

GUIDING SOLUTIONS IN THE NATURAL ENVIRONMENT

Hydrogeological Investigation, Water Balance and Salt Contamination Assessment 37 Johnson Street, Barrie, Ontario Preliminary Report

Prepared For:

Starlight Investments

Prepared By:

Beacon Environmental Limited

Date: Project:

March 2020 219541.7

Table of Contents

		р	a g e
1. In	trod	uction	1
2. S	tudy	Scope	1
3. S	ite ar	nd Area Physical Context	1
	3.1	Topography and Drainage	
_	3.2	Physiography and Geology	
	3.3	Available Background Groundwater Information	
4. S	ite C	haracterization	3
	1.1	Borehole Drilling and Monitoring Well Construction	
	1.2	Water Level Monitoring	
	1.3 1.4	Hydraulic Testing Interpreted Groundwater Flow Direction and Speed	
		·	
		Balance	
	5.1 5.2	Methods Comparison of Pre-Development and Post-Development Conditions	
		nary and Discussion	
7. S	ourc	es Cited	12
Figur	es		
		Location and Study Area	
rigure 2	. wen	i Locations arter pa	age z
T - 1 - 1 -			
Table	S		
Table 1.	Sumi	mary of Groundwater Monitoring Well Conditions	4
Table 2.	Meas	sured Groundwater Levels and Equivalent Elevations	5
		aulic conductivity estimates at Locations BH2 and BH4	
		mary of Soil Type, Land Use, and Assigned Water Holding Capacity	8
Table 5.		ting Pre-Development Conditions Comparison of Pervious to Impervious Land	0
Table 6		Areaosed Post-Development Conditions (without mitigation measures) Comparison	გ
i able 0.	FIOP	of Pervious to Impervious Land Area	9
Table 7.	Prop	osed Post-Development Conditions (with mitigation measures) Comparison of	
		Pervious to Impervious Land Area	9

Hydrogeological Investigation, Water Balance and Salt Contamination Assessment, 37 Johnson St., Barrie, Ontario (March 2020)

Table 8. Average Annual Water Budgets

Appendices

Appendix A.	Geotechnical	Investigation	(exp Services	Inc.	2016)
-------------	--------------	---------------	---------------	------	-------

Appendix B. Well Records (MECP)

Appendix C. Hydrogeological and Water Balance Analyses (Beacon)

Appendix D. Plan Drawings

1. Introduction

This report includes the preliminary findings of the hydrogeological investigation, water balance and salt contamination assessment undertaken by Beacon Environmental Limited (Beacon) for the property located at 37 Johnson Street, Barrie, Ontario (hereafter referred to as the "subject property"). The work has been undertaken in accordance with the proposed work plan approved by Starlight Investments (December 2019).

The purpose of this hydrogeological investigation, water balance and salt contamination assessment is to provide further information regarding the proposed development of the subject property, which is to include an eleven-story building with one floor of underground parking, and associated parking lot.

This report is preliminary and based on information collected between December 2019 and January 2020. A revised report will be forthcoming which includes the hydrochemistry as well as updates to water balance components, based on the Site Plan.

2. Study Scope

The scope of this work includes completing a hydrogeological investigation, water balance, and salt contamination assessment, as outlined in the Engineering Memorandum (City of Barrie; November 8, 2019) and the *Planning Act* Application – Pre-Consultation (LSRCA; November 7, 2019).

The following components will be addressed in the next submission of this report:

- Hydrochemistry; and
- Salt Contamination Assessment.

3. Site and Area Physical Context

The subject property is approximately 1.42 ha (approximately 14,200 m²) in area. As shown on **Figure 1**, the subject property is irregularly shaped and is bounded to the north and south by Indian Arrow Road and Campfire Court, respectively, adjacent to Johnson Street to the west, and located in the City of Barrie, Ontario.

The site contains an existing residential apartment building and associated parking areas. The proposed development includes the construction of an eleven-storey building structure, with one level of underground parking to be constructed on an existing topographic hummock currently covered by grasses, located to the northeast of the existing residential apartment building. The proposed building structure will have a footprint of approximately 1,500 m² in area (WMI & Associates 2018).

3.1 Topography and Drainage

The subject property is located approximately 250 m from the Lake Simcoe shoreline, north of the Barrie Yacht Club, and situated within the Lake Simcoe Region Conservation Authority (LSRCA) jurisdiction in the City of Barrie. Ministry of the Environment, Conservation and Parks (MECP) mapping indicates that parts of the subject property are classified as Wellhead Protection Area D (WHPA-D) for water quality. Mapping from the Ministry of Natural Resources and Forestry (MNRF) indicates that the subject property is located within the Kempenfelt Bay Quaternary Watershed (02EC-08), and within the Lake Simcoe and Couchiching / Black River Source Protection Area (SPA).

The topography is summarized as highest in the northeast of the subject property, with a general gradient downward towards the south through the existing parking areas. Topographic elevations for the subject property range from approximately 250 metres above sea level (masl) to 242 masl. The subject property is drained by sheet overflow to municipal storm sewers

A reconnaissance of the subject property was carried out by a certified Hydrogeologist on December 10, 2019. Within the subject property, no obvious groundwater-dependent features or seepage areas were observed. The soil was frozen at the surface and covered in a thin layer of snow.

3.2 Physiography and Geology

The subject property is located on drumlinized Till Plains generally comprised of Newmarket Till. The Newmarket Tills are generally characterized by stone-poor, sandy silt to silty sand-textured tills, with moderate-to-high carbonate matrix content (OGS 2000; MRD128, 2010; MRD228 2007).

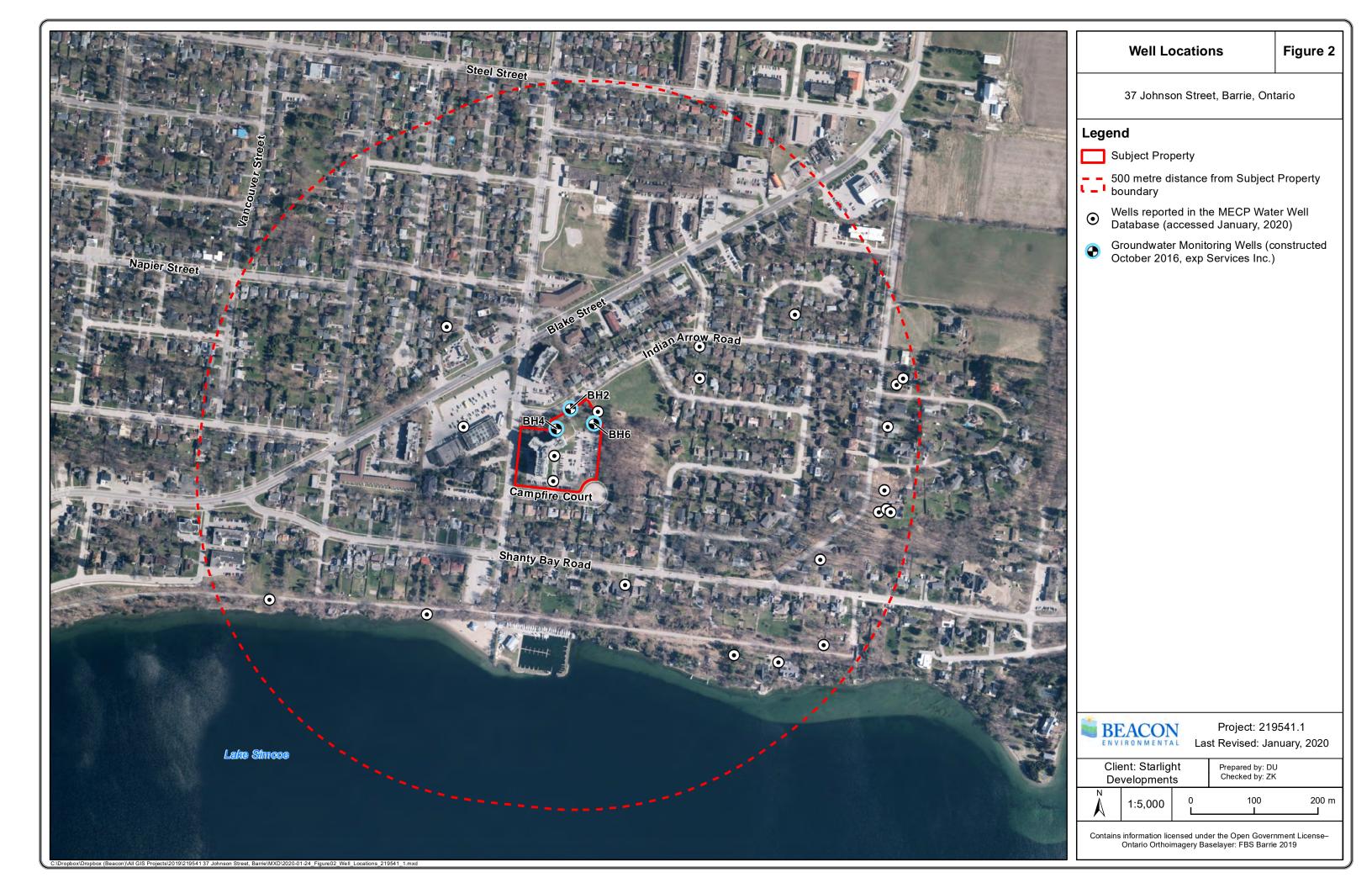
A geotechnical investigation was carried out by exp Services Inc. in 2016 which included advancing six boreholes designated BH1 through BH6. Boreholes reached a maximum depth of approximately 12.5 mbgl (metres below ground level; BH3) and a minimum elevation of approximately 233.4 masl (metres above sea level; BH4).

Review of the exp Services Inc. report (**Appendix A**) indicates that the encountered overburden is comprised of dense to very dense layers of sand and sand till, overlying dense silty sands and alternating layers of dense to very dense silt with some sand and dense gravelly sand with some silt.

The bedrock beneath the described overburden is reported to be composed of limestone, dolostone and shale (MRD126 2011). Bedrock units were not encountered during this investigation or during the drilling operations required to install the groundwater monitoring wells.

3.3 Available Background Groundwater Information

Based on a search of the available MECP (**Appendix B**) water well record database, two wells are reported to have existed on the subject property, but have been decommissioned. These wells are designated MECP Well ID 7229290 and MECP Well ID 7229289, respectively (**Figure 2**).


A review of the available well records shows that there are 22 reported wells within 500 metres of the

Site Location 37 Johnson Street, Barrie, Ontario Project: 219541.1 Last Revised: January, 2020 Client: Starlight Development Prepared by: DU Checked by: ZK 1:10,000 Inset Map:1:50,000 Contains information licensed under the Open Government License-Ontario Orthoimagery Baselayer: FBS Barrie 2019

C:\Dropbox\Dropbox (Beacon)\All GIS Projects\2019\219541 37 Johnson Street, Barrie\MXD\2020-01-24_Figure01_SubjectProperty_219541_1.mxc

subject property (see **Figure 2**). Of the known wells, 10 are reported to be purposed for domestic water use, three are purposed for monitoring use, two are purposed for municipal use, and five are reported to be 'not used'. Groundwater monitoring wells purposed for domestic use were constructed between 1959 and 2009. It is noted that older wells may no longer be operational, and that historically there was not a requirement to register dug wells with the MECP; as such, they can be under-represented in the water well record database.

4. Site Characterization

4.1 Borehole Drilling and Monitoring Well Construction

A geotechnical investigation was carried out by exp Services Inc. on December 8, 2016. As part of the geotechnical investigation, six boreholes were advanced to a maximum depth of approximately 12.5 mbgl (BH3), and a minimum elevation of approximately 233.4 masl (BH4). Standard Penetration Testing (SPT N-values) and sampling were carried out at regular depth intervals in the boreholes using conventional nominal 35 mm internal diameter split spoon sampling equipment. Where applicable, the shallow groundwater conditions were noted in the open boreholes during drilling.

As part of the geotechnical investigation, three groundwater monitoring wells were installed, designated BH2, BH4, and BH6, respectively. All borehole and groundwater monitoring well locations, as well as groundwater monitoring well construction details are provided in the appended report, included in **Appendix A.** A summary of well construction specifications and SPT-N values is provided in **Table 1**, below.

It is noted that the boundaries between the strata have been inferred from drilling observations carried out by others, and non-continuous samples. They generally represent a transition from one soil type to another and should not be inferred to represent an exact plane of geological change. Further, conditions will vary between and beyond the boreholes.

Beacon cannot guarantee the accuracy of work carried out by others. Any comment based on work carried out by others is subject to the accuracy of the information supplied to Beacon. Any use of the proposed comments by parties, or any reliance on or decisions to be made based on work not carried out by Beacon is the responsibility of those parties.

Table 1. Summary of Groundwater Monitoring Well Conditions

Location Identification	•		Reported Screened Interval	Soils Reported at Screened Interval	Reported SPT N-Value	
	(2016)	metres east	metres north	mbgl (masl)		
BH2	October 27	607060	4916776	6.5 to 10 (239 to 236)	sand and gravel till	38 to 58
ВН4	October 28	607039	4916745	6 to 9 (236 to 233)	silt and sand till to sand and gravel	36 to >60
BH6 ¹	October 26	n/a	n/a	7.5 to 11 (234 to 231)	sand with gravel to clayey silt	53 to 74
Italics – indicates	data collected by o	thers			clayey silt	

4.2 **Water Level Monitoring**

To date, groundwater depths have been measured manually at all accessible monitoring locations over the course of the monitoring period (October 2016 to January 2019). The recorded water levels reflect the groundwater conditions on the dates they were measured and are provided in **Table 2**.

As summarized in **Table 2**, groundwater depths ranged from 3.3 mbgs to 7.17 mbgs, and groundwater elevations ranged from 236.16 masl to 241.87 masl. The greatest variation between groundwater elevations measured on site during a single visit is approximately 1.82 m on December 19, 2019.

Based on the information above, groundwater appears to reside within a layer of compact to very dense sand, silt and gravel soils that are occasionally interpreted to be tills. This layer is generally interpreted to become coarser with depth and overlies a layer of relative impermeability (aquitard; clayey silt).

¹ BH6 was not found during field investigations and is presumed destroyed.

Tal	ole 2. Measur	ed Groundwa	ter Levels and Equivalent Elevations
		Approximate	Groundwater Measurements

		Approximate Groundwater Measurements					
	A	Ground	2010	6	20	19	2020
Location Identification	Approximate Top of Pipe	Surface Elevation	Oct ¹	Nov 21	Dec 10	Dec 19	Jan 9
	masl	masl	mbgs (masl)	mbgs (masl)	mbgs (masl)	mbgs (masl)	mbgs (masl)
BH2	0.9	246.14	<i>6.4</i> (239.74)	6.51 (239.63)	5.34 (241.63)	5.24 (241.8)	5.17 (241.87)
BH4	0.65	242.68	<i>4.6</i> (238.08)	4.48 (237.20)	7.17 (236.16)	7.06 (236.27)	6.96 (236.37)
BH6 ²	n/a	241.85	9.1 (232.75)	3.13 (238.72)	-	-	-

Italics - indicates data collected by others

It is noted that groundwater at location BH6 was encountered at approximately 9.1 mbgl (232.75 masl) immediately after drilling was completed, which corresponds to a layer of clayey silt material. A subsequent monitoring visit reported groundwater levels at approximately 3.1 mbgl (238.72), which corresponds to a layer of sand with gravel. This large variation between measurements at a single location was not observed at other locations, and all other measurements are generally corroborative. These measurements may indicate that the sand with gravel layer was not saturated, and that groundwater was gravimetrically collected above the aquitard (clayey silt). Alternatively, these measurements may be an indication of pressurized water within the silt layer located at 10 mbgl bounded by two layers of clayey silt (aquicludes). More information would be needed to confirm either possibility, but these possibilities should be considered for future excavation planning.

4.3 Hydraulic Testing

To estimate the hydraulic conductivity (K) of the soil materials adjacent to the screened intervals at the tested monitoring wells, single well response tests were carried out at locations BH2 and BH4 on December 10, 2019 (**Appendix C**).

The tests were carried out by rapidly adding a volume of water to the well and monitoring the subsequent water level recovery to previous conditions. The Bouwer and Rice (1976) method was applied to falling head test data, using the unconfined solution. The data was analyzed using AQTESOLV™ (v. 4.50). A summary of the single well response tests carried out is presented below in **Table 3**.

¹ indicates water level measured at the time of drilling completion, greyed to indicate not comparable to the other measurements

² BH6 was not found during field investigations and is presumed destroyed.

³ Dry wells are indicated as the less-than value for well termination depths

Table 3. Hydraulic conductivity estimates at Locations BH2 and BH4

Location Identification	Description of Soil Materials Adjacent to Screened Interval	Reported SPT N-Value	Reported Screened Interval	Estimated Hydraulic Conductivity
			mbgl (masl)	K (cm/s)
BH2	sand and gravel till	38 to 58	6.5 to 10 (239 to 235)	1.6 x 10 ⁻²
BH4	silt and sand till, to sand and gravel	36 to >60	6 to 9 (236 to 233)	6.1 x 10 ⁻³

As summarized in **Table 3**, hydraulic conductivities ranged from approximately 1.6×10^{-2} cm/s to 6.1×10^{-3} cm/s in the locations tested. These results indicate semi-pervious materials (Bear 1972).

It is noted that previous work estimated hydraulic conductivities of approximately 10⁻⁴ to 10⁻⁶ cm/s, based on the laboratory gradation results (exp, 2016). The estimates provided here in **Table 3** are based on *in situ* testing. In addition to the size of grains in the soil, is situ testing considers compaction, effective porosity (as opposed to simple porosity), and existing sedimentary feature factors. The SPT N-values summarized in **Table 2**, above, are consistent with a till provenance and introduce hydraulic consideration for till fracturing associated with large nearby construction operations and stratigraphic expansion.

4.4 Interpreted Groundwater Flow Direction and Speed

Groundwater flow directions were estimated using manual piezometric head measurements at locations BH2, BH4, and BH6 on November 21, 2016 (**Figure 2**). Groundwater within the area of interest is estimated to have a general horizontal gradient of approximately 0.05 m/m in an approximate heading of 185° (south).

Based on the horizontal hydraulic gradient and the hydraulic conductivity estimates in **Table 3**, groundwater on the subject property can be estimated to be flowing at an approximately velocity of 27 cm/day to 71 cm/day toward the south.

5. Water Balance

A comparative water budget assessment was carried out for the subject property. Estimates for existing conditions, proposed conditions, and proposed conditions with low impact development methods are compared below.

5.1 Methods

Pre-development and post-development groundwater recharge (infiltration) and surface water run-off were estimated at monthly resolutions to characterize the hydrological and hydrogeological dynamics of the subject property. The estimates take into account the following seven components:

"Inputs" (P) Precipitation

(S_i) Surface water inflow

(G_i) Groundwater inflow

"Outputs" (So) Surface water outflow

(Go) Groundwater outflow

(ET) Evapotranspiration

Available Storage (SMC) soil moisture holding capacity

The basic water balance for a particular area can be expressed as:

P = Qs + ET + RE + Δ S (Thornthwaite and Mather 1955)

where,

P = Precipitation (rain and snow)

Qs = Runoff

ET = Evapotranspiration

RE = Recharge

 ΔS = Change in Storage (assumed to be zero under steady state conditions)

Climate data was sourced from historical Environment Canada data available for Shanty Bay weather station operated by the co-operative climate network (CCN), using an average of three years (2017 through 2019) for the estimates. Local solar radiation, incoming solar radiation, sunset hour angles, and solar declination conditions used to estimate the evapotranspiration rate were sourced from the National Aeronautical and Space Administration Langley Research Center (NASA 2018). An average of 20 years was used for the solar information. Standard soil water holding capacities and infiltration coefficients used were provided in the *Stormwater Management Planning and Design Manual* (MOECC 2003).

As outlined in Section 3.2, above, overburden was generally comprised of dense to very dense layers of sand and sand till, overlying dense silty sands and alternating layers of dense to very dense silt with some sand and dense gravelly sand with some silt. Impervious surfaces were not assigned a water holding capacity.

Table 4 summarizes the pre-development water-holding capacities assigned in the calculations based on the above descriptions and assumptions.

Table 4. Summary of Soil Type, Land Use, and Assigned Water Holding Capacity

Soil Type	Vegetation Community Type (see Map 3)	Assigned Water Holding Capacity (mm/m²)
Fine Sandy Loam	Urban Lawn/Shallow Rooted Crops	75

The infiltration coefficients used in the estimate calculations were based on the sum of topography, surficial soil classification and cover factors, provided in the *Stormwater Management Planning and Design Manual* (MOECC 2003). The general topography of the catchment area was assigned a topographic factor of 0.1 based on visual observation. The surficial soil classification was considered 'Open Sandy Loam' based on the estimated hydraulic conductivities and assigned a soil factor of 0.4. The cover was considered "cultivated land" based on the general root depth of the vegetation observed and assigned a cover factor of 0.1. Based on the above sums, the total infiltration coefficient used in the estimate calculations was 0.6.

Pre-Development Constraints

The existing pre-development conditions of the subject property includes one general vegetation type (gentrified grasses), as well as impervious lands comprised of concrete pavements, asphalt pavements, and building structures, as summarized in **Table 5.** The subject property is approximately 14,200 m² in area, with approximately 6,600 m² of impermeable area.

Table 5. Existing Pre-Development Conditions Comparison of Pervious to Impervious Land Area

Existing Catchment Land Use	Approximate Pervious Land Area (m²)	Approximate Impervious Land Area (m²)	
Existing residential apartment (plus small sidewalks)	-	1,462.32	
Existing parking area and paved areas	-	5,160.17	
Grassed areas	7,588.90	-	
Total Areas	7,588.90	6,622.49	

Post-Development Constraints (without mitigation measures)

Post-development conditions were based on drawings provided to Beacon (**Appendix D**). The proposed conditions of the subject property include one general vegetation type (gentrified grasses), as well as impervious lands comprised of concrete pavements, asphalt pavements, and building structures, as summarized in **Table 6.** The proposed subject property is approximately 14,200 m² in area, with approximately 10,300 m² of impermeable area.

Table 6. Proposed Post-Development Conditions (without mitigation measures)

Comparison of Pervious to Impervious Land Area

Proposed Land Uses ¹	Approximate Pervious Land Area (m²)	Approximate Impervious Land Area (m²)
Existing residential apartment (plus small sidewalks)	-	1,462.32
Existing parking area and paved areas	-	5,160.17
Expanded parking area and paved areas	-	1,160.44
Underground Parking Footprint - replaces 1st floor footprint	-	1,247.30
Grassed areas	3,915.23	-
Total	3,915.23	10,296.34
¹ Based on provided information (Architecture	Unfolded, 2018)	

Post-Development Constraints (with mitigation measures)

Post-development conditions with proposed low infiltration development (LID) measures were based on drawings provided to Beacon (**Appendix D**). The proposed conditions of the subject property include one general vegetation type (gentrified grasses), as well as impervious lands comprised of concrete pavements, asphalt pavements, and building structures, as summarized in **Table 7.** The proposed subject property is approximately 14,200 m² in area, with approximately 10,300 m² of impermeable area.

Table 7. Proposed Post-Development Conditions (with mitigation measures)

Comparison of Pervious to Impervious Land Area

Proposed Land Uses	Approximate Pervious Land Area (m²)	Approximate Impervious Land Area (m²)
Existing residential apartment (plus small sidewalks) ¹		1,462.32
Existing parking area and paved areas ¹	-	5,160.17
Expanded parking area and paved areas ¹	•	1,160.44
Underground Parking Footprint - replaces 1st floor footprint ¹		1,247.30
Grassed areas ¹	3,861.68	-
Ex-filtration Pipe System (LID feature) ²	53.55	-
Total	3,915.23	10,296.34
¹ Based on provided information (Architecture Unfolded, ² Based on provided information (WMI & Associates, un	,	

An ex-filtration pipe system is included as part of the water balance estimate for post-development conditions with mitigation. As summarized in the Post-Development Drainage Plan (**Appendix D**), the

proposed ex-filtration pipe system has a surface footprint of approximately 54 m², and accommodates a catchment size of approximately 1,300 m². It is understood that the ex-filtration pipe system will be constructed with a granular fill porosity of approximately 0.4, and have an estimated storage volume of 10.7 m³. The purpose of the ex-infiltration pipe at this location is to infiltrate the surface water run-off from catchment area POST1A into the subsurface, thereby mitigating the volume of infiltrated water 'lost' as a result of the proposed increase in impermeable surface area.

5.2 Comparison of Pre-Development and Post-Development Conditions

The pre-development hydrologic budget for the subject property was estimated based on the existing catchment conditions and the post-development hydrologic budgets were estimated based on the Post-Development Drainage Plan and related LID measures. The estimated pre-development conditions and post-development conditions are summarized in **Table 8**.

Component	Pre-Development	Post-Development including mitigation*	Post-Development including mitigation*
	(m³ per annum)	(m³ per annum)	Difference (resulting m³ per annum)
(P) Precipitation	14,471	14,472	No change (14,472)
(ET) Evapotranspiration	5,731	5,731	No change (5,731)
(Q _G) Infiltration	3,455	1,783	+ 1287 (3,070)
(Qs) Run-off	8,542	11,010	- 1287 (9,723)

Table 8. Average Annual Water Budgets

From **Table 8**, it is noted that the proposed changes to the subject property are anticipated to result in similar infiltration and run-off volumes to that of the existing pre-development conditions. Theoretical estimates of post-construction with mitigation for the subject property anticipate approximately 11% less water volume infiltrated, and 14% greater surface water run-off volume in comparison to existing conditions

Construction of an ex-filtration pipe system, as described above

It is acknowledged that the values and coefficients presented above are standardized estimates. It is important to understand that infiltration rates and water holding capacities are dependent upon the effective porosity and hydraulic conductivity of the surficial soils which may vary over several orders of magnitude. As such, the resulting run-off and infiltration estimates inherit potentially large margins of error. These margins of error are recognized, but for the purposes of this assessment, the numbers used in the water balance calculations are considered reasonable estimates based on the site-specific conditions and useful for comparison of pre- to post- development conditions.

6. Summary and Discussion

In summary, this preliminary hydrogeological investigation and water balance assessment finds that:

- The general stratigraphic package is interpreted as layers of dense to very dense layers of sand and sand till, overlying dense silty sands and alternating layers of dense to very dense silt with some sand and dense gravelly sand with some silt;
- Groundwater levels measured within the area of investigation between October 2016 and January 2020 ranged from approximately 3.3 mbgs to 7.17 mbgs, and groundwater elevations ranged from 236.16 masl to 241.87 masl; and
- Groundwater is estimated to flow in a southerly heading at a rate of approximately 27 cm/day to 71 cm/day.

The theoretical water balance estimates suggest that proposed infiltration and run-off volumes are similar to the existing pre-development conditions. Theoretical estimates anticipate approximately 11% less infiltration volume, and 14% greater run-off volume with proposed mitigation methods.

We trust that this meets your immediate needs. As indicated above, this report will be revised to include salt contamination assessment findings.

Prepared by:

Beacon Environmental

Reviewed by:

Beacon Environmental

Zen Keizars, P.Geo.

Senior Hydrogeologist, Practice Lead

Jamie Nairn, M.Sc., P.Ag. Senior Ecologist, Northern Lead

7. Sources Cited

- Architecture Unfolded, 2018. Site Plan, Context Plan & Statistics A101, rev October 15, 2018.
- Bear, J.,1972. Dynamics of Fluids in Porous Media; Dover Publications.
- Bouwer, H. and R.C. Rice. 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3.
- Chapman, L.J. and Putnam, D.F., 2007. Physiography of southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 228 (MRD228, 2007).
- exp Services Inc., 2016. Geotechnical Investigation 37 Johnson Street, Barrie, Ontario.
- NASA, 2018. POWER Release 8.0.1, National Aeronautic and Space Administration, Langley Research Station, 2018.
- OGS (Ontario Geological Survey). 2000. Quaternary geology, seamless coverage of the Province of Ontario. Data Set 14 Revised.
- OGS (Ontario Geological Survey). 2010. Surficial geology of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 128-REV (MRD128, 2010).
- OGS (Ontario Geological Survey). 2011. 1:250 000 scale bedrock geology of Ontario; Ontario Geological Survey, Miscellaneous Release Data 126-Revision 1 (MRD126, 2011).
- WMI & Associates, undated. Post-Development Drainage Plan, 37 Johnson Street Figure 3.

Appendix A

Geotechnical Investigation (exp Services Inc. 2016)

Starlight Investments Ltd.

Geotechnical Investigation 37 Johnson Street, Barrie, Ontario

Type of Document:

Final Report

Project Name:

Geotechnical Investigation, 37 Johnson Street, Barrie, Ontario

Project Number:

BAR-00042830-A0

Prepared By:

Leigh Knegt, P. Eng.

Reviewed By:

Alexander Winkelmann, P. Eng.

exp Services Inc.

14 Cedar Pointe Drive, Unit 1510 Barrie, Ontario L4N 5R7 Canada

T: 705.719.1100 F: 705.719.1109 www.exp.com

Date Submitted: December 8, 2016

Date: December 8, 2016

Legal Notification

This report was prepared by **exp** Services Inc. for the account of **Starlight Investments Ltd.**.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **Exp** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Table of Contents

Starli	ght Invest	tments Ltd	i				
Legal	l Notificati	ion	ii				
Table	of Conte	nts	ii				
1	Introdu	Introduction1					
2	Site De	Site Description1					
3	Procedure						
4	Laboratory Testing						
5	Subsurface Conditions						
6	Discussion and Conclusion						
6.1	General		5				
6.2	Site Grading						
6.3	Building	Building Construction					
	6.3.1	Foundations	6				
	6.3.2	Floor Slabs	7				
	6.3.3	Excavation and Groundwater Control	7				
	6.3.4	Side Slopes	8				
	6.3.5	Dewatering	8				
	6.3.6	Backfill Considerations	g				
	6.3.7	Subsurface Walls	g				
	3.2.7	Permanent Drainage	10				
	6.3.8	Soil Corrosivity	11				
	6.3.9	Hydraulic Conductivity	11				
6.4	Site Services						
	6.4.1	Excavations and Side Slopes	12				
	6.4.2	Bedding	12				
7	Genera	General Comments					
Appe	ndix A – E	Borehole Location Plan	14				

Appendix B – Notes on Soil Description	.15
Appendix C – Borehole Logs	.16
Appendix D – Lab Testing	.17
Appendix E – Site Photographs	.18

1 Introduction

This report presents the results of a geotechnical investigation carried out at 37 Johnson Street which is located in Barrie, Ontario. The investigation was conducted to assess the subsurface soil conditions in order to provide geotechnical recommendations for the proposed construction of a multistorey residential building with one level of underground parking on the site. The work was authorized by Ms. Ashley Burke of Starlight Investments Ltd. on October 3, 2016.

The purpose of this investigation was to determine the subsurface soil and groundwater conditions at the site by advancing a limited number of sampled boreholes. Based on the information developed during the on-site investigation, recommendations are provided for the design of the foundation.

2 Site Description

The project site is located at 37 Johnson Street, Barrie, Ontario. The site is located east of Johnson Street, south of Indian Arrow Road and north of Campfire Court. An existing multi-storey residential building and parking facility occupies the southern and western portions portion of the site. The investigation was carried out over the northeast portion of the site, north of the existing Site building and parking facility. The project site increases approximately 5 metres in elevation from the parking facility towards the north corner of the Site property.

3 **Procedure**

The fieldwork for the geotechnical investigation was carried out on October 26, 27 and 28, 2016. The investigation included six (6) boreholes (numbered BH1 to BH6, inclusive) which were advanced to a depth ranging between 8.1 and 12.5 metres¹ at the locations indicated on the attached Borehole Location Plan (Drawing No. 1) in Appendix A.

The boreholes were advanced using a track mounted drill rig equipped with continuous flight, hollow and solid stem augering equipment and standard soil sampling equipment, owned and operated by a specialist drilling contractor.

The field work was conducted under the supervision of a qualified member of our geotechnical engineering staff. The field engineer examined and classified characteristics of the soils encountered in the boreholes, including the presence of fill materials, made groundwater observations during and upon completion of the drilling, recorded observations of borehole construction, and processed the recovered samples. Representative samples of the overburden were recovered at frequent depth intervals for identification purposes using a conventional split spoon sampler. Standard penetration tests were carried out simultaneously with the sampling operations to assess the strength characteristics of the substrate. Upon completion of drilling, groundwater levels were observed and recorded.

All recovered soil samples were logged in the field, carefully packaged and transported to the laboratory for more detailed examination and classification. In the laboratory, the samples were classified as to their olfactory, visual and textural characteristics.

¹ Unless otherwise indicated all depths are noted as metres below existing grade.

The location and elevation of the explorations were determined by **exp**. The horizontal locations were laid out in the field by **exp** at the time of the drilling operations. The elevations were determined by GPS survey equipment and are referenced to NADS 83 datum.

4 Laboratory Testing

The laboratory-testing program consisted of the following:

- Natural moisture content tests on all recovered samples, with results presented on the Borehole Logs found in Appendix C (Figures 2 to 7, inclusive).
- Three (3) soil samples analyzed (BH2 S3, BH3 S4 and BH4 SA3) for Corrosivity which included Sulfate, pH, Electrical Conductivity, Redox Potential, Resistivity, Chloride and Sulphate. The laboratory Certificates of Analysis is included in Appendix D.
- Standard characterization tests (Sieve Analysis / Hydrometer) were performed on samples:
 - o BH1 SA3
 - o BH2 SA9
 - o BH3 SA9
 - o BH4 SA10
 - o BH5 SA3, SA7 & SA8
 - o BH6 SA4

The results of these test are presented on the Borehole Logs and the results are presented in Appendix D.

• One (1) standard proctor test was conducted on a combined composite sample of predominant soil stratum from each borehole. The test result is presented in Appendix D.

5 Subsurface Conditions

The detailed soil profile encountered in the boreholes and the results of laboratory moisture content testing are indicated on the attached borehole logs in Appendix C (Figures 2 to 7, inclusive). They include textural descriptions of the subsoil at each location along with the other results of the field-testing program. Two cross-sections are also included in Appendix C.

It should be noted that the soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. Figures 1A and 1B, "Notes on Sample Descriptions", found in Appendix B, are an integral part of and should be read in conjunction with this report.

The stratigraphy at the site, as revealed in the sampling completed within the boreholes, is generally comprised of an initial layer of topsoil followed by layer of fill overlying varying native till / sand / silty sand / silty clay layers.

A brief description of the soil profile, in general order of depth (listed in metres below grade, unless otherwise noted), follows:

Project Number: BAR-00042830-A0

Date: December 8, 2016

Topsoil / Fill

An initial layer of topsoil was encountered in all boreholes with the exception of Borehole BH6 and was approximately 130 to 250 mm thick.

Fill was encountered in all boreholes, directly below the topsoil layer and at surface in Borehole BH6 and extended to depths ranging between approximately 0.5 to 3.6 metres. The fill is described as silt and sand, contained trace to some gravel, trace clay, with organics, rootlet and wood inclusions and is brown to grey in colour. The fill is generally loose to dense with Standard Penetration Test (SPT) "N" values ranging from 9 to 50 blows for 75 mm of penetration. The moisture conditions encountered were damp to wet with the natural moisture contents of the recovered samples ranging from 7 to 19%.

Please note that the thickness and composition of topsoil/fill can vary greatly across a site. The thicknesses and compactness conditions indicate above and shown on the borehole logs are based on very localized information and should not be used for estimation purposes (i.e. cut/fill quantities. etc.). A test pit investigation is recommended if accurate quantities are required for budgeting purposes.

Till

Till varying in composition from a silt and sand to sand and gravel matrix was encountered in all boreholes directly below the fill layer starting from approximately 0.7 to 3.7 metres. The upper till layer extended to a depths ranging from 1.5 to 10.2 metres in all boreholes. The upper till was found to be loose to very dense with a Standard Penetration Test (SPT) "N" values ranging from 7 to 60 blows. The moisture conditions encountered in this layer were damp to wet with a natural moisture content of the recovered samples ranging from 4 to 21%.

A lower silt and sand till was encountered in Borehole BH3 at approximately 11.0 m and extended to the termination of the borehole at approximately 12.5 metres. The lower till layer contained trace gravel, trace clay and was grey in colour. The lower till was found to be dense to very dense with a Standard Penetration Test (SPT) "N" values ranging from 44 to 90 blows. The moisture conditions encountered in this layer were moist with a natural moisture content of the recovered samples ranging from 8 to 11%.

Sand

A native sand layer was encountered in all boreholes. The sand layers varied in composition and contained with to trace gravel, with to some silt. The varying sand deposits were found to be compact to very dense with a Standard Penetration Test (SPT) "N" values ranging from 26 to 113 blows. The moisture conditions encountered in this layer were moist to wet with a natural moisture content of the recovered samples ranging from 10 to 28%.

Silt / Clayey Silt

Intersecting layers of silt and clayey silt were encountered in Boreholes BH2, BH3 and BH6 beneath the upper till and/or sand layer. The silt was described as trace to some sand, trace to some clay. The silt is grayish brown to brownish grey in colour and is dense to very dense with Standard Penetration Test (SPT) "N" values ranging from 47 to 63. The moisture conditions encountered are wet with the natural moisture contents of the recovered samples ranging from 16 to 22%.

Silty Clay

A thin silty clay layer was encountered in Borehole BH5 approximately 1.5 metres thick at a depth of 5.7 metres below the existing ground surface. The silty clay is grey in colour and hard with Standard Penetration Test (SPT) "N" values of 52.

Groundwater

Groundwater conditions were observed in the open boreholes during the course of the fieldwork. End-of-hole groundwater measurements are included in the attached borehole logs. Upon completion of drilling the boreholes, the end-of-day measurements the boreholes ranged between 3.0 to 9.1 metres below the existing ground surface.

A 51 mm diameter PVC monitoring well was installed in Boreholes BH2, BH4 and BH6. The groundwater table, which was measured on November 21, 2016 ranged between 3.1 to 6.5 metres below the existing ground surface. Seasonal fluctuation of the groundwater levels at the site should also be anticipated.

Date: December 8, 2016

6 Discussion and Conclusion

6.1 General

The project involves the proposed construction of an eleven storey residential building with one level of underground parking at 37 Johnson Street in Barrie, Ontario. Based on the information provided, we have assumed that the basement/garage floor for the underground parking level will have a surface elevation of approximately 239.0 m.

As identified previously, the soils in this area generally consist of an initial layer of fill overlying a silt and sand till, which is in turn overlying various silt and sand deposits.

The following subsections provide geotechnical engineering guidelines for the design and construction of the proposed development.

6.2 Site Grading

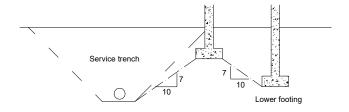
It is understood that some re-grading will be carried out at the site.

The following procedures are recommended for the construction of fill sections for building and pavement areas at the site, where required.

- Site preparation should involve removal of all fill, topsoil, stockpiles, debris and other unsuitable materials down to competent native inorganic soil.
- Following approval of the sub-grade by geotechnical personnel, the site can then be brought up
 to final sub-grade level with approved on-site or imported material placed in lifts not exceeding
 200 mm (loose thickness) and compacted to 100% of its SPMDD within the building area and
 98% in pavement or open space areas. The moisture content of the fill to be placed should be at
 or near its optimum moisture content in order to assure the specified densities can be achieved
 with reasonable compactive effort.
- Excavated inorganic silty soils from the site are expected to generally be suitable for reuse as fill, subject to effective moisture control; however, they may be difficult to work with. It must be noted that the site soils are moderately to highly sensitive (depending on silt content) and may be easily disturbed if they become wet. It should be noted that the existing moisture contents are typically higher than the optimum moisture content determined by the standard Proctor test performed on the site material (see Section 4.0). In this regard, it is noted that periods of prolonged rainfall would adversely impact the handling and compaction characteristics of the material. As a result, after periods of heavy rainfall, rutting of the sub-grade under heavy repeated traffic can be expected. Construction methods, equipment and schedules must be adopted for these conditions.
- All imported borrow fill material from local sources should be free of organic material and foreign
 objects (i.e. trees, roots, debris, etc.) and should be approved by exp prior to transport to the site.
 In addition, the chemical quality of the borrow fill material should be assessed by exp in
 accordance with the current applicable Ministry of Environment (MOE) regulations and guidelines.

All backfilling and compaction operations should be monitored on a full-time basis by exp
geotechnical staff to approve materials and to ensure the specified degrees of compaction have
been obtained.

6.3 Building Construction


6.3.1 Foundations

Based on the results of the boreholes drilled at the site, the proposed construction may be supported on conventional spread and strip footings as detailed in the following table, subject to inspection by **exp** during construction.

Table 1: Footing Design Parameters

Borehole No.	Depth/Elevation to Founding Soil (m)	SLS Bearing Capacity (kPa)	ULS Bearing Capacity (kPa)
BH1	1.0/243.1	350	525
BH2	3.7/242.4	200	300
DHZ	4.5/241.6	350	525
BH3	4.0/242.8	100	150
БПО	6.0/240.8	350	525
BH4	2.5/240.2	150	225
БП4	3.8/239.0	350	525
BH5	1.0/241.8	350	525
BH6	1.0/240.8	250	375
БПО	2.5/239.3	350	525

Foundations, which are to be placed at different elevations, should be located such that the higher footings are set below a line drawn up at 10 horizontal to 7 vertical from the near edge of the lower foundation or bottom of the service trench, as indicated on the following sketch:

FOOTINGS NEAR SERVICE TRENCHES OR AT DIFFERENT ELEVATIONS

Date: December 8, 2016

The native silt and sand till soils are considered to be moderately to highly frost susceptible (increased silt content increases the frost susceptibility). All footings or grade beams exposed to seasonal freezing conditions should be protected from frost action by at least 1.5 m of soil cover or equivalent insulation, depending on the final design requirements.

The total and differential settlements of well designed and constructed footings placed in accordance with the above recommendations are expected to be less than 25 mm and 19 mm, respectively.

It should be noted the recommended bearing capacity has been calculated by **exp** from the borehole information for the design stage only. The investigation and comments are necessarily ongoing as new information on underground conditions become available. For example, it should be appreciated that modifications to bearing levels may be required if unforeseen subsoil conditions are revealed after the excavation is exposed to full view or if final design decisions differ from those assumed in this report. For this reason, this office should be retained to review final foundation drawings and to provide field inspections during the construction stage.

Founding surfaces are subject to softening/loosening when exposed to water and construction activities. In this regard, excess water and/or disturbed soils must be removed prior to placement of concrete. The use of a protective skim coat of lean concrete may be warranted where founding surfaces are to be exposed for an extended period.

6.3.2 Floor Slabs

The borehole data indicate that the lower parking slab will likely be constructed on the dense to very dense silt and sand till and/or sand/silt deposits. Following excavation to the design sub-grade elevation, the area should then be proof-rolled and evaluated by a geotechnical engineer. Any soft spots identified should be sub-excavated. The sub-excavation areas can then be brought up to the design subgrade level using Granular "B" (OPSS 1010) compacted to 100 percent standard Proctor maximum dry density (SPMDD). The parking garage slab can be designed based on a modulus of subgrade reaction of 30 MPa/m on the well-compacted fill materials.

If the garage space is not heated, insulation will need to be provided, both beneath the floor slab and behind the walls to prevent the frost prom penetrating into the surrounding frost susceptible soils and causing vertical or horizontal movement of the concrete structures. For under-slab installations, Styrofoam Highload 40 (or equal) should be used. Styrofoam Ultra SL can be used behind the wall. For design purposes, 25 mm of Styrofoam can be assumed to equal 0.3 m of ground cover.

6.3.3 Excavation and Groundwater Control

Excavations carried out through the existing silt and sand deposits above the prevailing groundwater level may be carried out in open cuts using conventional equipment. Pumping from filtered sumps located outside of the foundation areas may be sufficient to control any potential perched groundwater inflow. Excavations carried out below the prevailing groundwater table may be problematic and could require positive groundwater dewatering methods using well points.

The observed groundwater table depth at the site in the piezometers that were installed on site were checked on November 21, 2016 and the groundwater level was found to range between elevations 238.2 and 239.6 m.

A test dig is recommended to permit prospective contractors an opportunity to view and assess the conditions likely to be encountered and the preferred means of construction cognizant of their own experience and available expertise.

6.3.4 Side Slopes

For preliminary guidance, for this site, the overburden soils encountered in our exploratory explorations consist of fill overlying silt and sand till (within the expected depth of excavation). Under the Occupational Health and Safety Act regulations, these soils should be classified as Type 3 soil requiring a maximum slope inclination of 1 vertical to 1 horizontal extending from the bottom of the excavation, assuming that the groundwater is maintained below the level of the floor of the excavation. The silt and sand deposits below the groundwater table should be classified as Type 4 soil requiring a maximum slope inclination of 1 vertical to 3 horizontal extending from the bottom of the excavation. The need to excavate flatter side slopes if excessively wet or soft/loose materials, or concentrated seepage zones are encountered, should not be overlooked.

The contractor should be aware that slope height, slope inclination, or excavation depths (including utility trench excavations) should in no case exceed those specified in local, provincial or federal safety regulations. Such regulations are strictly enforced and, if not followed, the owner, the contractor or earthwork or utility subcontractor could be liable for substantial penalties.

It is important to note that soils encountered in the construction excavations may vary significantly across the site. Our preliminary soil classifications are based solely on the materials encountered in widely spaced explorations. The contractor should verify that similar conditions exist throughout the proposed area of excavation. If different subsurface conditions are encountered at the time of construction, we recommend that **exp** Services Inc. be contacted immediately to evaluate the conditions encountered.

6.3.5 Dewatering

Based on the findings in the boreholes at the time of the investigation and our understanding of the proposed development, no significant dewatering should be required for the construction of the proposed residential building and below ground parking garage. Depending on the depth of the footings for the parking garage and building, positive dewatering might be required. The native soils are in a dense to very dense condition and would reduce the percolation of groundwater into the excavations. This groundwater seepage might be able to be controlled using filtered pumps, however, if the excavations are left open for longer than 24 hours, then positive dewatering might be required to reduce the groundwater inflow. Any inflow of groundwater into the excavations should be able to be controlled by the use of filtered sumps for excavations that extend up to 0.5 metres below the groundwater table. Excavations that are required to extend beyond 0.5 meters below the groundwater table may require positive dewatering.

Although this investigation has estimated the groundwater level at the time of the field work, and commented on dewatering and general construction problems, the presence of conditions which would be difficult to establish from small diameter boreholes may affect the type and nature of dewatering procedures, which should be used by the contractor in practice. These conditions include

Date: December 8, 2016

local and seasonal fluctuations in the groundwater table, erratic changes in the soil profile between the tests, thin layers of soil with large or small permeability compared with the general soil mass and possibly sources of relatively large recharge.

6.3.6 Backfill Considerations

Backfill used to satisfy under floor slab requirements, in footing and service trenches, etc., should be compactable fill, i.e. inorganic soil with its moisture content close to its optimum moisture content as determined in the Standard Proctor Maximum Dry Density test.

The excavated on-site material will primarily consist of topsoil, fill and till. The topsoil, fill and till materials are not suitable for use as a drainage medium. Imported granular material conforming to Ontario Provincial Standard Specifications (OPSS) Granular 'B' Type I specifications would be suitable for this purpose. If there are water concerns/problems and imported granular material is required to bring the elevation to the design elevation, then 50 mm crusher run material should be used.

Any shortfall of suitable on-site excavated material can be made up with imported granular material, such as OPSS Granular 'B' Type I or equivalent. The backfill should be placed in lifts not more than 200 mm thick in the loose state with each lift being compacted to 100% of its SPMDD within the building area and 98% elsewhere before subsequent lifts are placed. The degree of compaction achieved in the field should be checked by in-place density tests.

6.3.7 Subsurface Walls

Basement and retaining walls must be designed to resist the unbalanced lateral earth pressure due to the weight of the retained soil. The lateral earth pressure, p, may be computed using the following equation and assuming a triangular pressure distribution:

$$p = k(\gamma h + q)$$

where: p = the pressure in kPa acting against any subsurface wall at depth, h, below the ground surface;

k = the earth pressure coefficient considered to be appropriate for the subsurface walls, see # below for appropriate values;

 γ = the bulk unit weight of the retained free draining granular backfill; use 21 kN/m³;

h = the depth in m below the ground surface at which the pressure, p, is to be computed;

and

q = the value of any adjacent surcharge in kPa, which may be acting close to the wall.

(Note: # k = 0.5 for restrained basement walls; 0.4 for semi flexible walls where some deflection is permitted; 0.35 for flexible cantilever walls).

Date: December 8, 2016

The above expression assumes an effective perimeter tile drain system will be incorporated to prevent the build-up of hydrostatic pressure behind the wall. All subsurface building walls should be waterproofed and backfilled with free draining granular material. To minimize infiltration of surface water, the upper 600 mm of backfill should comprise compacted relatively impervious material sloped away from the building.

3.2.7 Permanent Drainage

A permanent perimeter tile drainage system should be provided around the parking garage walls and under-floor drains should be installed below the parking garage floor slab on 3 metre centres. The perimeter drains should consist of 100 mm diameter perforated plastic pipe with a filter sock surrounded by at least 150 mm of 19 mm clear stone, all wrapped in a non-woven geotextile (Terrafix 270R or equivalent). For the underfloor drainage, a layer of 19 mm clear stone 300 mm thick should be provided, with the drainage pipes placed at the bottom of the stone layer. Geotextile protection will not be required for the top surface of stone within the building interior, but will be required between the sub-grade and the bottom of the stone layer.

The sub-drains should be carefully installed with a 0.4% to 0.5% slope. Around the perimeter of the building, the ground surface should be sloped on a positive grade away from the structure to promote surface water run-off and to reduce groundwater infiltration adjacent to the foundations. Due to the fluctuating groundwater table, all sub-surface building walls should be waterproofed and backfilled with free draining granular material.

3.2.8 Earthquake Considerations

Subsoil Conditions

The subsoil and groundwater information at this site has been examined in relation to Section 4.1.8.4 of the Ontario Building Code 2006 edition (OBC, 2006). The subsoil generally consisted of silty sand and silty sand till deposits. The foundation system is anticipated to be founded on the compact to very dense silty sand till. The reported "N" values for the soil below the foundation levels ranged from 36 to greater than 50.

As there have been no shear wave velocity measurements carried out at this site, a correlation using the SPT "N" values from the boreholes will have to be used to determine the site classification.

Depths of Boreholes

Table 4.1.8.4.A. Site Classification for Seismic Site Response in OBC 2006 indicated that to determine the site classification, the average properties in the top 30 metres are to be used. The boreholes advanced at this site were terminated at a maximum depth of 12.5 metres. Therefore, the site classification recommendation would be based on the available information as well as our assumption that the soil conditions are similar below the drilled depth.

Site Classification

The soil deposits are generally non-cohesive. Based on the above assumptions and interpretations and the known soil conditions, the Site Class for this site is considered to be "C", as per Table 4.1.8.4.A. Site Classification for Seismic Site Response, OBC, 2006.

6.3.8 Soil Corrosivity

Three (3) split spoon soil samples were submitted to an independent analytical laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA) for chemical analyses consisting of Resistivity, Soluble Chloride, Conductivity, pH, Soluble Sulphate, and Redox Potential. These parameters are used for assessing soil corrosivity according to the 10-point soil evaluation procedure described in American Water Work Association (AWWA) C-105 Standard. It should be noted that the analytical results only provide an indication of the potential for corrosion.

Based on this 10-point evaluation procedure, the severity ranking of the tested sample is tabulated below. The Certificates of Analyses for the corrosivity package are attached in Appendix D.

Sample Identification	Sample Depth (m)	Material / Soil Type	Severity Ranking
BH2 SA3	1.5 – 2.1	Fill: Silt and Sand, Trace Gravel, Trace Clay	1
BH3 SA4	2.3 – 2.9	Fill: Silt and Sand, Trace to Some Gravel, Trace Clay	1
BH4 SA3	1.5 – 2.1	Fill: Silt and Sand, Trace Gravel, Trace Clay	1

Table 6: Soil Corrosivity According to AWWA C-105 Standard

Based on the total points of the soil sample being less than ten, corrosion protective measures are not required for any cast iron alloys that will be exposed to this soil.

The soluble sulphate concentration of the selected sample was also compared to the Canadian Standard CAN3/CSA A23.1 Table 3, Additional Requirements for Concrete Subjected to Sulphate Attack. It is anticipated that these results would be used to determine the type of cementing materials to be used in the manufacture of the concrete foundations. Comparison of the test results indicate that the water soluble sulphate concentration in the tested soil samples is 0.014% or less, and are therefore lower than 0.1%. Based on these results, there is a negligible potential for sulphate attack on concrete exposed to this soil, regardless of the cementing material used.

6.3.9 Hydraulic Conductivity

The site soils above the groundwater table consist of either a silt and sand, trace to some gravel, trace clay material or a silt and sand till. Based on the gradation results discussed in Section 4.0 above, the estimated hydraulic conductivity of these soils ranges from 10⁻⁴ to 10⁻⁶, depending on the silt and clay content of the materials.

Since the anticipated depth of construction will result in the structure being founded at or near the existing groundwater table, infiltration as part of the stormwater management system may not be a desirable design option. If infiltration is used, the groundwater table would rise, resulting in an increase in the volume of water that the drainage system around the parking structure would be required to handle.

6.4 Site Services

6.4.1 Excavations and Side Slopes

For recommendations with respect to excavations and side slopes, see Sections 6.3.3 and 6.3.4 above.

6.4.2 Bedding

The type of material and depth of granular bedding below the pipe will, to some extent, depend on the method of construction used by the contractor.

It is normal procedure to extend the pipe bedding up to the spring line of the pipe where the depth of cover over the pipe is less than 2.1 metres. Where the cover over the pipe is 2.1 metres or more, then it would be prudent to increase the depth of pipe bedding to a level of 300 mm above the obvert of the pipe.

Assuming adequate groundwater control methods are employed, we would suggest that the pipe bedding material consist of a minimum of 150 mm of granular "A" sand and gravel.

In both cases, particular care must be taken to ensure adequate compaction below the haunches of the new pipe.

6.4.2.1 Flexible Pipes

Pipe bedding requirements outlined in the Ontario Provincial Standard Drawing 802.010 (flexible pipe) should be sufficient. Standard granular bedding in accordance with OPSS, compacted to 95% Standard Proctor Maximum Dry Density (SPMDD), should be satisfactory for pipes founded on native soil. For flexible pipes, bedding and cover material should be comprised of OPSS Granular "A".

6.4.2.2 Rigid Pipes

Pipe bedding requirements outlined in the Ontario Provincial Standard Drawing 802.031 and 802.032 (rigid pipe) should be sufficient. Standard granular bedding in accordance with OPSS, compacted to 95% Standard Proctor Maximum Dry Density (SPMDD), should be satisfactory for pipes founded on native soil. For rigid pipes, bedding material (to the pipe spring-line) should be comprised of OPSS Granular "A". Dry native sands should be suitable for cover material, subject to field review.

7 General Comments

Exp Services Inc. should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not accorded the privilege of making this review, **exp** Services Inc. will assume no responsibility for interpretation of the recommendations in the report.

The comments given in this report are intended only for the guidance of the design engineers. The number of boreholes required to determine the localized underground conditions between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc. could be greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

More specific information with respect to the conditions between samples, or the lateral and vertical extent of materials may become apparent during excavation operations. The interpretation of the borehole information must, therefore, be validated during excavation operations. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent; should this occur, **exp** Services Inc. should be contacted to assess the situation and additional testing and reporting may be required.

We trust this report is complete within our terms of reference, and the information presented is sufficient for your present purposes. If you have any questions, or when we may be of further assistance, please do not hesitate to contact our office.

Yours truly,

exp. Services Inc.

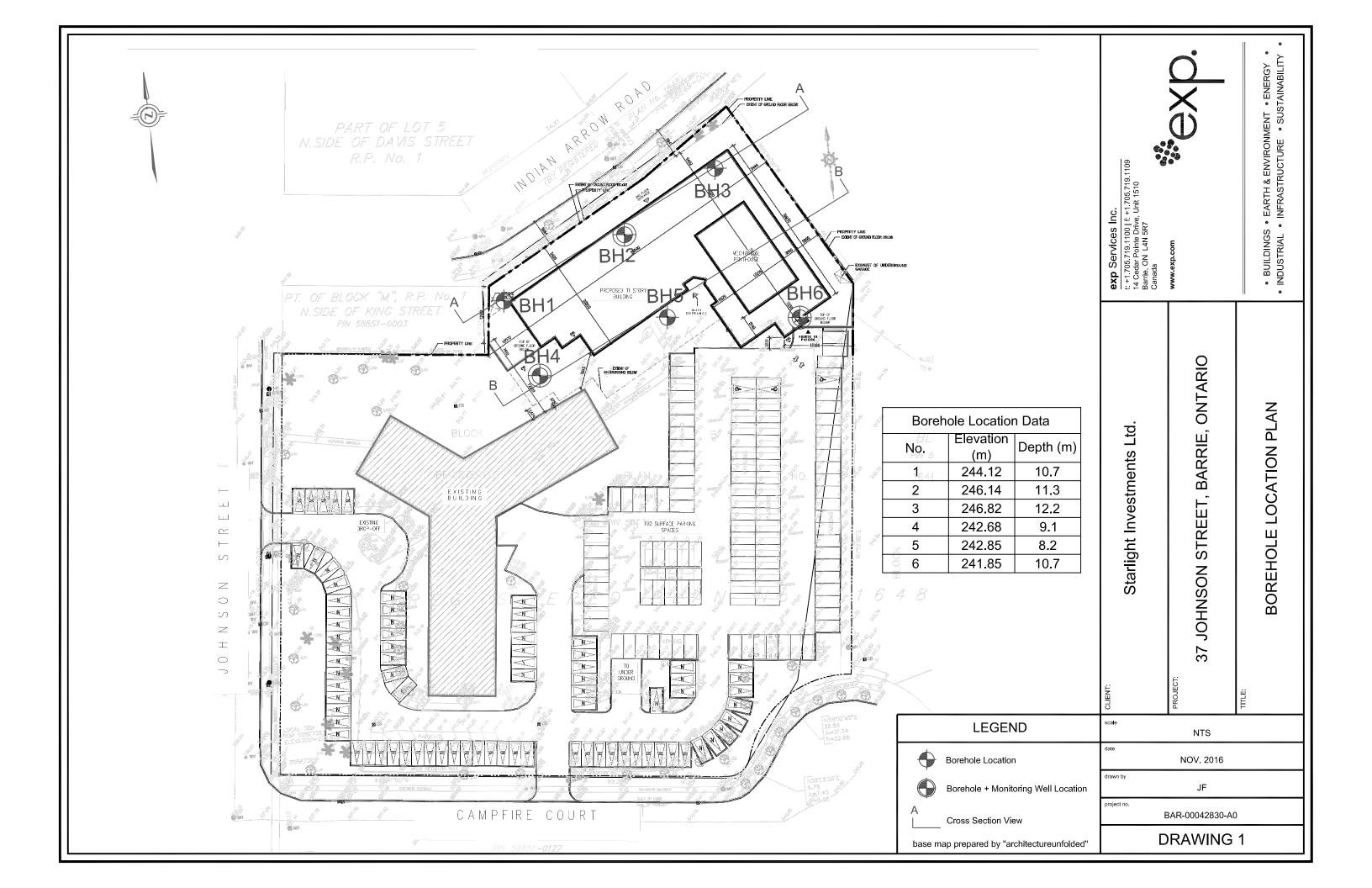
Leigh H. Knegt, P. Eng.

Manager, Geotechnical Services

Barrie Office

Alexander Winkelmann, P. Eng. Geotechnical Engineer

Barrie Office



Client: Starlight Investments Ltd.
Project Name: Geotechnical Investigation, 37 Johnson Street, Barrie, Ontario
Project Number: BAR-00042830-A0
Date: December 8, 2016

Appendix A – Borehole Location Plan

Client: Starlight Investments Ltd.
Project Name: Geotechnical Investigation, 37 Johnson Street, Barrie, Ontario
Project Number: BAR-00042830-A0
Date: December 8, 2016

Appendix B – Notes on Soil Description

Notes On Sample Descriptions

1. All sample descriptions included in this report follow the Unified Soil Classification System (USCS) as outlined by the Ministry of Transportation. Different classification systems may be used by others; one such system is the International Society for Soil Mechanics and Foundation Engineering (ISSMFE), as outlined in the Canadian Foundation Engineering Manual. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

UNIFIED SOIL CLASSIFICATION CLAY (PLASTIC) TO MEDIUM CRS FINE COARSE SILT (NONPLASTIC) SAND 0.002 0.006 0.02 0.06 0.6 2.0 6.0 200

EQUIVALENT GRAIN DIAMETER IN MILLIMETRES

ISSMFE SOIL CLASSIFICATION											
CLAY	SILT SAND					GRAVEL			COBBLES	BOULDERS	
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (75 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Notes On Sample Descriptions

4. The following table gives a description of the soil based on particle sizes. With the exception of those samples where grain size analyses have been performed, all samples are classified visually. The accuracy of visual examination is not sufficient to differentiate between this classification system or exact grain size.

Soil Classification		Terminology	Proportion
Clay and Silt	<0.075 mm		
Sand	0.075 to 4.75 mm	"trace" (e.g. Trace sand)	0% to 10%
Gravel	4.75 to 75 mm	"some" (e.g. Some sand)	10% to 20%
Cobbles	75 to 200 mm	with (e.g. with sand)	20% to 35%
Boulders	>200 mm	and (e.g. and sand)	35% to 50%

For a given material listed as an adjective (e.g. silty sand) means the predominant grain size is sand sized with 30 to 40% silt sized particles.

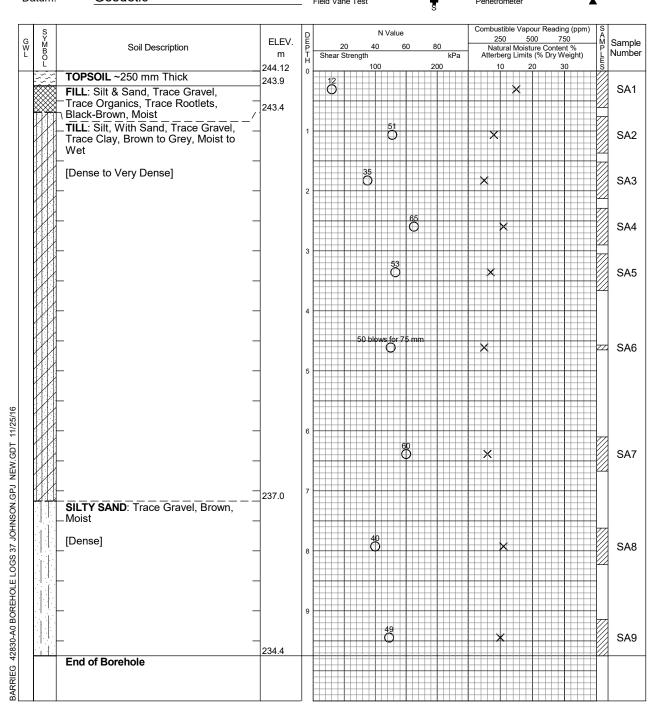
The compactness of Cohesionless soils and the consistency of the cohesive soils are defined by the following:

Cohesio	onless Soil	Cohesive Soil			
Compactness	Standard Penetration Resistance "N" value Blows/ 0.3 m	Consistency	Undrained Shear Strength (kPa)	'N' Values	
Very Loose	0 to 4	Very soft	<12	<2	
Loose	4 to 10	Soft	12 to 25	2 to 4	
Compact	10 to 30	Firm	25 to 50	4 to 8	
Dense	30 to 50	Stiff	50 to 100	8 to 15	
Very Dense	Over 50	Very Stiff	100 to 200	15 to 30	
		Hard	>200	>30	

5. ROCK CORING

Where rock drilling was carried out, the term RQD (Rock Quality Designation) is used. The RQD is an indirect measure of the number of fractures and soundless of the rock mass. It is obtained from the rock cores by summing the length of the core covered, counting only those pieces of sound core that are 100 mm or more length. The RQD value is expressed as a percentage and is the ratio of the summed core lengths to the total length of core run. The classification based on the RQD value is given below.

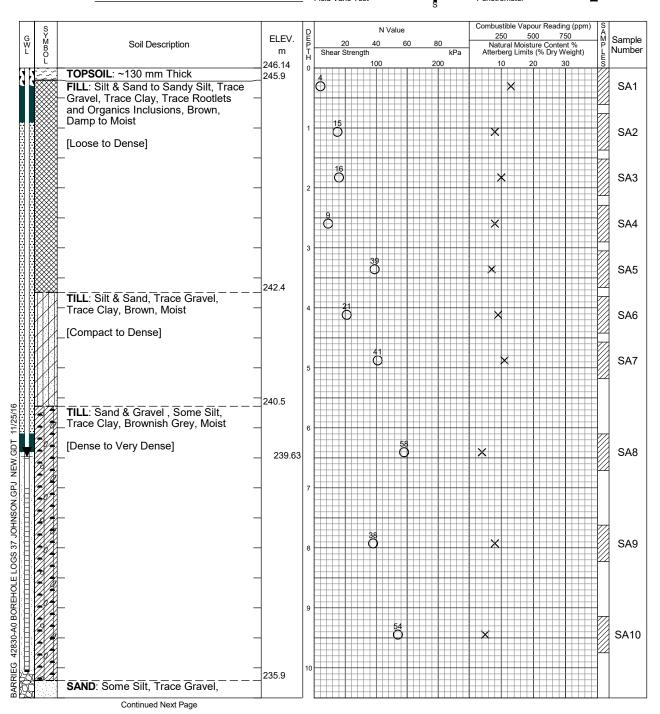
RQD Classification	RQD (%)
Very Poor Quality	<25
Poor Quality	25 to 50
Fair Quality	50 to 75
Good Quality	75 to 90
Excellent Quality	90 to 100



Client: Starlight Investments Ltd.
Project Name: Geotechnical Investigation, 37 Johnson Street, Barrie, Ontario
Project Number: BAR-00042830-A0
Date: December 8, 2016

Appendix C – Borehole Logs

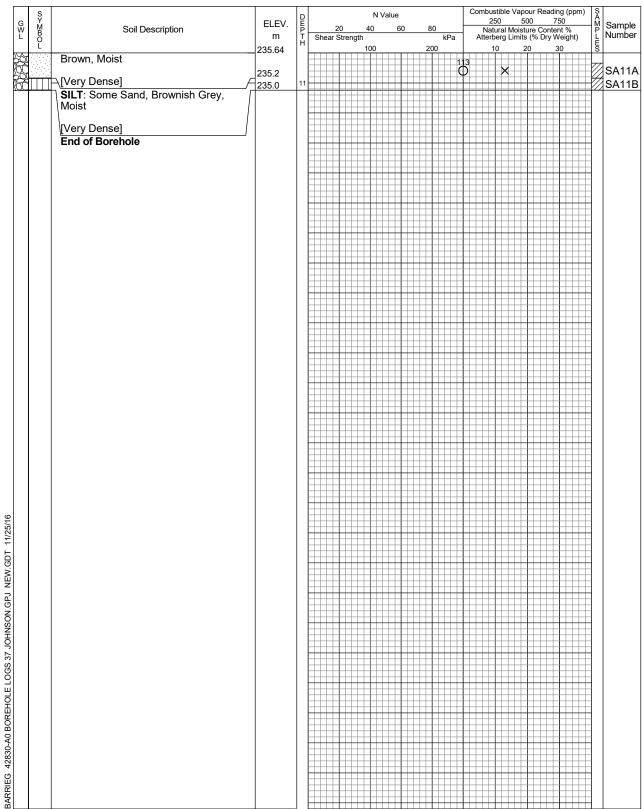
BAR-00042830-A0 Project No. Figure No. 37 Johnson Street - Condominium Development Sheet No. 1 of 1 Project: City/ Barrie, Ontario Municipality: Location: 37 Johnson Street Combustible Vapour Reading \boxtimes Auger Sample October 28, 2016 × Natural Moisture Date Drilled: SPT (N) Value \bigcirc -0 Plastic and Liquid Limit Drill Type: Solid Stem Augers Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer



Borehole data requires interpretation assistance from **Exp** before use by others.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	5.5	3.7

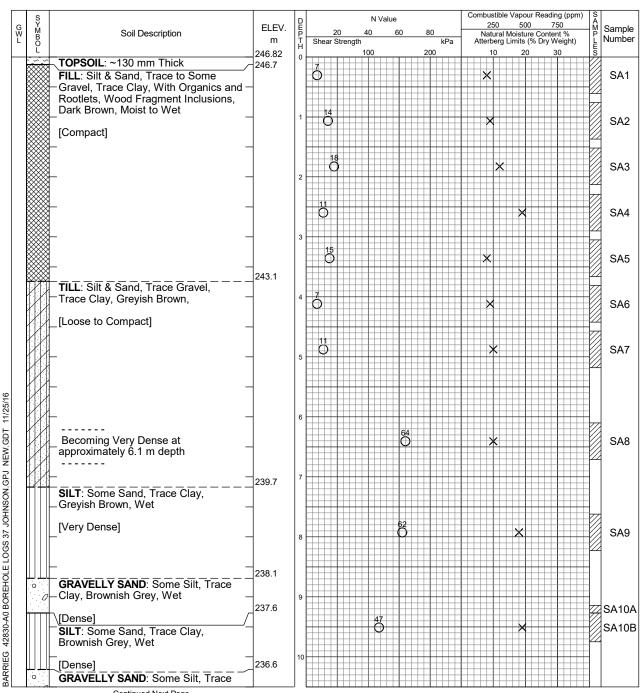
BAR-00042830-A0 Project No. Figure No. 37 Johnson Street - Condominium Development Sheet No. 1 of 2 Project: City/ Barrie, Ontario Municipality: Location: 37 Johnson Street Combustible Vapour Reading \boxtimes Auger Sample October 27, 2016 × Natural Moisture Date Drilled: SPT (N) Value \bigcirc -0 Plastic and Liquid Limit Drill Type: Hollow Stem Augers Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer



exp. Services Inc. 14 Cedar Pointe Drive Barrie, ON L4N 5R7 t: +1.705.734.6222 f: +1.705.734.6224 Borehole data requires interpretation assistance from **Exp** before use by others.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion November 21, 2016	6.4 6.51	

Project No. BAR-00042830-A0 Figure No. 3

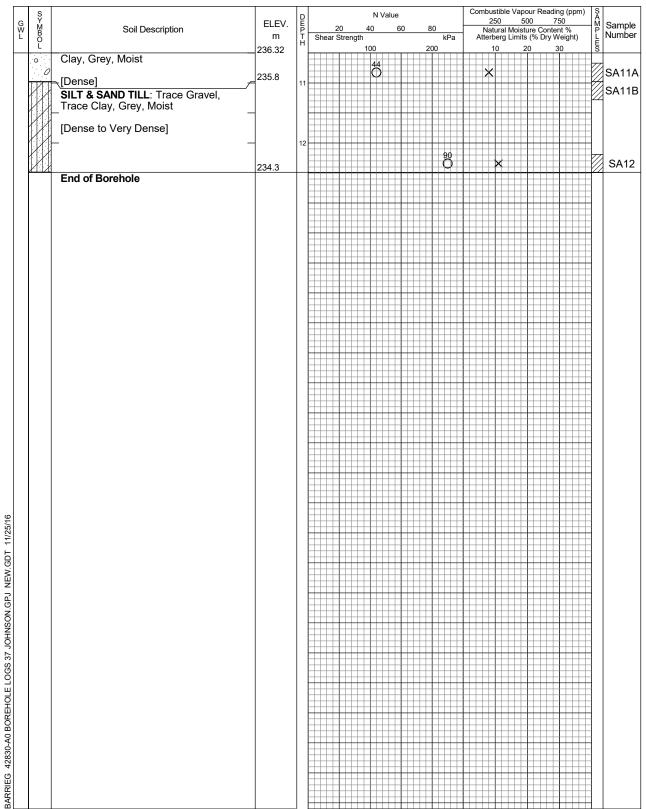

Project: 37 Johnson Street - Condominium Development Sheet No. 2 of 2

Borehole data requires interpretation assistance from **Exp** before use by others.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion November 21, 2016	6.4 6.51	•

BAR-00042830-A0 Project No. Figure No. Sheet No. 1 of 2 37 Johnson Street - Condominium Development Project: City/ Barrie, Ontario Municipality: Location: 37 Johnson Street Combustible Vapour Reading Auger Sample October 27, 2016 × Natural Moisture Date Drilled: SPT (N) Value -0 Plastic and Liquid Limit **Hollow Stem Augers** Dynamic Cone Test Drill Type: Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

Continued Next Page

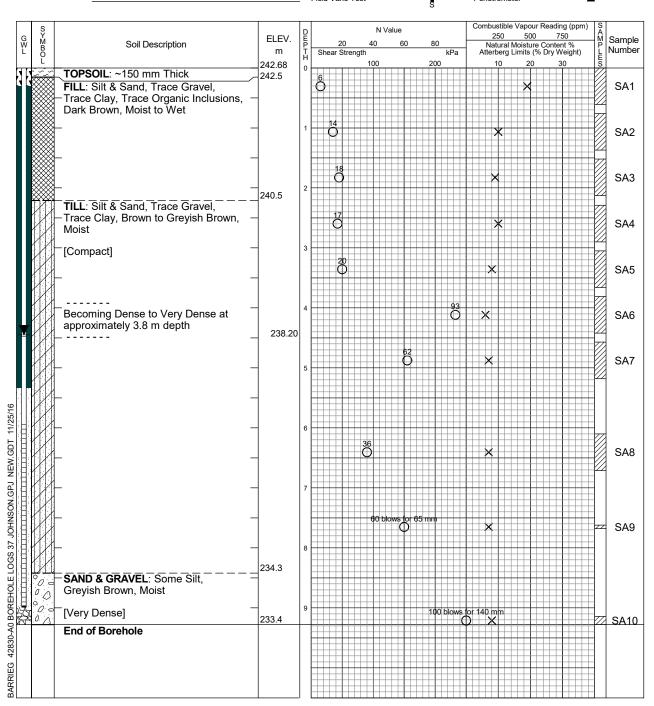


exp. Services Inc. 14 Cedar Pointe Drive Barrie, ON L4N 5R7 t: +1.705.734.6222 f: +1.705.734.6224 Borehole data requires interpretation assistance from **Exp** before use by others.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	3.0	7.6

Project No. <u>BAR-00042830-A</u>0 Figure No. <u>4</u>

Project: 37 Johnson Street - Condominium Development Sheet No. 2 of 2

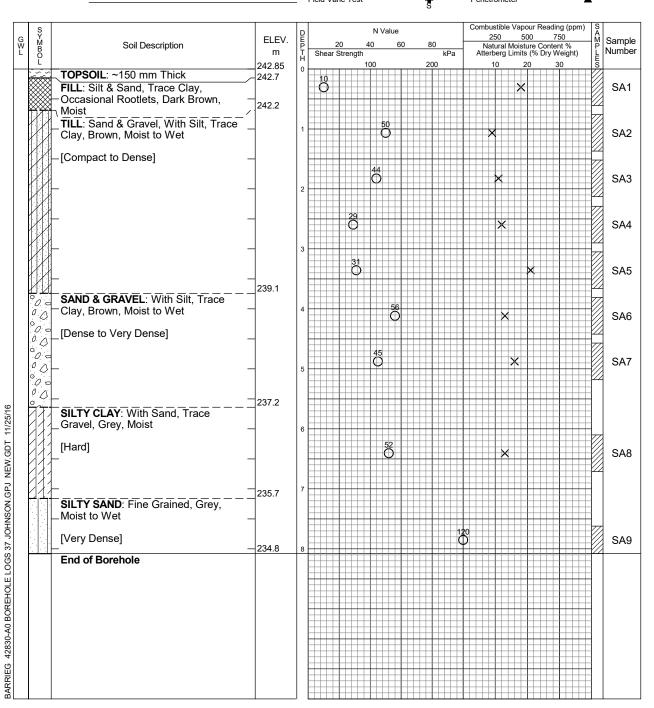


[®] ехр.	exp. Services Inc. 14 Cedar Pointe Drive Barrie, ON L4N 5R7 t: +1.705.734.6222 f: +1.705.734.6224
-------------------	---

Borehole data requires interpretation assistance from **Exp** before use by others.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	3.0	7.6

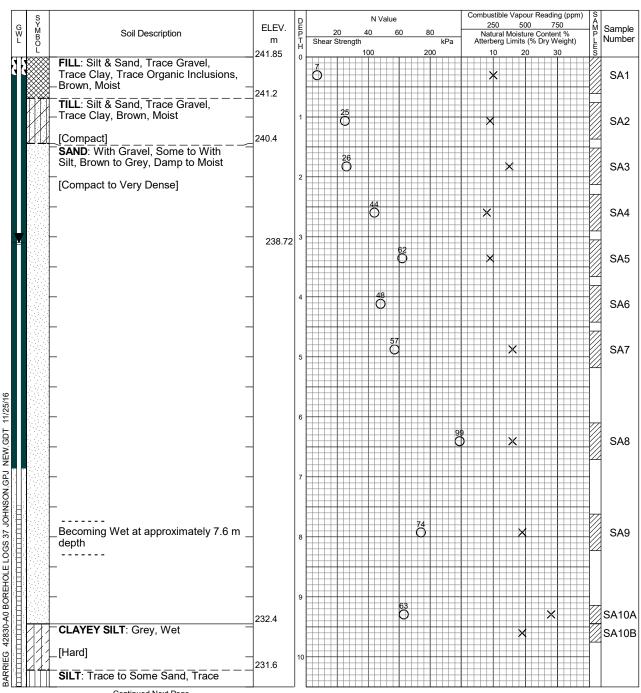
BAR-00042830-A0 Project No. Figure No. 37 Johnson Street - Condominium Development Sheet No. 1 of 1 Project: City/ Barrie, Ontario Municipality: Location: 37 Johnson Street Combustible Vapour Reading Auger Sample October 28, 2016 × Natural Moisture Date Drilled: SPT (N) Value -0 Plastic and Liquid Limit Drill Type: **Hollow Stem Augers** Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer



exp. Services Inc. 14 Cedar Pointe Drive Barrie, ON L4N 5R7 t: +1.705.734.6222 f: +1.705.734.6224 Borehole data requires interpretation assistance from **Exp** before use by others.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion November 21, 2016	4.6 4.48	, ,

BAR-00042830-A0 Project No. Figure No. 37 Johnson Street - Condominium Development Sheet No. 1 of 1 Project: City/ Barrie, Ontario Municipality: Location: 37 Johnson Street Combustible Vapour Reading Auger Sample October 26, 2016 × Natural Moisture Date Drilled: SPT (N) Value -0 Plastic and Liquid Limit Drill Type: Solid Stem Augers Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

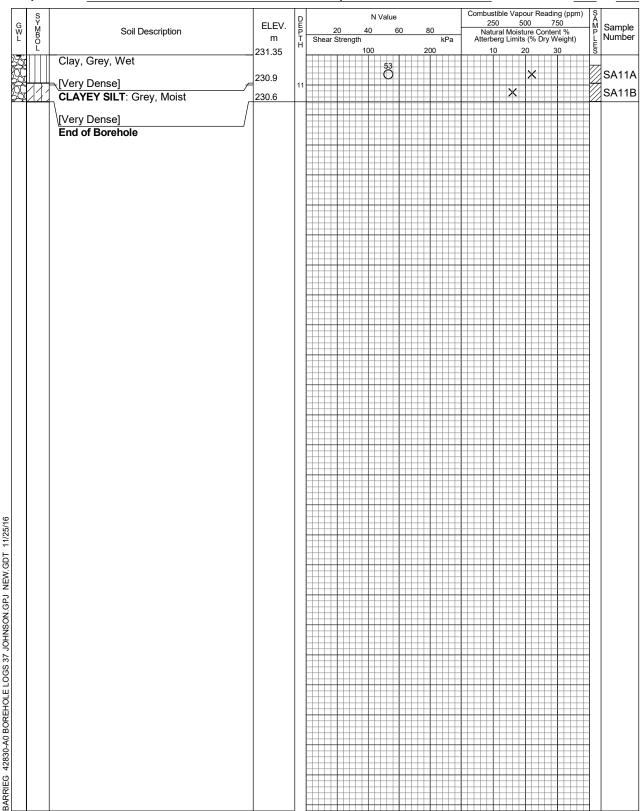


Borehole data requires interpretation assistance from **Exp** before use by others.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion	¥.1	4.3

BAR-00042830-A0 Figure No. Project No. 37 Johnson Street - Condominium Development Sheet No. 1 of 2 Project: City/ Barrie, Ontario Municipality: Location: 37 Johnson Street Combustible Vapour Reading Auger Sample October 26, 2016 × Natural Moisture Date Drilled: SPT (N) Value -0 Plastic and Liquid Limit Drill Type: Hollow Stem Augers Dynamic Cone Test Undrained Triaxial at \oplus Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

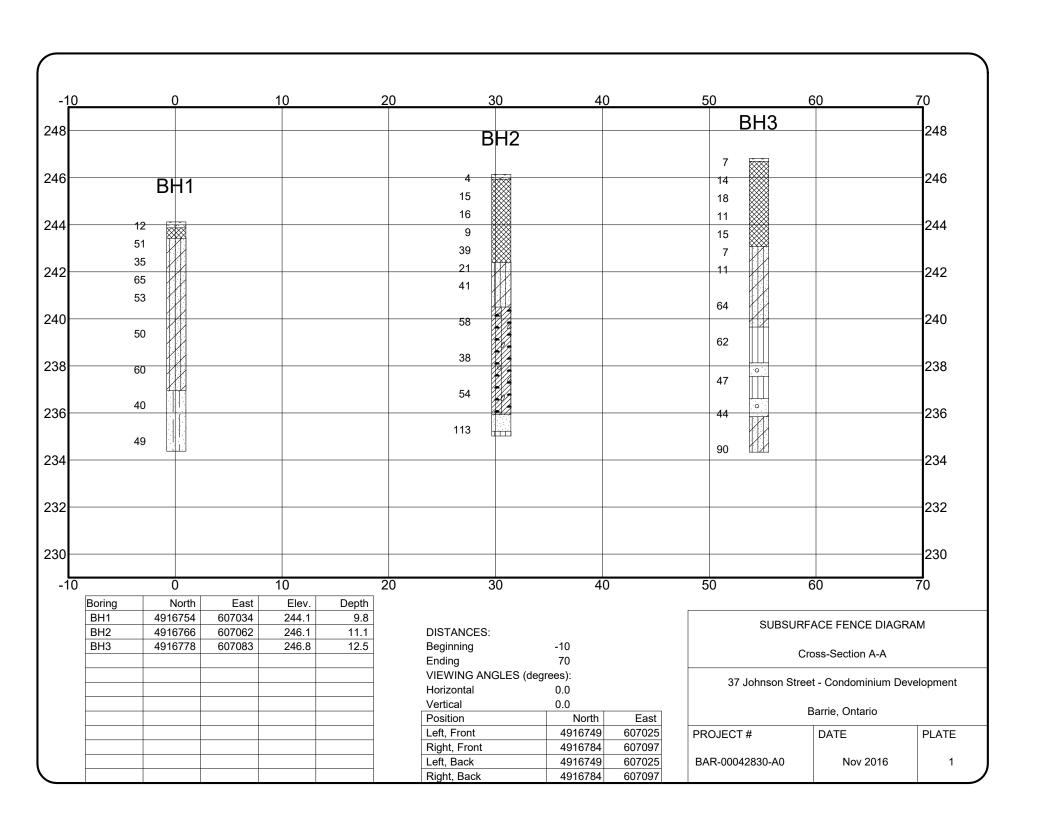
Continued Next Page

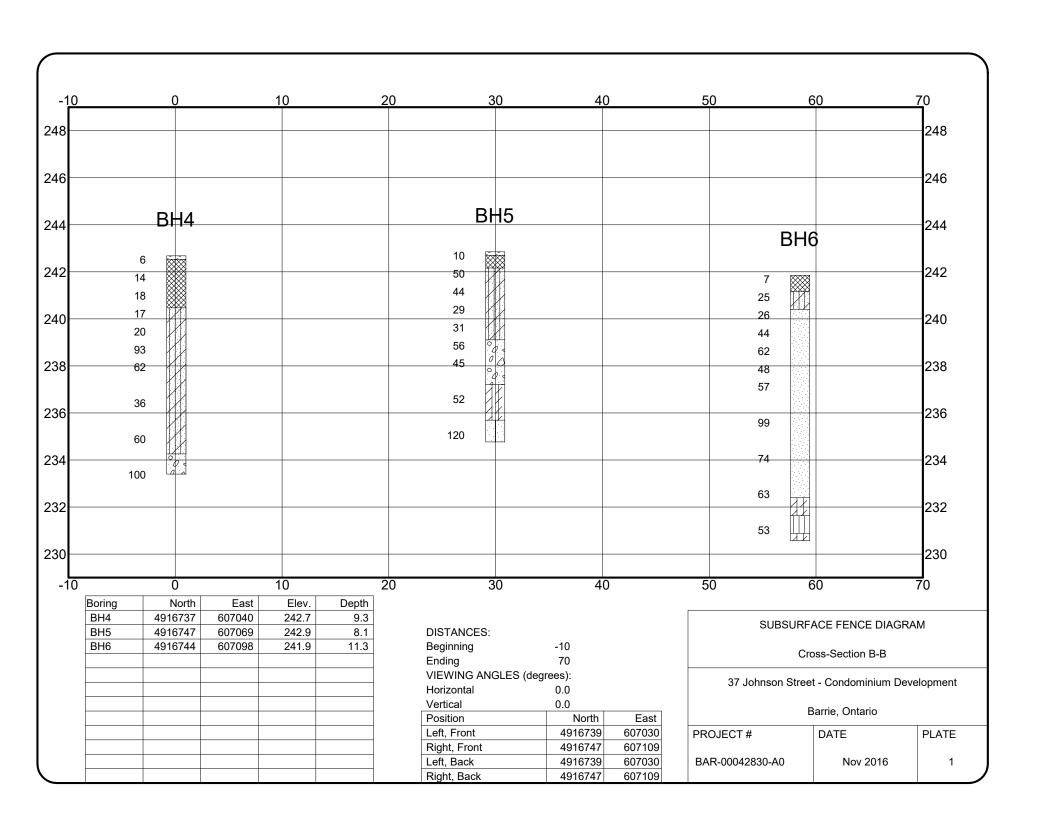

exp. Services Inc. 14 Cedar Pointe Drive Barrie, ON L4N 5R7 t: +1.705.734.6222 f: +1.705.734.6224

Borehole data requires interpretation assistance from **Exp** before use by others.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion November 21, 2016	9.1 3.13	, ,

Project No. <u>BAR-00042830-A</u>0 Figure No. <u>7</u>


Project: 37 Johnson Street - Condominium Development Sheet No. 2 of 2



Borehole data requires interpretation assistance from **Exp** before use by others.

Time	Water Level (m)	Depth to Cave (m)
Upon Completion November 21, 2016	9.1 3.13	

Client: Starlight Investments Ltd.
Project Name: Geotechnical Investigation, 37 Johnson Street, Barrie, Ontario
Project Number: BAR-00042830-A0
Date: December 8, 2016

Appendix D – Lab Testing

t: 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

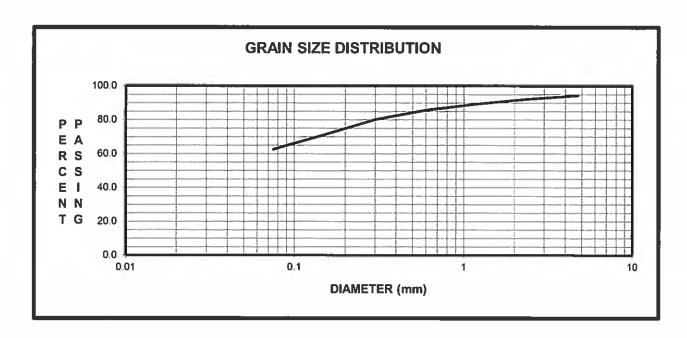
Project Name: Project No.:

37 Johnson St BAR-0042830-A0

Material:

Native Till Sample Location: BH1 SA3

Client:


Starlight Investments

Nov 22 2016 Dated Tested: Date Sampled: Oct 26 2016

Supplier: N/A

SAMPLE DATA

Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150		· · · · · · · · · · · · · · · · · · ·	
75			
53			
37.5			
26.5			
19			
13.2	1.2	98.8	
9.5	3.2	96.8	
4.75	5.6	94.4	
2.36	7.8	92.2	
1.18	10.6	89.4	
0.6	14.3	85.7	
0.3	19.8	80.2	
0.15	28.8	71.2	
0.075	37.4	62.6	

Distribution:	Prepared By:	Checked By:
Starlight Investments		
	Levi Pottage	Leigh Knegt P. Eng.

Report No.		

t; 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

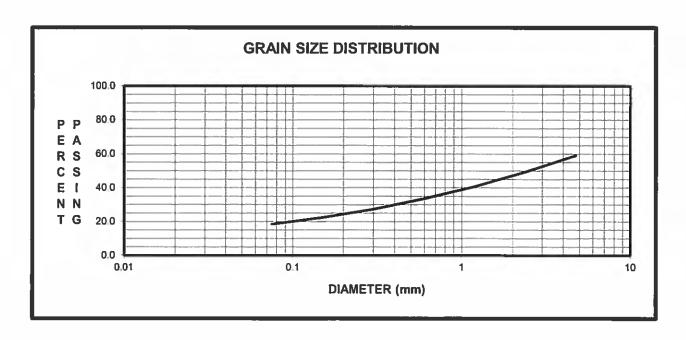
Project Name: Project No.:

37 Johnson St BAR-0042830-A0

Material: Sample Location: BH2 SA9

Native Till

Client:


Stalight Investments

Dated Tested: Nov 22 2016 Date Sampled: Oct 26 2016

Supplier: N/A

SAMPLE DATA

Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150			-
75			
53			
37.5		·	·
26.5	5.6	94.4	
19	18.2	81.8	
13.2	25.7	74.3	
9.5	31.9	68.1	
4.75	40.9	59.1	
2.36	50.7	49.3	
1.18	59.5	40.5	
0.6	66.4	33.6	-
0.3	72.7	27.3	İ
0.15	77.6	22.4	
0.075	81.5	18.5	

Distribution:	Prepared By:	Checked By:
Stalight Investments		·
	Levi Pottage	Leigh Knegt P. Eng.

Report No.	

t: 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

Project Name: Project No.:

37 Johnson St BAR-00042830-A0

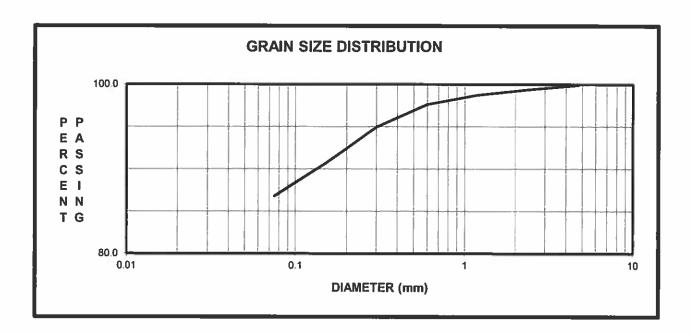
Material:

Silt

Sample Location: BH3 SA9

Client:

Starlight Investments


Dated Tested: Nov 22 2016 Date Sampled:

Oct 26 2016

Supplier: N/A

SAMPLE DATA

Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150			
75		<u> </u>	
53			
37.5		- · · · · · · · · · · · · · · · · · · ·	
26.5			
19			
13.2			
9.5	1.2	98.8	
4.75	0.1	99.9	
2.36	0.6	99.4	
1.18	1.3	98.7	
0.6	2.4	97.6	
0.3	5.1	94.9	
0.15	9.3	90.7	
0.075	13.2	86.8	

Distribution:	Prepared By:	Checked By:	Т
Starlight Investments		·	
	Alex Griffin	Leigh Knegt P. Eng.	

Sample Location: BH4 SA10

t: 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

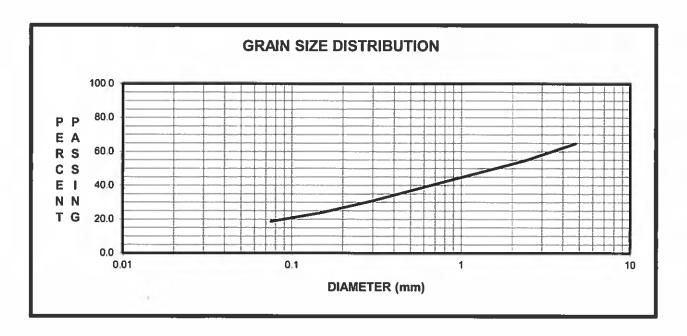
Project Name: Project No.:

Material:

37 Johnson St. BAR-00042830-A0

Gravelly Sand

Client:


Starlight Investments

Dated Tested: Nov 22 2016 Date Sampled: Oct 25 2016

Supplier: N/A

SAMPLE DATA

Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150			
75			
53			
37.5			
26.5			
19	9.3	90.7	
13.2	16.0	84.0	
9.5	22.2	77.8	
4.75	35.3	64.7	
2.36	45.4	54.6	
1.18	53.4	46.6	
0.6	61.0	39.0	
0.3	69.1	30.9	
0.15	76.1	23.9	
0.075	81.3	18.7	

Distribution:	Prepared By:	Checked By:
Starlight Investments		
	Alex Griffin	Leigh Knegt P. Eng.

t: 1.705.719,1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

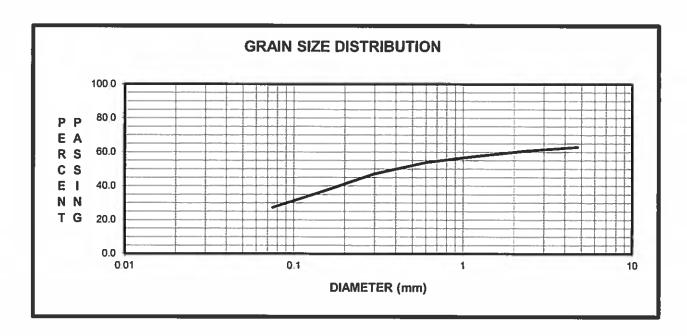
Project Name: 37 Johnson St Project No.: BAR-00042830

Material:

BAR-00042830-A0 Silt and Sand Till

Sample Location: BH5 SA3

Client: Starligh


Starlight Investments Nov 22 2016

Dated Tested: Nov 22 2016 Date Sampled: Oct 26 2016

Supplier: N/A

SAMPLE DATA

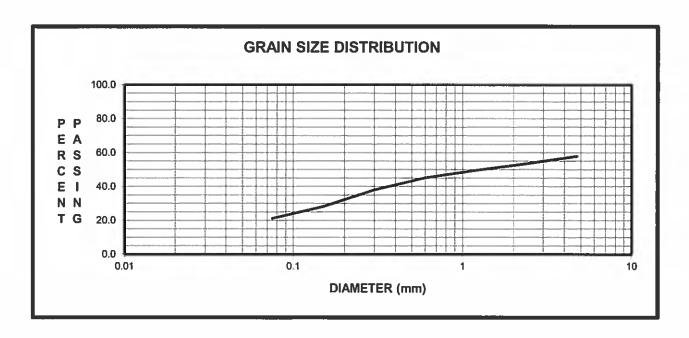
Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150			
75			
53			
37.5			
26.5	11.8	88.2	
19	27.7	72.3	
13.2	30.7	69.3	
9.5	34.0	66.0	
4.75	37.1	62.9	
2.36	39.3	60.7	
1.18	42.5	57.5	
0.6	46.2	53.8	
0.3	52.8	47.2	
0.15	63.0	37.0	
0.075	72.7	27.3	

Distribution:	Prepared By:	Checked By:
Starlight Investments		
	Jodi Fountain	Leigh Knegt P. Eng.

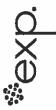
t: 1.705.719,1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

Project Name: Project No.: 37 Johnson St BAR-00042830-A0

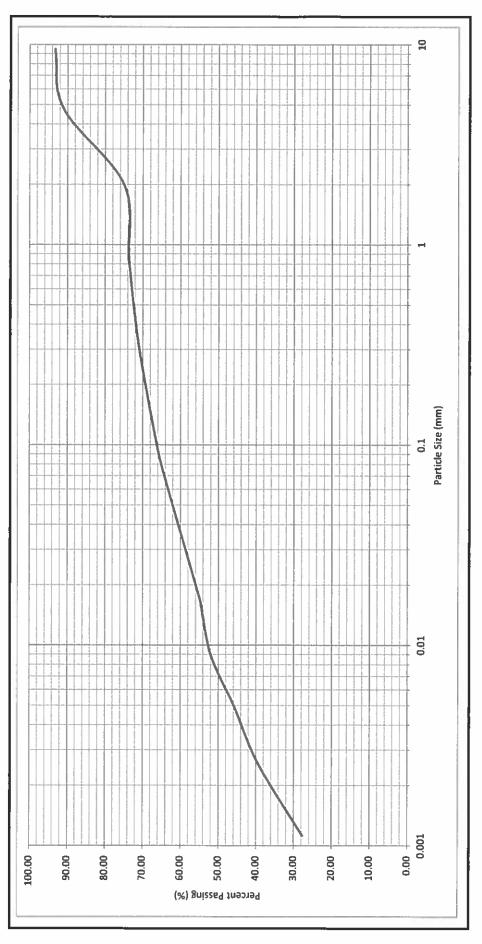

Material: Sand Sample Location: BH5 SA7 Client: Starlight Investments

Dated Tested: Nov 22 2016 Date Sampled: Oct 26 2016


Supplier: N/A

SAMPLE DATA

Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150			
75			
53			
37.5			
26.5	17.9	82.1	
19	24.8	75.2	
13.2	32.3	67.7	
9.5	37.6	62.4	
4.75	42.1	57.9	
2.36	46.6	53.4	
1.18	50.5	49.5	
0.6	54.9	45.1	
0.3	62.0	38.0	
0.15	71.8	28.2	
0.075	78.8	21.2	



Distribution: Starlight Investments	Prepared By:	Checked By:		
	Jodi Fountain	Leigh Knegt P. Eng.		

exp Services Inc.
14 Cedar Pointe Orive, Unit 1510
Barrie, Ontario, L4N SR7
tel. 705.719.1100 fax 705.719.1109
www.exp.com

GRAIN SIZE ANALYSIS

BHS SA8	BAR-00042830-A0		
Sample Location:	Project Number:		
37 Johnson St.	Oct. 26, 2016	Starlight Investments	
Project Name:	Sample Date:	Client:	

t: 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr., Unit 1510 Barrie, Ontario L4N 5R7 www.exp.com

Grain Size Analysis Report

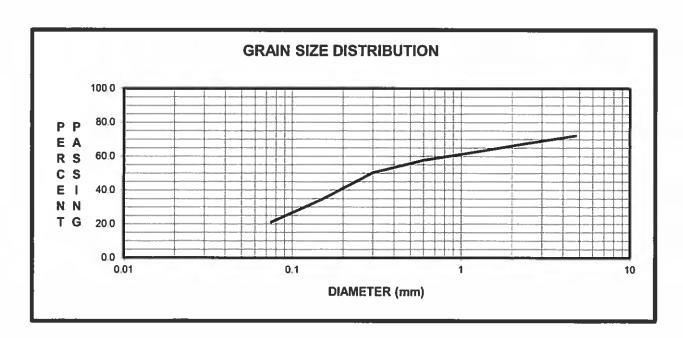
Project Name: Project No.:

37 Johnson St BAR-00042830-A0

Material: Sample Location: BH6 SA4

Silty Sand

Cilent:


Starlight Investments

Dated Tested: Nov 22 2016 Oct 26 2016 Date Sampled:

Supplier: N/A

SAMPLE DATA

Sieve Diameter (mm)	Percent Retained (%)	Percent Passing (%)	Spec (%)
150		_	
75			
53			
37.5			
26.5	12.0	88.0	
19	15.4	84.6	
13.2	20.1	79.9	
9.5	21.6	78.4	
4.75	27.8	72.2	
2.36	32.6	67.4	
1.18	37.6	62.4	
0.6	42.3	57.7	
0.3	49.6	50.4	
0.15	65.4	34.6	
0.075	78.9	21.1	

Distribution:	Prepared By:	Checked By:
Starlight Investments	, ,	
	Kole Petronis	Leigh Knegt P. Eng.

t: 1.705.719.1100 f: 1.705.719.1109 14 Cedar Pointe Dr. Barrie, Ontario L4N 9Y3 www.exp.com

Standard Proctor Test Report

Project Name: Project No.:

37 Johnson St BAR-00042830-A0

Material:

Lab No.:

Upper Till Mix

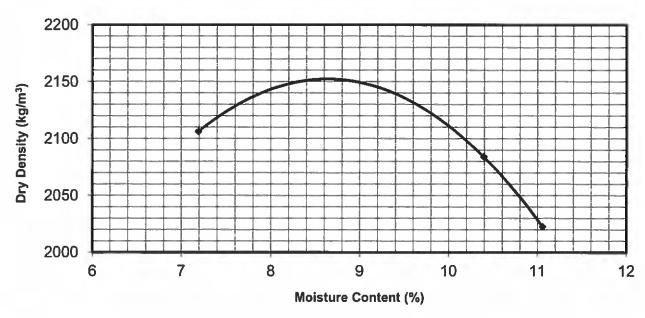
N/A

Client:

Dated Tested: Date Sampled:

Sample Location:

Starlight Investments October 22, 2016 Oct. 26-28 2016


All Boreholes

Supplier: N/A

LAB DATA

	Test Points						
Density	1	2	3	4	5	6	7
Mass of Soil + Mould (g)	11480.0	11600.0	11490.0				
Mass of Mould (g)	6640.0	6640.0	6640.0				
Mass of Soil (g)	4840.0	4960.0	4850.0				
Volume of Mould (m ³)	0.002133	0.002133	0.002133				
Bulk Density (kg/m³)	2269	2326	2274				
Dry Density (kg/m ³)	2106	2084	2023				
Moisture							
Mass of Tin (g)	128.2	129.7	131.3				
Mass of Tin + Wet Soil (g)	542.4	675.7	687.8				
Mass of Tin + Dry Soil (g)	514.6	624.3	632.4			Ĭ	
Mass of Soil (g)	386.4	494.6	501.1				
Moisture (g)	27.8	51.4	55.4				
Moisture Content (%)	7.2	10.4	11.1				
Maximum Dry Density =	2152	kg/m³	Optimur	n Moisture	Content =	8.6	%

Moisture/Density Relationship

Distribution: Starlight Investments	Prepared By:	Checked By:
	Jodi Fountain	Leigh Knegt, P. Eng.

Report No	•
-----------	---

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP. SERVICES INC. 14 CEDAR POINTE DRIVE UNIT 1510, BARRIE, ON L4N5R7 (705) 734-6222

ATTENTION TO: Rebecca Moser

PROJECT: BAR-00042830-A0

AGAT WORK ORDER: 16T156640

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

DATE REPORTED: Nov 10, 2016

PAGES (INCLUDING COVER): 5

VERSION*: 1

MOTES		 	
*NOTES			

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)

Environmental Services Association of Alberta (ESAA)

CLIENT NAME: EXP. SERVICES INC.

SAMPLING SITE:

Certificate of Analysis

5835 COOPERS AVENUE
MISSISSAUGA, ONTARIO
CANADA L4Z 1Y2
TEL (905)712-5100
FAX (905)712-5122
http://www.agatlabs.com

AGAT WORK ORDER: 16T156640

ATTENTION TO: Rebecca Moser

SAMPLED BY:CF

PROJECT: BAR-00042830-A0

				0	Corrosivity Package	ackage	
DATE RECEIVED: 2016-11-04							DATE REPORTED: 2016-11-10
		SAMPLE DESCRIPTION:	CRIPTION:	BH2/53	BH3/S4	BH4/S3	
		SAM	SAMPLE TYPE:	Soll	Soil	Soil	
		DATE	DATE SAMPLED:	2016-11-01	2016-11-01	2016-11-01	
Parameter	Unit	G/S	RDL	7986150	7986151	7986152	
Sulphide	%		0.05	<0.05	<0.05	<0.05	
Chloride (2:1)	6/6rl		7	7	4	6	
Sulphate (2:1)	6/6rt		2	139	23	18	
pH (2:1)	pH Units	10	Y V	8.14	8.08	8.01	
Electrical Conductivity (2:1)	mS/cm		0.005	0.258	0.159	0.166	
Resistivity (2:1)	ohm.cm	_	-	3880	6290	6020	
Redox Potential (2:1)	γ		2	269	264	266	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard
7986150-7986152 EC/Resisivity, pH, Chloride, Sulphate and Redox Potential were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil).

Certified By:

Results relate only to the items tested and to all the items tested

Amanjot Bhela

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: EXP. SERVICES INC.

AGAT WORK ORDER: 16T156640 PROJECT: BAR-00042830-A0 **ATTENTION TO: Rebecca Moser**

SAMPLING SITE:

SAMPLED BY:CF

OAIIII EIITO OTTE.							•	SWINE	LED D	T.CF					
		·		Soi	l Ana	alysis	5								
RPT Date: Nov 10, 2016			0	UPLICAT	E		REFEREN	CE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup#1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 4 4-	ptable nits	Recovery	1 11-	ptable mits
		10	·	_ `			Value	Lower	Upper			Upper			Upper
Corrosivity Package		_					_								
Sulphide	7986152	7986152	<0.05	<0.05	NA	< 0.05	98%	80%	120%	NA			NA		
Chloride (2:1)	7986145		281	284	1.1%	< 2	102%	80%	120%	104%	80%	120%	104%	70%	130%
Sulphate (2:1)	7986145		129	130	0.8%	< 2	91%	80%	120%	100%	80%	120%	101%	70%	130%
pH (2:1)	7986145		9.39	9.35	0.4%	NA	100%	90%	110%	NA			NA		
Electrical Conductivity (2:1)	7989762		0.111	0.108	2.7%	< 0.005	100%	90%	110%	NA			NA		
Redox Potential (2:1)	7986145		233	233	0.0%	< 5	101%	70%	130%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L42 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: EXP. SERVICES INC.

AGAT WORK ORDER: 16T156640
ATTENTION TO: Rebecca Moser

PROJECT: BAR-00042830-A0 SAMPLING SITE:

SAMPLED BY:CF

		OVINI EED DI'O	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Sulphide	MIN-200-12025	ASTM E1915-09	GRAVIMETRIC
Chloride (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH
pH (2:1)	INOR 93-6031	MSA part 3 & SM 4500-H+ B	PH METER
Electrical Conductivity (2:1)	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Resistivity (2:1)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION
Redox Potential (2:1)		McKeague 4.12 & SM 2510 B	REDOX POTENTIAL ELECTRODE

Laboratories

Mississauga, Ontario L4Z 1Y2 Ph: 905,712,5100 Fax: 905,712,5122 webearth, agatlabs.com 5835 Coopers Avenue Small rea

E No Regulatory Requiremen

Regulation 558 CCME

Scwer Use

Regulation 153/04

Sanitary Storm

Tebho textes one ☐ Agriculture

If this is a brinking Water sample, please use Ditaking Water Chain of Custedy Form (potable water intended for human consumption

Regulatory Requirements:

2 H 9079

Report Information: EXP

Company:

Contact: Address:

Chain of Custody Record

Colar Point

ENECC A

	Laboratory Use Only	Only		
	Work Order #: 167156640	150	0000	
	Cooler Quantity: Artival Temperatures:	6.	8-148128	100
#	Custody Seal Intect: Notes:		0NO	YAND
	Turnaround Time (TAT) Regulred:	(TAT) Re	quired:	

Required:	7 Business Days
Time (TAT)	2
urnaround	egular TAT

Rush TAT man to

Prov. Water Quality Objectives (PWQO)

Other

Indicate One

Region.

Soil Texture (check the)

rebecca, moser@ecp.com odi. tountain@expican

_ Fax: -

0211-611-59

Reports to be sent to:

1. Email: 2. Email:

Dar Jeston

Coarse

Fine

3 Business Days		2 Business Days		□ Next B
OR Date Requi	B) pa	OR Data Required (Rush Surcharges May Apply):	Мау	Apply
Ploasa provi	de pr	Please provide prior netification for rush TAT	or ru	sh TAT

Next Business

*TAT is exclusive of weekends and statutory holidays	For 'Same Day' analysis, please contact your AGAT CPM

	0
	-
	460
	2
	er.
•	=
	=
	- 5
	- 5
	-0.0
	U
	- C
	440
	5
	22
	- e
	豐
	9
	2
	Ď.
	-
	- 65
	5
	-
	- 2
	- 2
i	-
	66
,	
	-
	X
	丰
	10
	לט
	5
	ı.
	_
_	_

□ Yes

E So

□ Yes

BAR-00042830-A0

Site Location: Sampled By:

Project Information:

Cortificate of Analysis Report Guideline on

Record of Site Condition? la this submission for a

AGAT Quote #: Please note: If quotation numb	Pilose note II quotation number is not provided, titlent and to billed full price for enarysa.	e billed full price f	w energyse.	S	E	כיעו	(sət	(54)				MARI		304[]	ו רוורני	łivid		
Involce Information: Company: Contact: Address: Email:		Bill To Same: Yes E	Les Ed No		GW Ground Water O Oil S Soil S Soil SW Surface Water	Teld Fiftered - Metalls, Hg.	nd hnorganica exel. Hydrid	EC THOC THE	als Scan on/Custom Metals	SE TRE THE TRANSONS TO SEE THAT	4 at 1 enouses		aroloonA □ latoT	Pesticides	NEI DYOCA DABNS DB(R)	कृति माण्यका हाटम (अधीयदे,		
Sample Identification	Date	Time	N of Combiners	Sample	Comments/ Special Instructions	4/4	staM IIA 🗆			1 'ON [CCME F	anga ahaq	PCBs: 🖸		Sewer U	10) Hq)		
BH2/53	Oct . 37 1	2:150H	-	2		R						1	9			X		
BH3/54	1	9:45 PM	-	2						0E3			0			×		
BH4/53		9:30 AM	+	15		8	n		61/2			20 2				×		T
									(N)					+	+			T
								E.				10			-	UI.	I	
							1	Į.	A.				16					
						79			1					1	E			T
									N		1	+			+			
							0					H			\vdash			
Ampara included by the a father pour harm of the company of the company of the company of the company of the father of the company of the com		2	N 20 10 200 4	4:0	Samper Newworldy (Print Nation and Sapir)	B.	2	737	Date Date	0		State Company)		U.	Page of		

Samples Received by (PHM Name and Supit

<u>5</u>

Samples Reknquished By (Find Name and Sign):

Client: Starlight Investments Ltd.
Project Name: Geotechnical Investigation, 37 Johnson Street, Barrie, Ontario
Project Number: BAR-00042830-A0
Date: December 8, 2016

Appendix E – Site Photographs

Photograph No. 1 – Borehole BH6 Location, Northeast View

Photograph No. 2 – Borehole BH5 Location, Northwest View

Photograph No. 3 – Borehole BH4 on the left and Borehole BH1 on the right, West View

Photograph No. 4 – Borehole BH2 Location, West View

Photograph No. 5 – Borehole BH3 Location, Northeast View

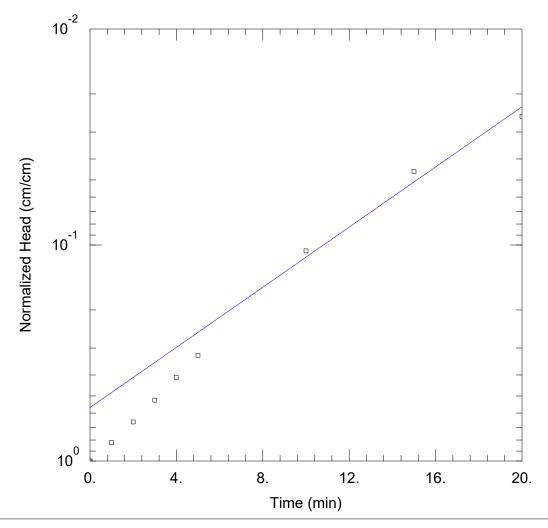
Photograph No. 6 – Monitoring well at BH4, Southwest View

Photograph No. 7 – Drilling at Borehole BH5 Location, West View

Photograph No. 8 – Monitoring well at Borehole BH2, West View

Appendix B

Well Records (MECP)


MECP - Well Records Database Search Results

FID	BOREHOLEID	WELL_ID COMPLETED	WELL_USE	DEPTH	DP_BEDROCK	STATIC_LEV TOWNSHIP_CON_LOT	UTM	DATE_CNTR	CASING_DIA PUMP_TEST
(10393439	5715731 11/02/78 0:00	MN	122.8000031	121.3000031	14.6000004 BARRIE CITY	17 607264 4916824 W	1978/11 2801	2 48/56/35/4:0
1	10381380	5703488 4/05/67 0:00	DO	21.2999992	0	12.1999998 ORO TOWNSHIP PR E 01 001	17 607555 4916648 W	1967/04 1510	4 40/50/8/2:0
2	10378162	5700269 9/25/63 0:00	NU	80.8000031	0	-1.2 BARRIE CITY	17 607459 4916405 W	1963/09 2801	2 -4/5/50/7:0
3	1005162848	7229290 9/19/14 0:00	MO	0	0	O BARRIE CITY	17 607034 4916663 W	2014/09 7241	
4	10378161	5700268 9/13/63 0:00	NU	100.5999985	0	8.5 BARRIE CITY	17 607454 4916539 W	1963/09 2801	2 28///:
5	1005162784	7229289 9/19/14 0:00	MO	0	0	O BARRIE CITY	17 607036 4916702 W	2014/09 7241	
6	1004284760	7201209 3/19/13 0:00		0	0	O BARRIE CITY (VESPRA)	17 606893 4916748 W	2013/03 6607	
7	10384297	5706440 6/15/69 0:00	DO	42.7000008	0	28.7000008 ORO TOWNSHIP PR E 01 001	17 607574 4916814 W	1969/06 4816	6 94/126/6/24:0
8	10535524	5737318 2008-09-02 0:0	0 NU	0	0	0 VESPRA TOWNSHIP PR W 01 001	17 607104 4916772 W	2002/08 2801	
9	10378156	5700263 11/05/62 0:00	NU	100.3000031	0	O BARRIE CITY	17 606835 4916453 W	1962/11 2801	7
10	11761422	7038879 9/19/06 0:00		6.8000002	0	O BARRIE CITY	17 606866 4916905 W	2006/09 7320	2
11	10381377	5703485 5/11/65 0:00	DO	14.6000004	0	11.6000004 ORO TOWNSHIP PR E 01 001	17 607560 4916748 W	1965/05 4607	30 38//2/:
12	10393440	5715732 11/17/78 0:00	MN	81.0999985	0	O BARRIE CITY	17 607264 4916874 W	1978/11 2801	
13	10380946	5703053 11/18/65 0:00	DO	24.7000008	0	10.6999998 ORO TOWNSHIP PR E 01 001	17 607546 4916614 W	1965/11 3203	4 35/72/2/3:0
14	10378157	5700264 11/15/62 0:00	NU	86.9000015	0	-3 BARRIE CITY	17 606587 4916476 W	1962/11 2801	-10/-3/50/3:0
15	10381366	5703474 6/05/59 0:00	DO	44.2000008	0	32 ORO TOWNSHIP PR E 01 001	17 607558 4916618 W	1959/06 2514	6 105/140/10/3:0
16	10541346	5737621 2/27/03 0:00	DO	28.2999992	0	7.3000002 ORO TOWNSHIP CON 01 001	17 607147 4916499 W	2003/02 2514	6 24/68/12/2:0
17	10392586	5714856 11/15/77 0:00		110.9000015	91.6999969	O BARRIE CITY	17 607414 4916924 W	1977/11 2801	
18	10387372	5709552 12/05/72 0:00	DO	42.7000008	0	27.3999996 ORO TOWNSHIP PR E 01 001	17 607584 4916824 W	1972/12 3203	5 90/115/7/1:30
19	1002518486	7125283 6/24/09 0:00	DO	29.2999992	0	1.4 BARRIE CITY (VESPRA)	17 607388 4916378 W	2009/06 2514	6.25 4/64/10/1:0
20	23049623	7049623 8/28/07 0:00	MO	6.6999998	0	O BARRIE CITY	17 606866 4916905 W	2007/08 7320	2
21	10387746	5709926 4/26/73 0:00	DO	43.2999992	0	34.0999985 ORO TOWNSHIP PR E 01 001	17 607564 4916614 W	1973/04 3203	5 112/122/7/1:30
22	10541267	5737542 10/25/02 0:00	DO	28.7000008	0	1.5 BARRIE CITY	17 607318 4916389 W	2002/10 2513	6 5/53/30/1:0

Appendix C

Preliminary Hydrogeological Analyses (Beacon)

WELL TEST ANALYSIS

Data Set: D:\Beacon\(219541.7) 37 Johnson\AqtwBH2.aqt

Date: 01/28/20 Time: <u>16:55:39</u>

PROJECT INFORMATION

Company: Beacon Environmental

Project: 219541.7

Location: 37 Johnson St., Barrie, Ontari

Test Well: BH2

Test Date: December 10, 2019

AQUIFER DATA

Saturated Thickness: 1000. cm Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH2)

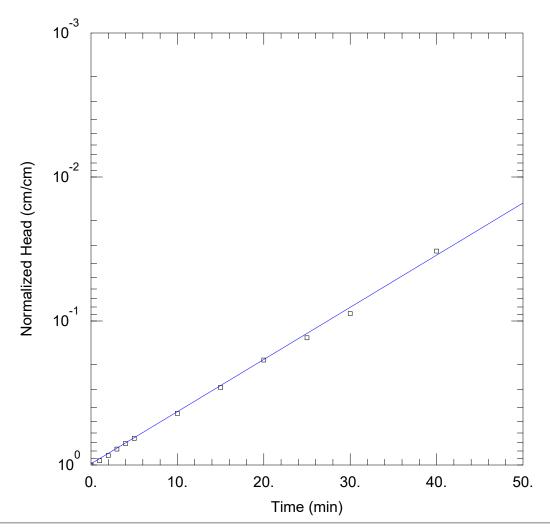
Initial Displacement: 98.5 cm

Total Well Penetration Depth: 1014. cm

Casing Radius: 50. cm

Static Water Column Height: 716.5 cm

Screen Length: 300. cm Well Radius: 100. cm


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.01611 cm/sec

y0 = 55.73 cm

WELL TEST ANALYSIS

Data Set: D:\Beacon\(219541.7) 37 Johnson\AqtwBH4.aqt

Date: <u>01/28/20</u> Time: <u>17:12:02</u>

PROJECT INFORMATION

Company: Beacon Environmental

Project: 219541.7

Location: 37 Johnson St., Barrie, Ontari

Test Well: BH2

Test Date: December 10, 2019

AQUIFER DATA

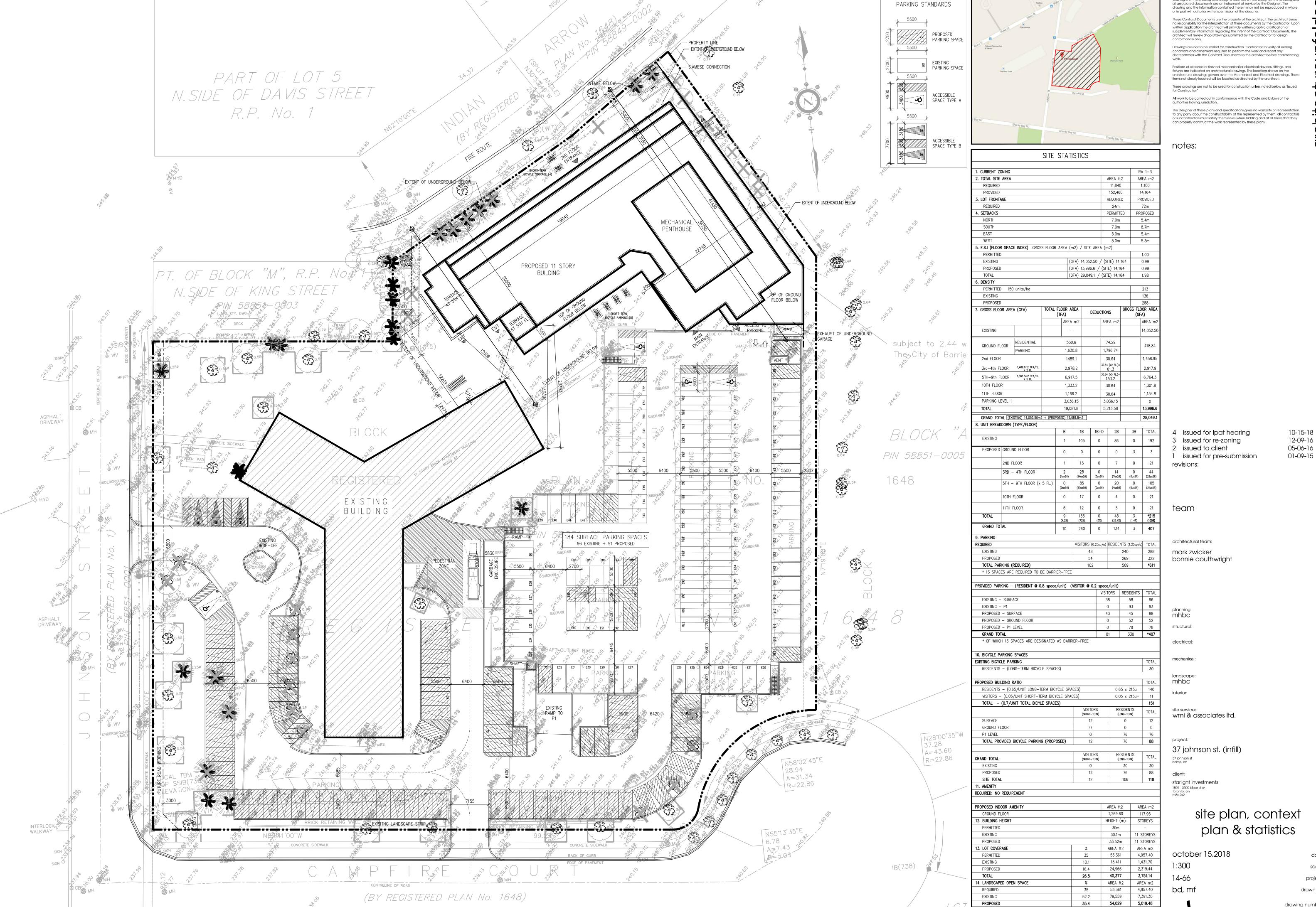
Saturated Thickness: 1000. cm Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH2)

Initial Displacement: 107. cm Static Water Column Height: 534. cm

Total Well Penetration Depth: 968. cm Screen Length: 300. cm Casing Radius: 50. cm Well Radius: 100. cm

SOLUTION

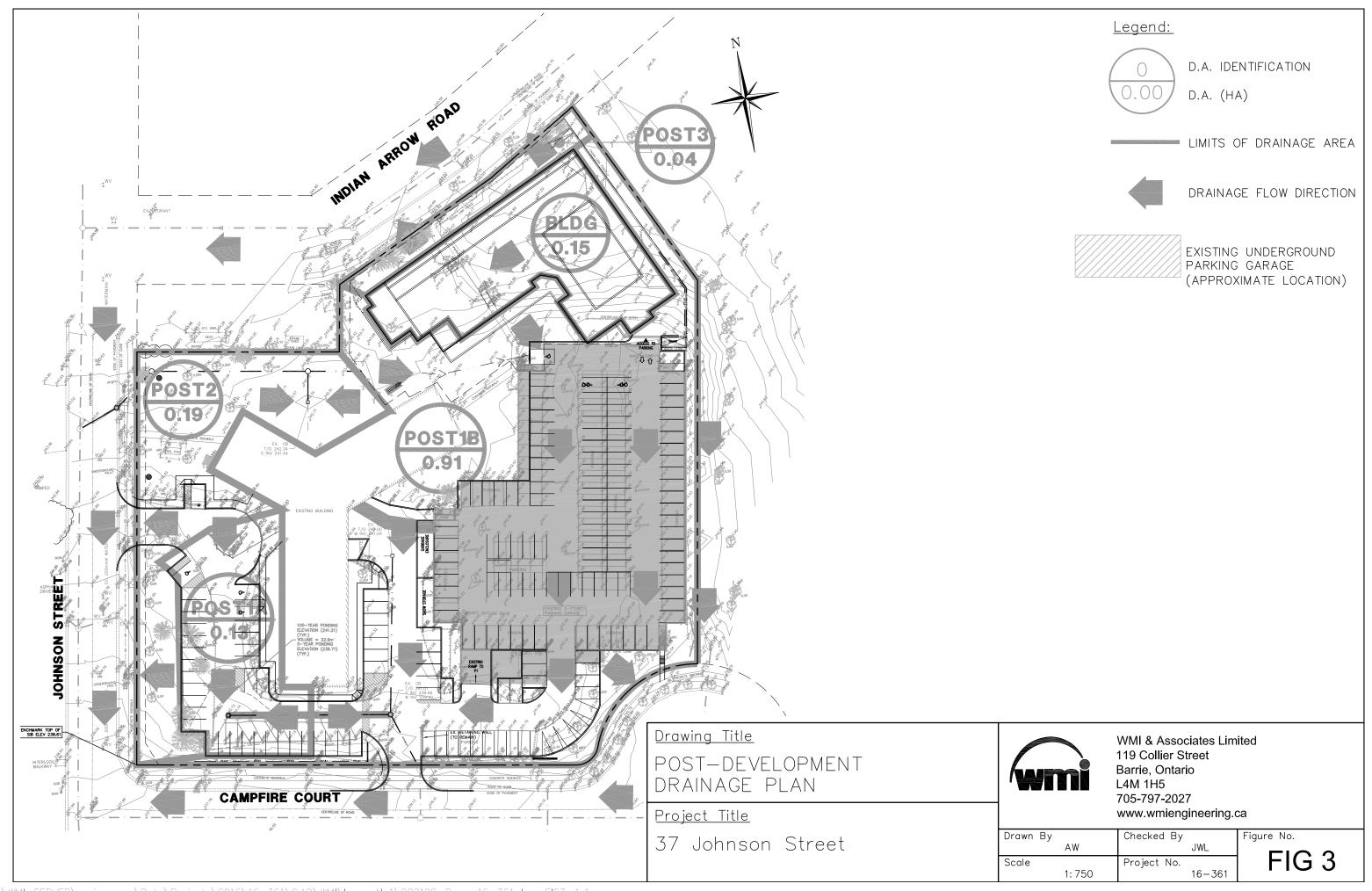

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.006165 cm/sec y0 = 105. cm

Appendix D

Plan Drawings

PIN 58851-0127


\$SSIB(738)

Copyright of this drawing and design is reserved by the Designer. The drawing and

These drawings are not to be used for construction unless noted below as "Issued

The Designer of these plans and specifications gives no warranty or representation to any party about the constructability of the represented by them. all contractors or subcontractors must satisfy themselves when bidding and at all times that they

site plan, context

