	μg/g	0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	0.05	< 0.05	0.68
Benzo(k)fluoranthene	μg/g	0.05	< 0.05	0.48
Chrysene	μg/g	0.05	< 0.05	2.8
Dibenzo(a,h)anthracene	μg/g	0.05	< 0.05	0.1
Fluoranthene	μg/g	0.05	< 0.05	0.69
Fluorene	μg/g	0.05	< 0.05	0.19
Indeno(1,2,3,-cd)pyrene	μg/g	0.05	< 0.05	0.23
Methylnaphthalene,1-	μg/g	0.05	< 0.05	0.59
Methylnaphthalene,2-	μg/g	0.05	< 0.05	0.59
Methylnaphthalene 2-(1-)	μg/g	0.05	< 0.05	0.59
Naphthalene	μg/g	0.05	< 0.05	0.09
Phenanthrene	μg/g	0.05	< 0.05	0.69
Pyrene	μg/g	0.05	< 0.05	1

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

 $Site\ Analyzed = K-Kingston, W-Windsor, O-Ottawa, R-Richmond\ Hill, B-Barrie$

Final Report

C.O.C.: G82861-2, G70054 REPORT No. B19-27055 (iii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8

Cedar Folite Drive, Only 1909

Barrie ON L4N 5R7

Tel: 705-252-5743

Attention:

Natalie Wright

Fax: 705-252-5746

DATE RECEIVED: 27-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 04-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Soil WATERWORKS NO.

Summary of Exceedances

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Christine Burke Lab Manager

3.

Final Report

C.O.C.: G82754 REPORT No. B19-28084

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 05-Sep-19

DATE REPORTED: 11-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER:

9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
% Moisture	1	Richmond Hill	FAL	05-Sep-19	A-% moisture RH	,
PHC(F2-F4)	1	Kingston	KPR	10-Sep-19	C-PHC-S-001 (k)	CWS Tier 1
PHC(F1)	1	Richmond Hill	FAL	05-Sep-19	C-VPHS-01 (rh)	CWS Tier 1

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in µg/g, (F2-napth if requested)

F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention time of nC50.

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82754 REPORT No. B19-28084

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 05-Sep-19

DATE REPORTED: 11-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D. Sample I.D. Date Collected		BH 201 4.1- 4.6m B19-28084-1 26-Aug-19	O. Reg. 7 Tbl. 8 - RPIICC	153
Parameter	Units	R.L.			
PHC F1 (C6-C10)	μg/g	10	< 10	25	
PHC F2 (>C10-C16)	μg/g	5	< 5	10	
PHC F3 (>C16-C34)	μg/g	10	< 10	240	
PHC F4 (>C34-C50)	μg/g	10	< 10	120	
% moisture	%		21.9		

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82754 **REPORT No. B19-28084**

Report To:

Cambium Environmental 74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 05-Sep-19

DATE REPORTED: 11-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8 Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Summary of Exceedances

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Final Report

C.O.C.: G79763 REPORT No. B19-28088

Report To: Caduceon Environmental Laboratories

Cambium Environmental 110 West Beaver Creek Rd Unit 14

74 Cedar Pointe Drive, Unit 1009 Richmond Hill ON L4B 1J9

Barrie ON L4N 5R7Tel: 289-475-5442Attention:Natalie WrightFax: 289-562-1963

DATE RECEIVED: 05-Sep-19 JOB/PROJECT NO.:

DATE REPORTED: 10-Sep-19

SAMPLE MATRIX: Soil P.O. NUMBER: 9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
Comment	2	Default Site	CS	09-Sep-19	C-Arochlor Comment	-
OC Pesticides	2	Kingston	CS	09-Sep-19	C-PESTCL-01 K	EPA 8080

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G79763 REPORT No. B19-28088

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 05-Sep-19

DATE REPORTED: 10-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

110 West Beaver Creek Rd Unit 14

Richmond Hill ON L4B 1J9

Tel: 289-475-5442

Fax: 289-562-1963

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.	Client I.D. Sample I.D. Date Collected		QA/QC 4			O. Re Tbl. 8 -	g. 153
	Sample I.I			B19-28088-2		RPIICC		
	Date Colle			26-Aug-19				
Parameter	Units	R.L.						
Poly-Chlorinated Biphenyls (PCB's)	μg/g	0.3	< 0.3	< 0.3			0.3	
Aroclor	-		-	-				

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G79763 REPORT No. B19-28088

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 05-Sep-19

DATE REPORTED: 10-Sep-19

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

110 West Beaver Creek Rd Unit 14

Richmond Hill ON L4B 1J9

Tel: 289-475-5442

Fax: 289-562-1963

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Summary of Exceedances

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - RPIICC - Table 8 - Res./Ind./Inst./Commercial/Community

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (i)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

 Attention:
 Natalie Wright

 1ei: 705-252-5743

 Fax: 705-252-5746

DATE RECEIVED: 30-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater P.O. NUMBER: 9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
Chromium (VI)	6	Holly Lane	LMG	05-Sep-19	D-CRVI-01 (o)	MOE E3056
Mercury	6	Holly Lane	PBK	04-Sep-19	D-HG-02 (o)	SM 3112 B
Metals - ICP-OES	6	Holly Lane	AHM	04-Sep-19	D-ICP-01 (o)	SM 3120
Metals - ICP-MS	6	Holly Lane	TPR	05-Sep-19	D-ICPMS-01 (o)	EPA 200.8

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (i)

Report To:

Caduceon Environmental Laboratories

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

112 Commerce Park Drive Barrie ON L4N 8W8 Tel: 705-252-5743

Barrie ON L4N 5R7

Fax: 705-252-5746

Attention: Natalie Wright

JOB/PROJECT NO.:

DATE REPORTED: 06-Sep-19

P.O. NUMBER: 9326-001

SAMPLE MATRIX: Groundwater

DATE RECEIVED: 30-Aug-19

WATERWORKS NO.

	Client I.D.		BH 201	BH 204	BH 205	BH 208	O. Re	g. 153
	Sample I.I) .	B19-27446-1	B19-27446-4	B19-27446-5	B19-27446-8	Tbl. 6 -	
	Date Colle	ected	29-Aug-19	29-Aug-19	29-Aug-19	29-Aug-19	PGW	
Parameter	Units	R.L.						
Antimony	μg/L	0.1	0.2	0.2	0.4	< 0.1	6	
Arsenic	μg/L	0.1	0.2	0.3	0.2	< 0.1	25	
Barium	μg/L	1	62	86	90	525	1000	
Beryllium	μg/L	0.1	< 0.1	< 0.1	< 0.1	< 0.1	4	
Boron	μg/L	5	29	31	25	21	5000	
Cadmium	μg/L	0.015	< 0.015	0.038	0.042	< 0.015	2.1	
Chromium	μg/L	2	< 2	< 2	< 2	< 2	50	
Chromium (VI)	μg/L	10	< 10	1 < 10 1	< 10 1	< 10 1	25	
Cobalt	μg/L	0.1	0.7	0.5	0.4	< 0.1	3.8	
Copper	μg/L	2	< 2	< 2	< 2	< 2	69	
Lead	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	10	
Mercury	μg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.1	
Molybdenum	μg/L	0.1	4.8	2.2	4.7	0.5	70	
Nickel	μg/L	0.2	3.7	2.8	2.1	1.8	100	
Selenium	μg/L	1	< 1	< 1	< 1	< 1	10	
Silver	μg/L	0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.2	
Thallium	μg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	2	
Uranium	μg/L	0.05	0.22	0.24	0.22	< 0.05	20	
Vanadium	μg/L	0.1	0.3	0.3	0.6	< 0.1	6.2	
Zinc	μg/L	5	< 5	< 5	< 5	< 5	890	

¹ Chromium (VI) result is based on total chromium

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Christine Burke Lab Manager

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (i)

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		MWBH 2	QA/QC #2	O. Reg. 153
	Sample I.	D.	B19-27446-11	B19-27446-13	Tbl. 6 -
	Date Colle	ected	29-Aug-19	29-Aug-19	PGW
Parameter	Units	R.L.			
Antimony	μg/L	0.1	< 0.1	0.2	6
Arsenic	μg/L	0.1	0.4	0.2	25
Barium	μg/L	1	150	63	1000
Beryllium	μg/L	0.1	< 0.1	< 0.1	4
Boron	μg/L	5	16	30	5000
Cadmium	μg/L	0.015	0.022	0.015	2.1
Chromium	μg/L	2	< 2	< 2	50
Chromium (VI)	μg/L	10	< 10 1	< 10 1	25
Cobalt	μg/L	0.1	0.2	0.7	3.8
Copper	μg/L	2	< 2	< 2	69
Lead	μg/L	0.02	0.10	< 0.02	10
Mercury	μg/L	0.02	< 0.02	< 0.02	0.1
Molybdenum	μg/L	0.1	0.8	4.7	70
Nickel	μg/L	0.2	1.9	3.7	100
Selenium	μg/L	1	< 1	< 1	10
Silver	μg/L	0.1	< 0.1	< 0.1	1.2
Thallium	μg/L	0.05	< 0.05	< 0.05	2
Uranium	μg/L	0.05	0.17	0.22	20
Vanadium	μg/L	0.1	0.6	0.3	6.2
Zinc	μg/L	5	< 5	< 5	890

¹ Chromium (VI) result is based on total chromium

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (i)

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Summary of Exceedances

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER:

9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
PHC(F2-F4)	8	Kingston	KPR	04-Sep-19	C-PHC-W-001 (k)	MOE E3421
VOC's	12	Richmond Hill	JE	04-Sep-19	C-VOC-02 (rh)	EPA 8260
PHC(F1)	9	Richmond Hill	JE	04-Sep-19	C-VPHW-01 (rh)	MOE E3421

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 201	BH 202	BH 203	BH 204	O. Re	g. 153
	Sample I.).	B19-27446-1	B19-27446-2	B19-27446-3	B19-27446-4	Tbl. 6 -	
	Date Colle	ected	29-Aug-19	29-Aug-19	29-Aug-19	29-Aug-19	PGW	
Parameter	Units	R.L.						
Acetone	μg/L	30	< 30	< 30	< 30	< 30	2700	
Benzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Bromodichloromethane	μg/L	2	< 2	< 2	< 2	< 2	16	
Bromoform	μg/L	5	< 5	< 5	< 5	< 5	5	
Bromomethane	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.89	
Carbon Tetrachloride	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	30	
Chloroform	μg/L	1	< 1	< 1	< 1	< 1	2	
Dibromochloromethane	μg/L	2	< 2	< 2	< 2	< 2	25	
Dichlorobenzene,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	3	
Dichlorobenzene,1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	59	
Dichlorobenzene,1,4-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichlorodifluoromethane	μg/L	2	< 2	< 2	< 2	< 2	590	
Dichloroethane,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	5	
Dichloroethane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethylene,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethene, cis-1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	37.4	1.6	
Dichloroethene, trans-1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.6	
Dichloropropane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.58	
Dichloropropene, cis-1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Dichloropropene, trans- 1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 201	BH 202	BH 203	BH 204		g. 153
	Sample I.I Date Colle		B19-27446-1 29-Aug-19	B19-27446-2 29-Aug-19	B19-27446-3 29-Aug-19	B19-27446-4 29-Aug-19	Tbl. 6 - PGW	
Parameter	Units	R.L.						
Dichloropropene 1,3- cis+trans	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Ethylbenzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4	
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	
Hexane	μg/L	5	< 5	< 5	< 5	< 5	5	
Methyl Ethyl Ketone	μg/L	20	< 20	< 20	< 20	< 20	1800	
Methyl Isobutyl Ketone	μg/L	20	< 20	< 20	< 20	< 20	640	
Methyl-t-butyl Ether	μg/L	2	< 2	< 2	< 2	< 2	15	
Dichloromethane (Methylene Chloride)	μg/L	5	< 5	< 5	< 5	< 5	26	
Styrene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	5.4	
Tetrachloroethane,1,1,1,2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	
Tetrachloroethane,1,1,2,2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Tetrachloroethylene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Toluene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	24	
Trichloroethane,1,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	23	
Trichloroethane,1,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Trichloroethylene	μg/L	0.5	< 0.5	< 0.5	< 0.5	16.4	0.5	
Trichlorofluoromethane	μg/L	5	< 5	< 5	< 5	< 5	150	
Vinyl Chloride	μg/L	0.2	< 0.2	< 0.2	< 0.2	1.7	0.5	
Xylene, m,p-	μg/L	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Xylene, o-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.	Client I.D.		BH 202	BH 203	BH 204	O. Re	g. 153
		Sample I.D. Date Collected		B19-27446-2 29-Aug-19	B19-27446-3 29-Aug-19	B19-27446-4 29-Aug-19	Tbl. 6 - PGW	
Parameter	Units	R.L.						
Xylene, m,p,o-	μg/L	1.1	< 1.1	< 1.1	< 1.1	< 1.1	72	
PHC F1 (C6-C10)	μg/L	50	< 50	< 50		< 50	420	
PHC F2 (>C10-C16)	μg/L	50	< 50	< 50		< 50	150	
PHC F3 (>C16-C34)	μg/L	400	< 400	< 400		< 400	500	
PHC F4 (>C34-C50)	μg/L	400	< 400	< 400		< 400	500	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 205	BH 206	BH 207	BH 208	O. Re	g. 153
	Sample I.I) .	B19-27446-5	B19-27446-6	B19-27446-7	B19-27446-8	Tbl. 6 -	
	Date Colle	ected	29-Aug-19	29-Aug-19	29-Aug-19	29-Aug-19	PGW	
Parameter	Units	R.L.						
Acetone	µg/L	30	< 30	< 30	< 30	< 30	2700	
Benzene	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Bromodichloromethane	μg/L μg/L	2	< 2	< 2	< 2	< 2	16	
Bromoform	μg/L μg/L	5	< 5	< 5	< 5	< 5	5	
Bromomethane	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.89	
Carbon Tetrachloride	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.03	
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	30	
Chloroform	μg/L	1	< 1	< 1	< 1	< 1	2	
Dibromochloromethane	μg/L	2	< 2	< 2	< 2	< 2	25	
Dichlorobenzene,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	3	
Dichlorobenzene,1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	59	
Dichlorobenzene,1,4-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichlorodifluoromethane	μg/L	2	< 2	< 2	< 2	< 2	590	
Dichloroethane,1,1-	μg/L	0.5	< 0.5	1.3	< 0.5	< 0.5	5	
Dichloroethane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	8.0	0.5	
Dichloroethylene,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethene, cis-1,2-	μg/L	0.5	13.9	13.0	< 0.5	1.2	1.6	
Dichloroethene, trans-1,2-	μg/L	0.5	< 0.5	3.9	< 0.5	< 0.5	1.6	
Dichloropropane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.58	
Dichloropropene, cis-1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Dichloropropene, trans- 1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 205	BH 206	BH 207	BH 208	O. Re	g. 153
	Sample I.I).	B19-27446-5	B19-27446-6	B19-27446-7	B19-27446-8	Tbl. 6 -	
	Date Colle	cted	29-Aug-19	29-Aug-19	29-Aug-19	29-Aug-19	PGW	
Parameter	Units	R.L.						
Dichloropropene 1,3- cis+trans	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Ethylbenzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4	
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	
Hexane	μg/L	5	< 5	< 5	< 5	< 5	5	
Methyl Ethyl Ketone	μg/L	20	< 20	< 20	< 20	< 20	1800	
Methyl Isobutyl Ketone	μg/L	20	< 20	< 20	< 20	< 20	640	
Methyl-t-butyl Ether	μg/L	2	< 2	< 2	< 2	< 2	15	
Dichloromethane (Methylene Chloride)	μg/L	5	< 5	< 5	< 5	< 5	26	
Styrene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	5.4	
Tetrachloroethane,1,1,1,2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	
Tetrachloroethane,1,1,2,2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Tetrachloroethylene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Toluene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	24	
Trichloroethane,1,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	23	
Trichloroethane,1,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Trichloroethylene	μg/L	0.5	8.5	0.5	< 0.5	< 0.5	0.5	
Trichlorofluoromethane	μg/L	5	< 5	< 5	< 5	< 5	150	
Vinyl Chloride	μg/L	0.2	0.7	< 0.2	< 0.2	< 0.2	0.5	
Xylene, m,p-	μg/L	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Xylene, o-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Fax: 705-252-5746

Final Report

C.O.C.: G82863-4 **REPORT No. B19-27446 (ii)**

Report To:

Attention: Natalie Wright

Caduceon Environmental Laboratories

Cambium Environmental 112 Commerce Park Drive 74 Cedar Pointe Drive, Unit 1009 Barrie ON L4N 8W8 Barrie ON L4N 5R7 Tel: 705-252-5743

DATE RECEIVED: 30-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 06-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Groundwater WATERWORKS NO.

	Client I.D.	Client I.D.		BH 206	BH 207	BH 208	O. Re	g. 153
	Sample I.D. Date Collected		B19-27446-5 29-Aug-19	B19-27446-6 29-Aug-19	B19-27446-7 29-Aug-19	B19-27446-8 29-Aug-19	Tbl. 6 - PGW	
Parameter	Units	R.L.						
Xylene, m,p,o-	μg/L	1.1	< 1.1	< 1.1	< 1.1	< 1.1	72	
PHC F1 (C6-C10)	μg/L	50	< 50		< 50	< 50	420	
PHC F2 (>C10-C16)	μg/L	50	< 50		< 50	< 50	150	
PHC F3 (>C16-C34)	μg/L	400	< 400		< 400	< 400	500	
PHC F4 (>C34-C50)	μg/L	400	< 400		< 400	< 400	500	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 102	MWBH 1	MWBH 2	QA/QC #2	O. Re	g. 153
	Sample I.I) .	B19-27446-9	B19-27446-10	B19-27446-11	B19-27446-13	Tbl. 6 -	
	Date Colle	ected	29-Aug-19	29-Aug-19	29-Aug-19	29-Aug-19	PGW	
Parameter	Units	R.L.						
Acetone	μg/L	30		< 30	< 30	< 30	2700	
Benzene	μg/L	0.5	1.9	< 0.5	< 0.5	< 0.5	0.5	
Bromodichloromethane	μg/L	2		< 2	< 2	< 2	16	
Bromoform	μg/L	5		< 5	< 5	< 5	5	
Bromomethane	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.89	
Carbon Tetrachloride	μg/L	0.2		< 0.2	< 0.2	< 0.2	0.2	
Monochlorobenzene (Chlorobenzene)	μg/L	0.5		< 0.5	< 0.5	< 0.5	30	
Chloroform	μg/L	1		< 1	< 1	< 1	2	
Dibromochloromethane	μg/L	2		< 2	< 2	< 2	25	
Dichlorobenzene,1,2-	μg/L	0.5		< 0.5	< 0.5	< 0.5	3	
Dichlorobenzene,1,3-	μg/L	0.5		< 0.5	< 0.5	< 0.5	59	
Dichlorobenzene,1,4-	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.5	
Dichlorodifluoromethane	μg/L	2		< 2	< 2	< 2	590	
Dichloroethane,1,1-	μg/L	0.5		< 0.5	< 0.5	< 0.5	5	
Dichloroethane,1,2-	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.5	
Dichloroethylene,1,1-	μg/L	0.5		0.9	< 0.5	< 0.5	0.5	
Dichloroethene, cis-1,2-	μg/L	0.5		148	51.3	< 0.5	1.6	
Dichloroethene, trans-1,2-	μg/L	0.5		1.6	0.6	< 0.5	1.6	
Dichloropropane,1,2-	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.58	
Dichloropropene, cis-1,3-	μg/L	0.5		< 0.5	< 0.5	< 0.5		
Dichloropropene, trans- 1,3-	μg/L	0.5		< 0.5	< 0.5	< 0.5		

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 102	MWBH 1	MWBH 2	QA/QC #2	O. Re	g. 153
	Sample I.D.		B19-27446-9	B19-27446-10	B19-27446-11	B19-27446-13	Tbl. 6 -	
	Date Colle	cted	29-Aug-19	29-Aug-19	29-Aug-19	29-Aug-19	PGW	
Parameter	Units	R.L.						
Dichloropropene 1,3- cis+trans	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.5	
Ethylbenzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4	
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2		< 0.2	< 0.2	< 0.2	0.2	
Hexane	μg/L	5		< 5	< 5	< 5	5	
Methyl Ethyl Ketone	μg/L	20		< 20	< 20	< 20	1800	
Methyl Isobutyl Ketone	μg/L	20		< 20	< 20	< 20	640	
Methyl-t-butyl Ether	μg/L	2		< 2	< 2	< 2	15	
Dichloromethane (Methylene Chloride)	μg/L	5		< 5	< 5	< 5	26	
Styrene	μg/L	0.5		< 0.5	< 0.5	< 0.5	5.4	
Tetrachloroethane,1,1,1,2	μg/L	0.5		< 0.5	< 0.5	< 0.5	1.1	
Tetrachloroethane,1,1,2,2	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.5	
Tetrachloroethylene	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.5	
Toluene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	24	
Trichloroethane,1,1,1-	μg/L	0.5		< 0.5	< 0.5	< 0.5	23	
Trichloroethane,1,1,2-	μg/L	0.5		< 0.5	< 0.5	< 0.5	0.5	
Trichloroethylene	μg/L	0.5		70.3	39.9	< 0.5	0.5	
Trichlorofluoromethane	μg/L	5		< 5	< 5	< 5	150	
Vinyl Chloride	μg/L	0.2		6.2	2.5	< 0.2	0.5	
Xylene, m,p-	μg/L	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Xylene, o-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

9326-001

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Caduceon Environmental Laboratories

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

112 Commerce Park Drive Barrie ON L4N 8W8 Tel: 705-252-5743

Barrie ON L4N 5R7

Fax: 705-252-5746

Attention: Natalie Wright

JOB/PROJECT NO.:

DATE RECEIVED: 30-Aug-19

Aug-19 JOB/PROJECT NO

DATE REPORTED: 06-Sep-19

P.O. NUMBER:

SAMPLE MATRIX: Groundwater

WATERWORKS NO.

	Client I.D.	Client I.D. Sample I.D.		MWBH 1	MWBH 2	QA/QC #2	O. Re	g. 153
	Sample I.I			B19-27446-10	B19-27446-11	B19-27446-13	Tbl. 6 -	
	Date Collected		29-Aug-19	29-Aug-19	29-Aug-19	29-Aug-19	PGW	
Parameter	Units	R.L.						
Xylene, m,p,o-	μg/L	1.1	< 1.1	< 1.1	< 1.1	< 1.1	72	
PHC F1 (C6-C10)	μg/L	50	< 50			< 50	420	
PHC F2 (>C10-C16)	μg/L	50	< 50			< 50	150	
PHC F3 (>C16-C34)	μg/L	400	< 400			< 400	500	
PHC F4 (>C34-C50)	μg/L	400	< 400			< 400	500	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Christine Burke Lab Manager

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		QA/QC #3	Trip Blank	O. Reg. 153
	Sample I.D.		B19-27446-14 B19-27446-15		Tbl. 6 -
	Date Colle	ected	29-Aug-19	29-Aug-19	PGW
Parameter	Units	R.L.			
Acetone	μg/L	30		< 30	2700
Benzene	μg/L	0.5	1.8	< 0.5	0.5
Bromodichloromethane	μg/L	2		< 2	16
Bromoform	μg/L	5		< 5	5
Bromomethane	μg/L	0.5		< 0.5	0.89
Carbon Tetrachloride	μg/L	0.2		< 0.2	0.2
Monochlorobenzene (Chlorobenzene)	μg/L	0.5		< 0.5	30
Chloroform	μg/L	1		< 1	2
Dibromochloromethane	μg/L	2		< 2	25
Dichlorobenzene,1,2-	μg/L	0.5		< 0.5	3
Dichlorobenzene,1,3-	μg/L	0.5		< 0.5	59
Dichlorobenzene,1,4-	μg/L	0.5		< 0.5	0.5
Dichlorodifluoromethane	μg/L	2		< 2	590
Dichloroethane,1,1-	μg/L	0.5		< 0.5	5
Dichloroethane,1,2-	μg/L	0.5		< 0.5	0.5
Dichloroethylene,1,1-	μg/L	0.5		< 0.5	0.5
Dichloroethene, cis-1,2-	μg/L	0.5		< 0.5	1.6
Dichloroethene, trans-1,2-	μg/L	0.5		< 0.5	1.6
Dichloropropane,1,2-	μg/L	0.5		< 0.5	0.58
Dichloropropene, cis-1,3-	μg/L	0.5		< 0.5	
Dichloropropene, trans- 1,3-	μg/L	0.5		< 0.5	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an *

Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		QA/QC #3	Trip Blank		O. Reg. 153
	Sample I.D. Date Collected		B19-27446-14	B19-27446-15	1	ГЫ. 6 -
			29-Aug-19 29-Aug-19			PGW
Parameter	Units	R.L.				
Dichloropropene 1,3- cis+trans	μg/L	0.5		< 0.5		0.5
Ethylbenzene	μg/L	0.5	< 0.5	< 0.5		2.4
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2		< 0.2		0.2
Hexane	μg/L	5		< 5		5
Methyl Ethyl Ketone	μg/L	20		< 20		1800
Methyl Isobutyl Ketone	μg/L	20		< 20		640
Methyl-t-butyl Ether	μg/L	2		< 2		15
Dichloromethane (Methylene Chloride)	μg/L	5		< 5		26
Styrene	μg/L	0.5		< 0.5		5.4
Tetrachloroethane,1,1,1,2	μg/L	0.5		< 0.5		1.1
Tetrachloroethane,1,1,2,2	μg/L	0.5		< 0.5		0.5
Tetrachloroethylene	μg/L	0.5		< 0.5		0.5
Toluene	μg/L	0.5	< 0.5	< 0.5		24
Trichloroethane,1,1,1-	μg/L	0.5		< 0.5		23
Trichloroethane,1,1,2-	μg/L	0.5		< 0.5		0.5
Trichloroethylene	μg/L	0.5		< 0.5		0.5
Trichlorofluoromethane	μg/L	5		< 5		150
Vinyl Chloride	μg/L	0.2		< 0.2		0.5
Xylene, m,p-	μg/L	1.0	< 1.0	< 1.0		
Xylene, o-	μg/L	0.5	< 0.5	< 0.5		

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D. Sample I.D.		QA/QC #3	Trip Blank	O. Reg. 153	
			B19-27446-14 B19-27446-15		Tbl. 6 -	
	Date Colle	ected	29-Aug-19	29-Aug-19	PGW	
Parameter	Units	R.L.				
Xylene, m,p,o-	μg/L	1.1	< 1.1	< 1.1	72	
PHC F1 (C6-C10)	μg/L	50		< 50	420	
PHC F2 (>C10-C16)	μg/L	50			150	
PHC F3 (>C16-C34)	μg/L	400			500	
PHC F4 (>C34-C50)	μg/L	400			500	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743 Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Summary of Exceedances

Table 6 - Potable Ground Water							
BH 204	Found Value	Limit					
Vinyl Chloride (μg/L)	1.7	0.5					
Dichloroethene, cis-1,2- (μg/L)	37.4	1.6					
Trichloroethylene (µg/L)	16.4	0.5					
BH 205	Found Value	Limit					
Vinyl Chloride (µg/L)	0.7	0.5					
Dichloroethene, cis-1,2- (µg/L)	13.9	1.6					
Trichloroethylene (µg/L)	8.5	0.5					
BH 206	Found Value	Limit					
Dichloroethene, trans-1,2- (μg/L)	3.9	1.6					
Dichloroethene, cis-1,2- (µg/L)	13.0	1.6					
BH 208	Found Value	Limit					
Dichloroethane,1,2- (μg/L)	0.8	0.5					
BH 102	Found Value	Limit					
Benzene (µg/L)	1.9	0.5					
MWBH 1	Found Value	Limit					
Dichloroethene, cis-1,2- (μg/L)	148	1.6					
Dichloroethylene,1,1- (μg/L)	0.9	0.5					

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (ii)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Table 6 - Potable Ground Water							
MWBH 1	Found Value	Limit					
Trichloroethylene (µg/L)	70.3	0.5					
Vinyl Chloride (µg/L)	6.2	0.5					
MWBH 2	Found Value	Limit					
Vinyl Chloride (µg/L)	2.5	0.5					
Trichloroethylene (µg/L)	39.9	0.5					
Dichloroethene, cis-1,2- (μg/L)	51.3	1.6					
QA/QC #3	Found Value	Limit					
Benzene (µg/L)	1.8	0.5					

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (iii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

Attention: Natalie Wright Fax: 705-252-5746

DATE RECEIVED: 30-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 06-Sep-19
SAMPLE MATRIX: Groundwater P.O. NUMBER: 9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
SVOC	3	Kingston	SCG	05-Sep-19	C-NAB-W-001 (k)	EPA 8270

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (iii)

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 30-Aug-19

DATE DEDODTED: 06 Con 10

DATE REPORTED: 06-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 204	MWBH 1	QA/QC #1	O. Reg. 153
	Sample I.I) .	B19-27446-4	B19-27446-10	B19-27446-12	Tbl. 6 -
	Date Colle	ected	29-Aug-19	29-Aug-19	29-Aug-19	PGW
Parameter	Units	R.L.				
Acenaphthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	4.1
Acenaphthylene	μg/L	0.05	< 0.05	< 0.05	< 0.05	1
Anthracene	μg/L	0.05	< 0.05	< 0.05	< 0.05	1.0
Benzo(a)anthracene	μg/L	0.05	< 0.05	< 0.05	< 0.05	1
Benzo(a)pyrene	μg/L	0.01	< 0.01	< 0.01	< 0.01	0.01
Benzo(b)fluoranthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	0.1
Benzo(b+k)fluoranthene	μg/L	0.1	< 0.1	< 0.1	< 0.1	
Benzo(g,h,i)perylene	μg/L	0.05	< 0.05	< 0.05	< 0.05	0.2
Benzo(k)fluoranthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	0.1
Chrysene	μg/L	0.05	< 0.05	< 0.05	< 0.05	0.1
Dibenzo(a,h)anthracene	μg/L	0.05	< 0.05	< 0.05	< 0.05	0.2
Fluoranthene	μg/L	0.05	< 0.05	< 0.05	< 0.05	0.41
Fluorene	μg/L	0.05	< 0.05	< 0.05	< 0.05	120
Indeno(1,2,3,-cd)pyrene	μg/L	0.05	< 0.05	< 0.05	< 0.05	0.2
Methylnaphthalene,1-	μg/L	0.05	< 0.05	< 0.05	< 0.05	3.2
Methylnaphthalene,2-	μg/L	0.08	< 0.08	< 0.08	< 0.08	3.2
Methylnaphthalene 2-(1-)	μg/L	1	< 1	< 1	< 1	3.2
Naphthalene	μg/L	0.05	< 0.05	< 0.05	< 0.05	7
Phenanthrene	μg/L	0.05	< 0.05	< 0.05	< 0.05	1
Pyrene	μg/L	0.05	< 0.05	< 0.05	< 0.05	4.1

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27446 (iii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743Attention:Natalie WrightFax: 705-252-5746

DATE RECEIVED: 30-Aug-19 JOB/PROJECT NO.:

DATE REPORTED: 06-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Groundwater WATERWORKS NO.

Summary of Exceedances

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Christine Burke

Lab Manager

Final Report

C.O.C.: G82863-4 REPORT No. B19-27448

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

 Attention:
 Natalie Wright
 Fax: 705-252-5746

DATE RECEIVED: 11-Sep-19 JOB/PROJECT NO.:

DATE REPORTED: 13-Sep-19
SAMPLE MATRIX: Groundwater P.O. NUMBER: 9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
Comment	2	Default Site	CS	13-Sep-19	C-Arochlor Comment	-
PCB's	2	Kingston	CS	13-Sep-19	C-PCB-03 K	EPA 8082

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82863-4 **REPORT No. B19-27448**

Report To:

Caduceon Environmental Laboratories

Cambium Environmental

112 Commerce Park Drive Barrie ON L4N 8W8

74 Cedar Pointe Drive, Unit 1009 Barrie ON L4N 5R7

Tel: 705-252-5743

Fax: 705-252-5746

Attention: Natalie Wright DATE RECEIVED: 11-Sep-19

JOB/PROJECT NO.:

P.O. NUMBER:

DATE REPORTED: 13-Sep-19

SAMPLE MATRIX: Groundwater

9326-001

WATERWORKS NO.

	Client I.D.	Client I.D.		BH 201 QA/QC #2		O. Reg. 153		
	Sample I.D.		B19-27448-1	B19-27448-5			Tbl. 6 -	
	Date Collected		29-Aug-19	29-Aug-19			PGW	
Parameter	Units	R.L.						
Poly-Chlorinated Biphenyls (PCB's)	μg/L	0.05	< 0.05	< 0.05			0.2	
Aroclor	-		-	-				

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Final Report

C.O.C.: G82863-4 REPORT No. B19-27448

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 11-Sep-19

DATE REPORTED: 13-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Summary of Exceedances

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82755 REPORT No. B19-29080 (ii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743Attention:Natalie WrightFax: 705-252-5746

DATE RECEIVED: 12-Sep-19 JOB/PROJECT NO.:

DATE REPORTED: 18-Sep-19
SAMPLE MATRIX: Groundwater P.O. NUMBER: 9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
SVOC	1	Kingston	sge	17-Sep-19	C-NAB-W-001 (k)	EPA 8270

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82755 REPORT No. B19-29080 (ii)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 12-Sep-19

DATE REPORTED: 18-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 201	O. Reg. 153
	Sample I.I	D.	B19-29080-1	Tbl. 6 -
	Date Collected		12-Sep-19	PGW
Parameter	Units	R.L.		
Acenaphthene	μg/L	0.05	< 0.05	4.1
Acenaphthylene	μg/L	0.05	< 0.05	1
Anthracene	μg/L	0.05	< 0.05	1.0
Benzo(a)anthracene	μg/L	0.05	< 0.05	1
Benzo(a)pyrene	μg/L	0.01	< 0.01	0.01
Benzo(b)fluoranthene	μg/L	0.05	< 0.05	0.1
Benzo(b+k)fluoranthene	μg/L	0.1	< 0.1	
Benzo(g,h,i)perylene	μg/L	0.05	< 0.05	0.2
Benzo(k)fluoranthene	μg/L	0.05	< 0.05	0.1
Chrysene	μg/L	0.05	< 0.05	0.1
Dibenzo(a,h)anthracene	μg/L	0.05	< 0.05	0.2
Fluoranthene	μg/L	0.05	< 0.05	0.41
Fluorene	μg/L	0.05	< 0.05	120
Indeno(1,2,3,-cd)pyrene	μg/L	0.05	< 0.05	0.2
Methylnaphthalene,1-	μg/L	0.05	< 0.05	3.2
Methylnaphthalene,2-	μg/L	0.08	< 0.08	3.2
Methylnaphthalene 2-(1-)	μg/L	1	< 1	3.2
Naphthalene	μg/L	0.05	< 0.05	7
Phenanthrene	μg/L	0.05	< 0.05	1
Pyrene	μg/L	0.05	< 0.05	4.1

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82755 REPORT No. B19-29080 (ii)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

 Barrie ON L4N 5R7
 Tel: 705-252-5743

 Attention:
 Natalie Wright
 Fax: 705-252-5746

DATE RECEIVED: 12-Sep-19 JOB/PROJECT NO.:

DATE REPORTED: 18-Sep-19 P.O. NUMBER: 9326-001

WATERWORKS NO.

Summary of Exceedances

SAMPLE MATRIX: Groundwater

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82755 REPORT No. B19-29080 (i)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

 Attention:
 Natalie Wright
 Tel: 705-252-5743

 Fax: 705-252-5746
 Fax: 705-252-5746

DATE RECEIVED: 12-Sep-19 JOB/PROJECT NO.:

DATE REPORTED: 18-Sep-19
SAMPLE MATRIX: Groundwater P.O. NUMBER: 9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
VOC's	3	Richmond Hill	JE	16-Sep-19	C-VOC-02 (rh)	EPA 8260

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82755 REPORT No. B19-29080 (i)

Report To:

<u>To:</u> Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

Attention:Natalie WrightFax: 705-252-5746DATE RECEIVED:12-Sep-19JOB/PROJECT NO.:

DATE REPORTED: 18-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Groundwater WATERWORKS NO.

	Client I.D.		BH 208	QA/QC	Trip Blank	O. Reg. 153
	Sample I.I).	B19-29080-2	B19-29080-3	B19-29080-4	Tbl. 6 -
	Date Colle	ected	12-Sep-19	12-Sep-19	12-Sep-19	PGW
Parameter	Units	R.L.				
Acetone	μg/L	30	< 30	< 30	< 30	2700
Benzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.5
Bromodichloromethane	μg/L	2	< 2	< 2	< 2	16
Bromoform	μg/L	5	< 5	< 5	< 5	5
Bromomethane	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.89
Carbon Tetrachloride	μg/L	0.2	< 0.2	< 0.2	< 0.2	0.2
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	< 0.5	< 0.5	< 0.5	30
Chloroform	μg/L	1	< 1	< 1	< 1	2
Dibromochloromethane	μg/L	2	< 2	< 2	< 2	25
Dichlorobenzene,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	3
Dichlorobenzene,1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	59
Dichlorobenzene,1,4-	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.5
Dichlorodifluoromethane	μg/L	2	< 2	< 2	< 2	590
Dichloroethane,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	5
Dichloroethane,1,2-	μg/L	0.5	8.0	0.7	< 0.5	0.5
Dichloroethylene,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.5
Dichloroethene, cis-1,2-	μg/L	0.5	1.2	0.9	< 0.5	1.6
Dichloroethene, trans-1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	1.6
Dichloropropane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.58
Dichloropropene, cis-1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	
Dichloropropene, trans- 1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82755 REPORT No. B19-29080 (i)

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 12-Sep-19

DATE REPORTED: 18-Sep-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.	Client I.D.		QA/QC	Trip Blank	O. Reg. 153
	Sample I.I).	B19-29080-2	B19-29080-3	B19-29080-4	Tbl. 6 -
	Date Collected		12-Sep-19	12-Sep-19	12-Sep-19	PGW
Parameter	Units	R.L.				
Dichloropropene 1,3- cis+trans	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.5
Ethylbenzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	2.4
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	< 0.2	< 0.2	< 0.2	0.2
Hexane	μg/L	5	< 5	< 5	< 5	5
Methyl Ethyl Ketone	μg/L	20	< 20	< 20	< 20	1800
Methyl Isobutyl Ketone	μg/L	20	< 20	< 20	< 20	640
Methyl-t-butyl Ether	μg/L	2	< 2	< 2	< 2	15
Dichloromethane (Methylene Chloride)	μg/L	5	< 5	< 5	< 5	26
Styrene	μg/L	0.5	< 0.5	< 0.5	< 0.5	5.4
Tetrachloroethane,1,1,1,2	μg/L	0.5	< 0.5	< 0.5	< 0.5	1.1
Tetrachloroethane,1,1,2,2	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.5
Tetrachloroethylene	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.5
Toluene	μg/L	0.5	< 0.5	< 0.5	< 0.5	24
Trichloroethane,1,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	23
Trichloroethane,1,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.5
Trichloroethylene	μg/L	0.5	< 0.5	< 0.5	< 0.5	0.5
Trichlorofluoromethane	μg/L	5	< 5	< 5	< 5	150
Vinyl Chloride	μg/L	0.2	< 0.2	< 0.2	< 0.2	0.5
Xylene, m,p-	μg/L	1.0	< 1.0	< 1.0	< 1.0	
Xylene, o-	μg/L	0.5	< 0.5	< 0.5	< 0.5	

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Caduceon Environmental Laboratories

Final Report

C.O.C.: G82755 REPORT No. B19-29080 (i)

Report To:

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Parrie ON L4N 5P7Tol: 705 353 5743

 Barrie ON L4N 5R7
 Tel: 705-252-5743

 Attention:
 Natalie Wright

 Fax: 705-252-5746

DATE RECEIVED: 12-Sep-19 JOB/PROJECT NO.:

DATE REPORTED: 18-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Groundwater WATERWORKS NO.

	Client I.D.		BH 208	QA/QC	Trip Blank	O. Re	g. 153
	Sample I.D.		B19-29080-2	B19-29080-3	B19-29080-4	Tbl. 6 -	
	Date Collected		12-Sep-19	12-Sep-19	12-Sep-19	PGW	
Parameter	Units	R.L.					
Xylene, m,p,o-	μg/L	1.1	< 1.1	< 1.1	< 1.1	72	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G82755 REPORT No. B19-29080 (i)

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8

 Barrie ON L4N 5R7
 Tel: 705-252-5743

 Attention:
 Natalie Wright

 Fax: 705-252-5746

DATE RECEIVED: 12-Sep-19 JOB/PROJECT NO.:

DATE REPORTED: 18-Sep-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Groundwater WATERWORKS NO.

Summary of Exceedances

Table 6 - Potable Ground Water		
BH 208	Found Value	Limit
Dichloroethane,1,2- (µg/L)	0.8	0.5
QA/QC	Found Value	Limit
Dichloroethane,1,2- (μg/L)	0.7	0.5

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Christine Burke

Final Report

C.O.C.: G82756 REPORT No. B19-32768

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 10-Oct-19

DATE REPORTED: 18-Oct-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8 Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
Chromium (VI)	2	Holly Lane	JGC	17-Oct-19	D-CRVI-01 (o)	MOE E3056
Mercury	2	Holly Lane	PBK	16-Oct-19	D-HG-02 (o)	SM 3112 B
Metals - ICP-OES	2	Holly Lane	AHM	16-Oct-19	D-ICP-01 (o)	SM 3120
Metals - ICP-MS	2	Holly Lane	TPR	15-Oct-19	D-ICPMS-01 (o)	EPA 200.8

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - GW - Table 8 - Ground Water Standards

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

 $\mathcal{A}\mathcal{W}$

Final Report

C.O.C.: G82756 REPORT No. B19-32768

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 10-Oct-19

DATE REPORTED: 18-Oct-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8 Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH2	BH102	O. Reg. 153
	Sample I.D).	B19-32768-1	B19-32768-2	Tbl. 8 - GW
	Date Colle	cted	10-Oct-19	10-Oct-19	
Parameter	Units	R.L.			
Antimony	μg/L	0.1	< 0.1	< 0.1	6
Arsenic	μg/L	0.1	0.5	0.3	25
Barium	μg/L	1	176	808	1000
Beryllium	μg/L	0.1	< 0.1	< 0.1	4
Boron	μg/L	5	15	30	5000
Cadmium	μg/L	0.015	< 0.015	< 0.015	2.1
Chromium	μg/L	1	< 1	< 1	50
Chromium (VI)	μg/L	10	< 10	1 < 10 1	25
Cobalt	μg/L	0.1	0.2	< 0.1	3.8
Copper	μg/L	2	< 2	< 2	69
Lead	μg/L	0.02	< 0.02	0.03	10
Mercury	μg/L	0.02	< 0.02	< 0.02	0.29
Molybdenum	μg/L	0.1	0.8	0.3	70
Nickel	μg/L	0.2	0.5	0.3	100
Selenium	μg/L	1	< 1	< 1	10
Silver	μg/L	0.1	< 0.1	< 0.1	1.2
Sodium	μg/L	200	190000	113000	490000
Thallium	μg/L	0.05	< 0.05	< 0.05	2
Uranium	μg/L	0.05	0.17	0.08	20
Vanadium	μg/L	0.1	0.6	0.1	6.2
Zinc	μg/L	5	< 5	< 5	890

¹ Chromium (VI) result is based on total chromium

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - GW - Table 8 - Ground Water Standards

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

 $\mathcal{A}\mathcal{W}$

Final Report

C.O.C.: G82756 REPORT No. B19-32768

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 10-Oct-19

DATE REPORTED: 18-Oct-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8 Tel: 705-252-5743 Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Summary of Exceedances

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 8 - GW - Table 8 - Ground Water Standards

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

AVX

Final Report

C.O.C.: G85508 REPORT No. B19-34508

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

Attention: Natalie Wright Fax: 705-252-5743

DATE RECEIVED: 24-Oct-19 JOB/PROJECT NO.:

DATE REPORTED: 25-Oct-19

SAMPLE MATRIX: Groundwater P.O. NUMBER: 9326-001

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
VOC's	2	Richmond Hill	JE	25-Oct-19	C-VOC-02 (rh)	EPA 8260

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G85508 REPORT No. B19-34508

Report To:

ort To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743Attention:Natalie WrightFax: 705-252-5746

DATE RECEIVED: 24-Oct-19 JOB/PROJECT NO.:

DATE REPORTED: 25-Oct-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Groundwater WATERWORKS NO.

	Client I.D.		BH 301	Trip Blank	O. Reg. 153
	Sample I.I) .	B19-34508-1	B19-34508-2	Tbl. 6 -
	Date Colle	ected	24-Oct-19		PGW
Parameter	Units	R.L.			
Acetone	μg/L	30	< 30	< 30	2700
Benzene	μg/L	0.5	< 0.5	< 0.5	0.5
Bromodichloromethane	μg/L	2	< 2	< 2	16
Bromoform	μg/L	5	< 5	< 5	5
Bromomethane	μg/L	0.5	< 0.5	< 0.5	0.89
Carbon Tetrachloride	μg/L	0.2	< 0.2	< 0.2	0.2
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	< 0.5	< 0.5	30
Chloroform	μg/L	1	< 1	< 1	2
Dibromochloromethane	μg/L	2	< 2	< 2	25
Dichlorobenzene,1,2-	μg/L	0.5	< 0.5	< 0.5	3
Dichlorobenzene,1,3-	μg/L	0.5	< 0.5	< 0.5	59
Dichlorobenzene,1,4-	μg/L	0.5	< 0.5	< 0.5	0.5
Dichlorodifluoromethane	μg/L	2	< 2	< 2	590
Dichloroethane,1,1-	μg/L	0.5	< 0.5	< 0.5	5
Dichloroethane,1,2-	μg/L	0.5	< 0.5	< 0.5	0.5
Dichloroethylene,1,1-	μg/L	0.5	< 0.5	< 0.5	0.5
Dichloroethene, cis-1,2-	μg/L	0.5	0.9	< 0.5	1.6
Dichloroethene, trans-1,2-	μg/L	0.5	< 0.5	< 0.5	1.6
Dichloropropane,1,2-	μg/L	0.5	< 0.5	< 0.5	0.58
Dichloropropene, cis-1,3-	μg/L	0.5	< 0.5	< 0.5	
Dichloropropene, trans- 1,3-	μg/L	0.5	< 0.5	< 0.5	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Fax: 705-252-5746

Final Report

C.O.C.: G85508 **REPORT No. B19-34508**

Report To:

Caduceon Environmental Laboratories

Cambium Environmental 112 Commerce Park Drive 74 Cedar Pointe Drive, Unit 1009 Barrie ON L4N 8W8 Barrie ON L4N 5R7 Tel: 705-252-5743

Attention: Natalie Wright DATE RECEIVED: 24-Oct-19 JOB/PROJECT NO.:

DATE REPORTED: 25-Oct-19 P.O. NUMBER: 9326-001

SAMPLE MATRIX: Groundwater WATERWORKS NO.

	Client I.D. Sample I.D. Date Collected		BH 301 B19-34508-1 24-Oct-19	Trip Blank B19-34508-2	O. Reg. Tbl. 6 - PGW	153
Parameter	Units	R.L.				
Dichloropropene 1,3- cis+trans	μg/L	0.5	< 0.5	< 0.5	0.5	
Ethylbenzene	μg/L	0.5	< 0.5	< 0.5	2.4	
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	< 0.2	< 0.2	0.2	
Hexane	μg/L	5	< 5	< 5	5	
Methyl Ethyl Ketone	μg/L	20	< 20	< 20	1800	
Methyl Isobutyl Ketone	μg/L	20	< 20	< 20	640	
Methyl-t-butyl Ether	μg/L	2	< 2	< 2	15	
Dichloromethane (Methylene Chloride)	μg/L	5	< 5	< 5	26	
Styrene	μg/L	0.5	< 0.5	< 0.5	5.4	
Tetrachloroethane,1,1,1,2	μg/L	0.5	< 0.5	< 0.5	1.1	
Tetrachloroethane,1,1,2,2	μg/L	0.5	< 0.5	< 0.5	0.5	
Tetrachloroethylene	μg/L	0.5	< 0.5	< 0.5	0.5	
Toluene	μg/L	0.5	< 0.5	< 0.5	24	
Trichloroethane,1,1,1-	μg/L	0.5	< 0.5	< 0.5	23	
Trichloroethane,1,1,2-	μg/L	0.5	< 0.5	< 0.5	0.5	
Trichloroethylene	μg/L	0.5	1.0	< 0.5	0.5	
Trichlorofluoromethane	μg/L	5	< 5	< 5	150	
Vinyl Chloride	μg/L	0.2	< 0.2	< 0.2	0.5	
Xylene, m,p-	μg/L	1.0	< 1.0	< 1.0		
Xylene, o-	μg/L	0.5	< 0.5	< 0.5		

O. Reg. 153 - Soil, Ground Water and Sediment Standards

Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston, W-Windsor, O-Ottawa, R-Richmond Hill, B-Barrie

Final Report

C.O.C.: G85508 REPORT No. B19-34508

Report To:

Cambium Environmental
74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 24-Oct-19

DATE REPORTED: 25-Oct-19

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8

Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D.		BH 301	Trip Blank	O. Re	g. 153
	Sample I.I Date Colle		B19-34508-1 24-Oct-19	B19-34508-2	Tbl. 6 - PGW	
Parameter	Units	R.L.				
Xylene, m,p,o-	μg/L	1.1	< 1.1	< 1.1	72	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G85508 REPORT No. B19-34508

Report To: Caduceon Environmental Laboratories

Cambium Environmental112 Commerce Park Drive74 Cedar Pointe Drive, Unit 1009Barrie ON L4N 8W8Barrie ON L4N 5R7Tel: 705-252-5743

 Barrie ON L4N 5R7
 Tel: 705-252-5743

 Attention:
 Natalie Wright

 Fax: 705-252-5746

DATE RECEIVED: 24-Oct-19 JOB/PROJECT NO.:

DATE REPORTED: 25-Oct-19 P.O. NUMBER: 9326-001

WATERWORKS NO.

Summary of Exceedances

SAMPLE MATRIX: Groundwater

Table 6 - Potable Ground Water		
BH 301	Found Value	Limit
Trichloroethylene (µg/L)	1.0	0.5

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Enle

Final Report

REPORT No. B20-04290 C.O.C.: G92205

Report To:

Caduceon Environmental Laboratories

Cambium Environmental 74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 8W8

112 Commerce Park Drive

Barrie ON L4N 5R7

Tel: 705-252-5743

Attention: Natalie Wright

Fax: 705-252-5746

DATE RECEIVED: 13-Feb-20

JOB/PROJECT NO .:

DATE REPORTED: 19-Feb-20

P.O. NUMBER:

9326-001

SAMPLE MATRIX: Groundwater

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
VOC's	4	Richmond Hill	JE	14-Feb-20	C-VOC-02 (rh)	EPA 8260

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G92205 REPORT No. B20-04290

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 13-Feb-20

DATE REPORTED: 19-Feb-20

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8 Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO .:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D. Sample I.D Date Colle		BH401 B20-04290-1 12-Feb-20	BH402 B20-04290-2 12-Feb-20	QA/QC B20-04290-3 12-Feb-20	Trip Blank B20-04290-4 12-Feb-20	O. Reg Tbl. 6 - PGW	j. 153
Parameter	Units	R.L.						
Acetone	μg/L	30	< 30	< 30	< 30	< 30	2700	
Benzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Bromodichloromethane	μg/L	2	< 2	< 2	< 2	< 2	16	
Bromoform	μg/L	5	< 5	< 5	< 5	< 5	5	
Bromomethane	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.89	
Carbon Tetrachloride	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	
Monochlorobenzene (Chlorobenzene)	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	30	
Chloroform	μg/L	1	< 1	< 1	< 1	< 1	2	
Dibromochloromethane	μg/L	2	< 2	< 2	< 2	< 2	25	
Dichlorobenzene,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	3	
Dichlorobenzene,1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	59	
Dichlorobenzene,1,4-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichlorodifluoromethane	μg/L	2	< 2	< 2	< 2	< 2	590	
Dichloroethane,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	5	
Dichloroethane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethylene,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Dichloroethene, cis-1,2-	μg/L	0.5	2.0	63.7	57.8	< 0.5	1.6	
Dichloroethene, trans-1,2-	μg/L	0.5	< 0.5	18.8	17.1	< 0.5	1.6	
Dichloropropane,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.58	
Dichloropropene, cis-1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Dichloropropene, trans- 1,3-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Dichloropropene 1,3- cis+trans	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Ethylbenzene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.4	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

527000

Final Report

C.O.C.: G92205 REPORT No. B20-04290

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 13-Feb-20

DATE REPORTED: 19-Feb-20

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8 Tel: 705-252-5743

Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

	Client I.D. Sample I.D Date Colle		BH401 B20-04290-1 12-Feb-20	BH402 B20-04290-2 12-Feb-20	QA/QC B20-04290-3 12-Feb-20	Trip Blank B20-04290-4 12-Feb-20		g. 153
Parameter	Units	R.L.						
Dibromoethane,1,2- (Ethylene Dibromide)	μg/L	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	
Hexane	μg/L	5	< 5	< 5	< 5	< 5	5	
Methyl Ethyl Ketone	μg/L	20	< 20	< 20	< 20	< 20	1800	
Methyl Isobutyl Ketone	μg/L	20	< 20	< 20	< 20	< 20	640	
Methyl-t-butyl Ether	μg/L	2	< 2	< 2	< 2	< 2	15	
Dichloromethane (Methylene Chloride)	μg/L	5	< 5	< 5	< 5	< 5	26	
Styrene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	5.4	
Tetrachloroethane,1,1,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	
Tetrachloroethane,1,1,2,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Tetrachloroethylene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Toluene	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	24	
Trichloroethane,1,1,1-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	23	
Trichloroethane,1,1,2-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	
Trichloroethylene	μg/L	0.5	29.7	5.4	5.3	< 0.5	0.5	
Trichlorofluoromethane	μg/L	5	< 5	< 5	< 5	< 5	150	
Vinyl Chloride	μg/L	0.2	< 0.2	2.6	2.3	< 0.2	0.5	
Xylene, m,p-	μg/L	1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Xylene, o-	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Xylene, m,p,o-	μg/L	1.1	< 1.1	< 1.1	< 1.1	< 1.1	72	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

 $\mathcal{A}^{\mathcal{M}}$

Final Report

C.O.C.: G92205 REPORT No. B20-04290

Report To:

Cambium Environmental

74 Cedar Pointe Drive, Unit 1009

Barrie ON L4N 5R7

Attention: Natalie Wright

DATE RECEIVED: 13-Feb-20

DATE REPORTED: 19-Feb-20

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive

Barrie ON L4N 8W8 Tel: 705-252-5743 Fax: 705-252-5746

JOB/PROJECT NO.:

P.O. NUMBER: 9326-001

WATERWORKS NO.

Summary of Exceedances

Table 6 - Potable Ground Water		
BH401	Found Value	Limit
Trichloroethylene (µg/L)	29.7	0.5
Dichloroethene, cis-1,2- (μg/L)	2.0	1.6
BH402	Found Value	Limit
Vinyl Chloride (µg/L)	2.6	0.5
Trichloroethylene (µg/L)	5.4	0.5
Dichloroethene, trans-1,2- (µg/L)	18.8	1.6
Dichloroethene, cis-1,2- (μg/L)	63.7	1.6
QA/QC	Found Value	Limit
Vinyl Chloride (µg/L)	2.3	0.5
Trichloroethylene (µg/L)	5.3	0.5
Dichloroethene, trans-1,2- (μg/L)	17.1	1.6
Dichloroethene, cis-1,2- (μg/L)	57.8	1.6

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 6 - PGW - Table 6 - Potable Ground Water

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

AVA

Cambium Ref. No.: 9326-001

2020-04-20

Chayell Hotels Ltd.

	Ар	pendix	G
Source P	rotection	Mappin	g

WHPA - 220 Bradford Street, Barrie, Ontario

Map Created: 10/15/2019

Significant Groundwater Recharge Area - 220 Bradford Street, Barrie, Ontario

Ontario 😵

Map Created: 10/15/2019

Highly Vulnerable Aquifer Area - 220 Bradford Street, Barrie, Ontario

Legend Source Protection Areas Intake Protection Zone Q Wellhead Protection Area Q1 Highly Vulnerable Aquifers **Event Based Areas** Assessment Parcel

This map should not be relied on as a precise indicator of routes or locations, nor as a guide to navigation. The Ontario Ministry of Environment, Conservation and Parks (MECP) shall not be liable in any way for the use or any information on this map. of, or reliance upon, this map.

Map Created: 10/15/2019

Vulnerable Scoring Area - 220 Bradford Street, Barrie, Ontario

Map Created: 10/15/2019

Vulnerable Scoring Area - 220 Bradford Street, Barrie, Ontario

Map Created: 10/15/2019

Issue Contributing Area - 220 Bradford Street, Barrie, Ontario

Ontario 😵

Map Created: 10/15/2019

IPZ - 220 Bradford Street, Barrie, Ontario

This map should not be relied on as a precise indicator of routes or locations, nor as a guide to navigation. The Ontario Ministry of Environment, Conservation and Parks (MECP) shall not be liable in any way for the use or any information on this map. of, or reliance upon, this map.

Map Created: 10/15/2019