FUNCTIONAL SERVICING REPORT

108, 116, 122 HARVIE ROAD ASA DEVELOPMENT INC

CITY OF BARRIE
COUNTY OF SIMCOE

September 2021

21092

TABLE OF CONTENTS

1.	INTRODUCTION					
2.	SUPPORTING DOCUMENTS	1				
3.	DESIGN POPULATION	2				
4.	WATER SUPPLY AND DISTRIBUTION	2				
4	.1. WATER SERVICING DESIGN CRITERIA	2				
	.3. FIRE FLOW REQUIREMENTS					
5.	SANITARY SERVICING	3				
-	.1. Sanitary Design Criteria					
о 6.	STORMWATER MANAGEMENT					
0.						
_	.1. Analysis Methodology					
_	.3. PROPOSED STORM DRAINAGE SYSTEM					
_	.4. STORMWATER QUANTITY CONTROL					
_	.6. EXTERNAL DRAINAGE AREAS	-				
_	.7. STORMWATER QUALITY CONTROL					
	6.7.1. PERMANENT QUALITY CONTROL					
7.	PHOSPHORUS BUDGET	8				
8.	WATER BALANCE	8				
9.	GRADING	9				
10.	SERVICING FOR ADJACENT DEVELOPMENT	9				
11.	SECONDARY UTILITIES	9				
12.	CONCLUSIONS	9				

APPENDICES

Appendix A – Water Servicing and Fire Flow Calculations

Appendix B – Sanitary Servicing Calculations

Appendix C – Stormwater Management Calculations

Appendix D – Water Balance Calculations

Appendix E – Phosphorus Calculations

Appendix F – Letters to Utilities

Appendix G – Pearson Engineering Drawings

Appendix H – External Drawings

LIST OF FIGURES & DRAWINGS

Figure 1 – Site Location Plan

Figure 2 – WaterCAD Model Layout

SG-1 – Site Grading Plan

SS-1 – Site Servicing Plan

STM-1 – Pre- Development Storm Catchment Plan

STM-2 – Post- Development Storm Catchment Plan

EPR-1 – Environmental Protection and Removals Plan

G-4 - RG Robinson Storm Drainage Area Plan

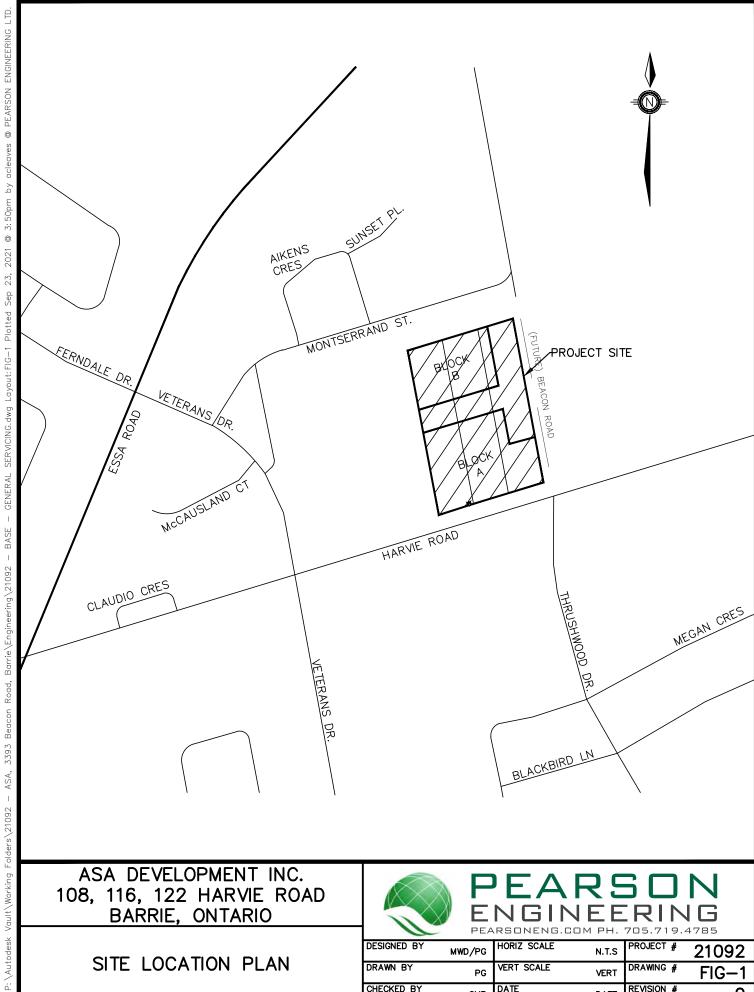
WWW.PEARSONENG.COM

FUNCTIONAL SERVICING REPORT 108, 116, 122 HARVIE ROAD

1. INTRODUCTION

PEARSON Engineering Ltd. has been retained by ASA Development Inc. (Client) to prepare a Functional Servicing Report in support of the proposed Residential Subdivision (Project) located at 108, 116, and 122 Harvie Road in the City of Barrie (City). The subject lands can be seen on Figure 1.

The subject property is approximately 2.48 ha in size and is currently three separate residential lots, each occupied by a detached home fronting onto Harvie Road. The Project is located north of Harvie Road, east of Kemp Street Extension, south of Montserrand Street and west of Beacon Road. The Project site is bound by residential homes to the north and west, the future Beacon Road right-of-way (ROW) to the East and Harvie Road to the south.


The Project proposes a Residential Subdivision consisting of a municipal road (Street A), Beacon Road extension, two Medium Density Residential Blocks (Block A and B) and single-family homes fronting on Beacon Road. Street A is proposed to be an 18-meter-wide local road cross section and Beacon Road extension will be 24 m to 25 m wide road cross section. Block A and B will be developed as site plans consisting of townhouses and an apartment building in Block B. The Subdivision servicing will provide connection stubs for both Block A and B.

This FSR assesses the required municipal services, existing municipal infrastructure in the vicinity of the Project, the onsite Stormwater Management (SWM) facilities and internal services required to service the proposed Project. The report also includes preliminary design calculations and a brief outline of the proposed internal services, as well as comments regarding the ability of the various secondary utilities to service the site.

2. SUPPORTING DOCUMENTS

The following documents have been referenced in the preparation of this report:

- Ministry of the Environment, Design Guidelines for Sewage Works 2008
- Ministry of the Environment, Design Guidelines for Drinking-Water Systems 2008
- Ministry of the Environment, Stormwater Management Planning and Design Manual, March 2003
- City of Barrie, Sanitary Sewage Collection System Policies and Design Guidelines October 2017
- City of Barrie Water Distribution Specification December 2017
- City of Barrie, Storm Drainage and Stormwater Management Policies and Design Guidelines
 December 2017
- Lake Simcoe Region Conservation Authority Technical Guidelines for Stormwater Management Submissions, September 2016

108, 116, 122 HARVIE ROAD BARRIE, ONTARIO

SITE LOCATION PLAN

DESIGNED BY	MWD/PG	HORIZ SCALE	N.T.S	PROJECT #	21092
DRAWN BY	PG	VERT SCALE	VERT	DRAWING #	FIG-1
CHECKED BY	GMP	DATE	DATE	REVISION #	0

3. DESIGN POPULATION

The proposed development is to consist of twelve (12) single family homes, sixty-five (65) townhouse units and a fifty-one (51) unit apartment building. Utilizing the City of Barrie design standards, a design population of 291 persons is estimated for the project with the breakdown found in Table 1 below.

Table 1: Design Population

Density	# of Units	Residential PPU	People
Single Family Homes (Low)	12	3.25	39
Townhouses (Medium)	65	2.57	167
Apartment (High)	51	1.67	85
		TOTAL	291

4. WATER SUPPLY AND DISTRIBUTION

4.1. WATER SERVICING DESIGN CRITERIA

The site is to have a design population of 291 persons. Utilizing the City of Barrie Engineering Design Criteria for residential water demand of 225 L/capita/day, an Average Day Demand (ADD) of 0.76 L/s was calculated. A max day factor of 3.60 was utilized which resulted in a Max Day Demand (MDD) of 2.73 L/s and a Peak Rate factor of 5.40 was used in calculating a Peak Hour Demand of 4.10 L/s for the proposed development. Calculations for the domestic water requirements for the site can be found in Appendix A.

4.2. INTERNAL WATER DISTRIBUTION SYSTEM

The Project site will be serviced by connecting into the existing 300 mm diameter watermain on the east side of Beacon Road with a 250 mm diameter watermain on Street A and including a connection for future development to the west of the Project site. The single-family homes fronting onto Beacon Road will be serviced by separate 25 mm water services off the existing Beacon Road watermain. Block A and Block B will be serviced with a proposed 200 mm diameter watermain connecting to Street A in two locations, creating a looped system. The proposed watermain will extend through the project site and connect to the proposed townhouse units and apartment building to meet domestic requirements. Check valve chambers will be added at each property line as per City Standards. Internal and municipal fire hydrants are proposed to provide adequate firefighting coverage as per City Standards. Refer to Drawing SS-1 in Appendix G for the water servicing layout.

A water pressure test was performed by Vipond Inc. on August 31, 2021, on an existing fire hydrant located adjacent to 108 Harvie Road indicating that a static pressure of 57 psi was available. This flow test also identified that a flow of approximately 1,350 gallons per minute (GPM) with a residual pressure of 54 psi can be provided to the Project site. Therefore, the existing watermain's flow availability and residual pressures appear sufficient to service the proposed development. The results from this flow test are included in Appendix A.

The water model uses the peak domestic demand flows of 0.05 L/s for each detached home, 0.18 L/s for the 5-unit Townhouse blocks, 0.25 L/s for the 7-unit townhouse blocks, and 1.20 L/s for the apartment building. This results in a minimum pressure of 56.4 psi occurring at Junction J-23. The pressures for the proposed detached homes, townhouse units, and apartment range from 56.9 psi to 63.8 psi. Therefore, the proposed water servicing layout meets the domestic needs of the development. Model details can be found in Appendix A.

4.3. FIRE FLOW REQUIREMENTS

Fire flow calculations included in Appendix A were completed based on the Fire Underwriters Survey (FUS) guide for the determination of required fire flow. As per City of Barrie Standards, if the minimum required fire flow in the FUS calculations is below the City of Barrie minimum required fire flow, the City standards minimum shall govern. Table 2 below outlines the City of Barrie, FUS and selected fire flow requirement.

Table 2: Require Fire Flow

Density	Fire Flow Requirements (L/s)				
Density	City of Barrie	FUS	Proposed		
Single Family Homes (Low)	100	117	117		
Townhouses (Medium)	155	200	200		
Apartment (High)	200	150	200		

The water model uses the above required fire flows for the proposed development. This resulted in a minimum fire flow that can be supplied to the Project site with a flow of 212 L/s at a residual pressure of 20 psi through the 200 mm diameter watermain from Beacon Road to the proposed hydrant (H-3). As the proposed water infrastructure can supply the required flows as per the City of Barrie requirements, the watermain design is sufficient. Provided fire flow information from the water model can be found in Appendix A.

5. SANITARY SERVICING

5.1. SANITARY DESIGN CRITERIA

The site is to have a design population of 291 persons. Utilizing the City of Barrie Engineering Design Criteria's sanitary flow rate per capita of 225 L/capita/day, an Average Daily Flow (ADF) of 0.76 L/s was calculated. Using a Peaking Factor of 4.00 for this project and an infiltration allowance of 0.25 L/s/ha, a peak flow of 3.28 L/s was calculated for the proposed development. The existing 300 mm diameter sanitary sewer on Beacon Road has a capacity of 85.85 L/s at a slope of 0.78%. Therefore, the proposed peak flow is approximately 3.8% of the existing sanitary sewer's capacity and the sanitary design flows are expected to have no adverse effects on the existing sanitary sewer system

5.2. INTERNAL SANITARY SEWER SYSTEM

It is proposed that the sanitary sewers be constructed in accordance with the City of Barrie and the Ministry of the Environment, Conservation, and Parks (MECP) guidelines to service the Project and will meet minimum design grades and the required minimum and maximum velocities under proposed flow conditions.

The Project's sanitary sewer system will convey flow via a 200 mm gravity sanitary sewer from the site and connect to the existing manhole MV#3009 on Beacon Road. New municipal sanitary sewers will be installed on Street A and along the Beacon Road extension to the proposed single family home south of Street A. Blocks A and B will connect to the Street A sanitary sewer and the sewer system will extend internally on so that each townhouse unit will be provided with a separate service connection and. Refer to drawing SS-1 in Appendix G for the sanitary servicing layout.

6. STORMWATER MANAGEMENT

A key component of the development is the need to address environmental and related SWM issues. These are examined in a framework aimed at meeting the City, and the Lake Simcoe Regional Conservation Authority (LSRCA) and MECP requirements. SWM parameters have evolved from an understanding of the location and sensitivity of the site's natural systems. This FSR focuses on the necessary measures to satisfy the MECP's SWM requirements.

It is understood the objectives of the SWM plan are to:

- Protect life and property from flooding and erosion
- Maintain water quality for ecological integrity, recreational opportunities etc.
- Protect and maintain groundwater flow regime(s).
- Protect aquatic and fishery communities and habitats.
- Maintain and protect significant natural features.

6.1. ANALYSIS METHODOLOGY

The design of the SWM Facilities for this site has been conducted in accordance with:

- The Ministry of the Environment Stormwater Management Planning and Design Manual, March 2003
- City of Barrie, Storm Drainage and Stormwater Management Policies and Design Guidelines
 December 2017
- Lake Simcoe Region Conservation Authority Technical Guidelines for Stormwater Management Submissions – September 2016

In order to design the facilities to meet these requirements, it is essential to select the appropriate modeling methodology for the storm system design. Given the size of the site, the Modified Rational Method is appropriate for the design for the SWM system.

6.2. EXISTING DRAINAGE CONDITIONS

The Project site currently consists of 3 residential properties each with a single-family home and large areas of trees. The majority of the flow on site drains northeast via overland flow at approximately 2% towards the Beacon Road ROW. Stormwater is then conveyed via a storm sewer system on the Beacon Road ROW towards Whiskey Creek. Details of the existing storm drainage conditions are shown on drawing STM-1 in Appendix G.

According to the Geotechnical Investigation by Peto MacCallum Ltd., dated February 2021 and the Hydrogeological Study prepared by R.J. Burnside & Associates Limited, dated June 2021, the project site is comprised of highly calcareous till with drumlinized sheets of glacial till (Newmarket till), stratified glaciolacustrine deposits of sand and gravel, littoral-foreshore deposits and massive-well laminated deposits of sand and gravel. Local silty layers were present below the topsoil and the material was very loose to loose. The infiltration rate was estimated to be approximately 75 to 150 mm/hr. Groundwater was found to by typically below the depth of exploration being approximately 8.6m below the existing ground surface in January 2021.

The newly updated City of Barrie Drainage Master Plan in 2020 identifies a SWM pond to be installed on the east side of the Beacon Road ROW. However, it is our understanding that the schedule for the construction of this pond will not align with this development and therefore onsite controls will be required.

Allowable peak flows for the site were calculated using the site's current conditions and can be seen in Table 3 below

Table 3: Pre-Development Peak Flows

	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
	Storm	Storm	Storm	Storm	Storm	Storm
Project Site (m³)	0.149	0.196	0.227	0.293	0.354	0.405

6.3. PROPOSED STORM DRAINAGE SYSTEM

Post-development drainage patterns for the site will generally follow pre-development drainage conditions. The Project site is proposed to drain via catchbasin and storm sewer, which was sized for the 5-year storm event. The rooftop area of the apartment building, townhouse blocks, and single detached homes will be conveyed to proposed underground infiltration galleries sized for the 25 mm storm. In the event of a storm greater than the 25 mm storm, an overflow system will be provided allowing stormwater to drain to the site's storm sewer system. The majority of the site's paved and landscaped areas have been graded to direct stormwater towards permeable pavers. In the event of a storm greater than the filtration capacity of the pavers, a catchbasin will be provided conveying stormwater to the storm sewer system. The peak flows released from the site are controlled through an orifice tube on each Block which will cause stormwater to back up into underground storage tanks in order to release stormwater at allowable rates providing quantity control for the site.

Blocks A and B will be overcontrolled to allow for the uncontrolled release of the single-family home lots and Street A. The proposed drainage south of the apartment building in Block A will continue to drain uncontrolled to Harvie Road. Block A has been graded to provide an emergency overflow weir through the driveway to Street A. Block B will be graded with an emergency overland flow route north of townhouse block B-5 and single-family lot number 12 to Beacon Road. The single-family homes lots and Street A will drain uncontrolled to Beacon Road. Details of the proposed storm drainage conditions are shown on drawing STM-2 in Appendix G.

6.4. EXTERNAL DRAINAGE AREAS

External drainage areas both west and north of the Project site drain through the site based on predevelopment conditions. The site is located within the Beacon Road Subdivision storm sewer catchment area which can be seen on drawing G-4 by RG Robinson in Appendix H.

The western external area 1, shown on drawings STM-1 and STM-2 is 2.49 ha is size and is slated for future development including the extension of Street A and an extension of Kemp Street. The Street A storm sewer will be sized to allow for the future 5-year pre-development peak flows from the future development.

The northern external area 2, shown on drawings STM-1 and STM-2 is 0.38 ha in size and contains existing single family residential homes that are assumed to remain in the current development state. This area drains south towards the site and will be captured in a drainage channel as it flows towards the site and conveyed to Beacon Road to match the existing conditions.

6.5. STORMWATER QUANTITY CONTROL

The proposed development will increase the imperviousness of the site and as such the post-development peak flows will increase. It is important to quantify the increase in stormwater runoff rates and attenuate these increases. The calculated post-development runoff coefficient of 0.66 is greater than the pre-development runoff coefficient of 0.22. Runoff coefficient calculations can be found in Appendix C.

Considerations were taken to reduce post-development peak flows to pre-development values. Given the size of the site, the Modified Rational Method will be used to determine the SWM release rates. The City of Barrie IDF curve parameters were used for determining the storm intensity values.

Blocks A and B will be overcontrolled to allow Street A and the single-family homes to drain uncontrolled. Quantity control will be provided by an orifice tube at Block A and Block B to reduce post development peak flows to the allowable flow rates with 82% of the allowable flow allocated to Block A and 18% of the allowable flow to Block B.

Calculations in Appendix C demonstrate approximately 775 m³ of total storage is required to reduce the 100-year storm peak flow. It is proposed to provide the quantity control storage through the use of underground StormTech chambers in Block A and Block B amenity areas. The underground storage tanks will be designed as an off-line system.

By comparing Table 3 and 4, it can be seen that the post development peak flows for the site are smaller than the pre-development for all storm events. Detailed quantity control calculations can be seen in Appendix C.

100 Year 2 Year 5 Year 10 Year 25 Year 50 Year Storm Storm Storm Storm Storm Storm Uncontrolled Flows (m³/s) 0.074 0.097 0.113 0.146 0.176 0.201 **Block A Controlled Flows** 0.040 0.052 0.095 0.108 0.061 0.078 (m^3/s) **Block B Controlled Flows** 0.009 0.011 0.013 0.017 0.021 0.024 (m^3/s) Total Project Site (m³/s) 0.123 0.161 0.187 0.241 0.292 0.333

Table 4: Post-Development Peak Flows

6.6. VOLUME CONTROL

Since the project site meets the definition of Major Development as per LSRCA Guidelines, considerations were taken to meet the volume control criteria detailed in Section 2.2.2. The LSRCA guidelines state that for a new development that creates 500 m² or more of impervious surfaces, 25 mm of runoff over the total impervious area of the site is to be retained and treated on site, with flexible alternatives if this criterion cannot be met.

The proposed drainage from the rooftop area of all buildings will be conveyed through roof leaders to separate infiltration galleries for each building, resulting in a storage volume of 171 m³.

The majority of the site's paved areas have been graded to direct stormwater towards permeable pavers. The pavers will provide treatment via filtration and are wrapped in an impermeable liner and include a perforated underdrain which is connected to the storm sewer system and have a total combined storage volume of 225 m³.

Due to site geometry and available space for LID, the full 25 mm storage cannot be achieved. The Flexible Treatment Alternative #1 of the 12.5 mm storm results in a total required volume of 223 m³. The rooftop infiltration galleries and permeable pavers provide a total of 396 m³ for the site which is equivalent to the 22 mm storm across the impervious surfaces, therefore meeting Volume Control requirements.

6.7. STORMWATER QUALITY CONTROL

The MECP in March 2003 issued a "Stormwater Management Planning and Design Manual". This manual has been adopted by a variety of agencies including the City of Barrie. The development's Stormwater Quality Control objective is to provide Enhanced Protection quality control as stated in the MECP manual. To achieve enhanced protection, permanent and temporary control of erosion and sediment transport are proposed and are discussed in the following sections.

6.7.1. PERMANENT QUALITY CONTROL

The development's active parking facilities pose a risk to stormwater quality through the collection of grit, salt, sand, and oils on the paved surfaces. The MECP standard stipulates a Total Suspended Solids (TSS) removal of at least 80% for the enhanced protection level according to Table 3.2 in the MECP SWM Planning & Design Manual. A treatment train approach to maximize TSS removal has been proposed. Stormwater from the parking lot areas will drain to permeable pavers which will allow stormwater to filter through the stone reservoir and into the site's storm sewer system via a perforated pipe. The catch basins include sumps which will settle larger sediment particles. Underground storage tanks will be designed with an isolator row which will capture the majority of the sediment, and will ultimately drain through an oil/grit separator (OGS) unit prior to connecting to the existing infrastructure in Beacon Road.

Three OGS units are proposed, one each for Block A and B and one at Beacon Road before the existing MH. The proposed treatment train approach will provide a total TSS removal rate of at least 80% as per MECP standards.

6.7.2. During Construction Activities

During construction, earth grading and excavation will create the potential for soil erosion and sedimentation. It is imperative that effective environmental and sedimentation controls are in place and maintained throughout the duration of construction activities to ensure the stormwater runoff's quality.

Therefore, the following recommendations shall be implemented and maintained during construction to achieve acceptable stormwater runoff quality:

- Installation of filter strips, silt fences and rock check dams or other similar facilities throughout the site, and specifically during all construction activities, in order to reduce stormwater drainage velocities and trap sediment on-site; and,
- Restoration of exposed surfaces with vegetative and non-vegetative material as soon as construction schedules permit; the duration in which surfaces are disturbed/exposed shall not exceed 30 days.
- Provision of a mud-mat where applicable at the construction entrances in order to control the tracking of sediment and debris onto municipal streets.
- Reduce stormwater drainage velocities where possible.
- Minimize the amount of existing vegetation removed.

7. PHOSPHORUS BUDGET

Local conservation authorities have determined the importance of reducing phosphorus levels in water courses in this area. Best efforts are to be employed in order to reduce phosphorus levels being contributed from the site.

The existing site consists of forest lands and low intensity residential with single family homes, garages and driveways and generates approximately 0.28 kg of phosphorus annually. The development of the project will increase the amount of phosphorus contributed from the site to 3.17 kg if uncontrolled.

To minimize the site's phosphorous discharge, a treatment train approach will be implemented. The rooftop area of all of the project's buildings will be conveyed to underground storage sized for the 25mm storm event.

Permeable pavers have been provided in the project's parking areas and have been designed with a stone reservoir of 0.50 m. As the pavers will be receiving primarily storm runoff from the site's paved areas, they have been designed with an impermeable liner and perforated underdrain to provide phosphorous reduction through filtration rather than infiltration. The perforated underdrain will connect to the stie's storm sewer.

According to the LSRCA Phosphorus Loading Development Tool, the typical phosphorus reduction is 60% for underground infiltration and 45% for permeable pavers. The following Table 5 details the anticipated phosphorous loadings for the pre and post-development conditions.

Pre-Development 0.23
Uncontrolled Post-Development 3.17
Controlled Post-Development 2.21

Table 5: Phosphorus Loadings

Detailed calculations can be found in Appendix E.

8. WATER BALANCE

Since the post development state will increase the imperviousness of the site, considerations were taken in regard to groundwater recharge. Under pre-development conditions, the project site consists of three single family homes and garages and associated driveways, which infiltrates approximately 6,883 m³ annually over the entire site. With the increased imperviousness of the site, this recharge will be reduced to 2,651 m³, resulting in a deficit volume of 6,883 m³.

In order to infiltrate the deficit volume of 6,883 m³ annually, it is proposed to infiltrate the first 12 mm from the rooftop drainage areas in underground storage chambers and infiltration galleries. The 12 mm storm is equivalent to 624.0 mm annually, which will infiltrate 6,883 m³ per year, meeting the pre-development recharge. However, City of Barrie minimum criteria is 5 mm across the total development area resulting in a minimum volume of 120 m³. The rooftop infiltration galleries and chambers have been designed to infiltrate the 25 mm storm event over the rooftop areas in order to meet the LSRCA's volume control criteria as well as maximize infiltration for quality control and phosphorous removal purposes resulting in a storage volume of 171 m³, therefore exceeding the City's criteria. Infiltration rates will be confirmed with in-situ tests at the detailed design stage. Detailed calculations can be seen in Appendix D.

9. GRADING

A preliminary grading design has been completed for the project to confirm drainage of the site. The majority of the site will drain easterly towards the proposed Beacon Road extension. Block A area will be directed towards Street A and Block B will be directed to the northern outlet channel which has been designed to flow toward Beacon Road. The single-family homes and area between the apartment building and Harvie Road will flow uncontrolled to Beacon Road. Refer to drawing SG-1 in Appendix G for details of the preliminary grading design.

10. Servicing for Adjacent Development

The adjacent lands to the west of our project site are expected to be developed in the future. Water, sanitary and storm services have been proposed to run through our Street A to service the adjacent lands. These services connections are located at the west end of Street A and capped for future development.

11. SECONDARY UTILITIES

Given the location of the subject site is within the municipal area of Barrie, it is anticipated that secondary utilities (hydro, cable, and phone) will be readily available to service the site. Letters have been sent to all secondary utilities to notify them of the proposed development, gain information on the availability of their services for the site and ensure they are able to adequately support the proposed development. Copies of these letters have been included in Appendix F.

12. CONCLUSIONS

The proposed development will require the connection of sanitary and watermain services to the existing municipal services on Beacon Road. Storm services for the development will be conveyed to underground storage tanks, ultimately outletting to Beacon Road.

A treatment train approach including three proposed OGS units will provide the required quality control to satisfy the MECP Enhanced level requirements, as well as reduce the phosphorous loading for the site

Rooftop infiltration will promote groundwater recharge meeting water balance requirements.

Quantity control for the development is provided in the StormTech underground storage units allowing post-development peak flows to be released at the allowable values through an orifice tube.

The analysis and conceptual design outlined in this report demonstrates that the servicing is feasible.

All of which is respectfully submitted,

PEARSON ENGINEERING LTD.

Taylor Arkell, P.Eng. Senior Project Manager Mike Dejean, P.Eng.

Manager of Engineering Services

APPENDIX A

WATER SERVICING AND FIRE FLOW CALCULATIONS

108, 116, 122 Harvie Road, Barrie Water Flow Calculations

Design Criteria

Demand per capita (Q): 225 L/cap/day

Peak Rate Factor (Max. Hour)

5.40

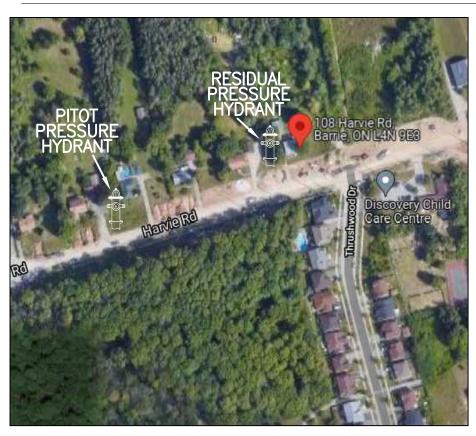
(Table 3-3: Peaking Factors, MOE Design Guidelines for Drinking-Water Systems)

Max. Day Factor

(Table 3-3: Peaking Factors, MOE Design Guidelines for Drinking-Water Systems)

Site Data			_					
Description		Density		Inits		w Rate	Peaking Fact	tors
Single Detached Home	3.25	people/unit	12	units	225	L/cap/d		
Townhouses	2.57	people/unit	65	units	225	L/cap/d	MAX DAY FACTOR*	3.60
Apartment	1.67	people/unit	51	units	225	L/cap/d	PEAK RATE FACTOR*	5.40
							*From MOE Manual base fewer than 500	
Calculate Population								
Pop. Single Family Home	=	3.25	x	12	=	39		
Pop. Townhouse	=	2.57	X	65	=	167		
Pop. Apartments	=	1.67	х	51	=	85		
Pop. Total	=	291	people					
Calculate Average Day Demand (AI	DD)							
ADD		225	x	291				
ADD	=	65,525	L/day					
ADD	=	0.76	L/s					
Calculate Max Day Flow								
MDF	=	0.76	x	3.60				
MDF	=	2.73	L/s					
		20						
Calculate Peak Hour Demand								
PHD	=	0.76	X	5.40				
PHD	=	4.10	L/s					

FLOW TEST RESULTS


DATE: AUG 31, 2021 TIME: 2:00

LOCATION: 108 HARVIE RD

CITY OF BARRIE

ONTARIO

TEST BY: VIPOND FIRE PROTECTION AND LOCAL PUC

STATIC PRESSURE : 57 PSI

TEST NO.	NO. OF NOZZLES	NOZZLE DIAMETER (INCHES)	DISCHARGE CO-EFFICIENT	RESIDUAL PRESSURE (PSI)	PITOT PRESSURE (PSI)	DISCHARGE (U.S.GPM)
1	1	1-3/4	0.995	56	40	563
2	1	2-1/2	0.90	56	20	754
3	2	2-1/2	0.90	54	16	1350

108 HARVIE DR.

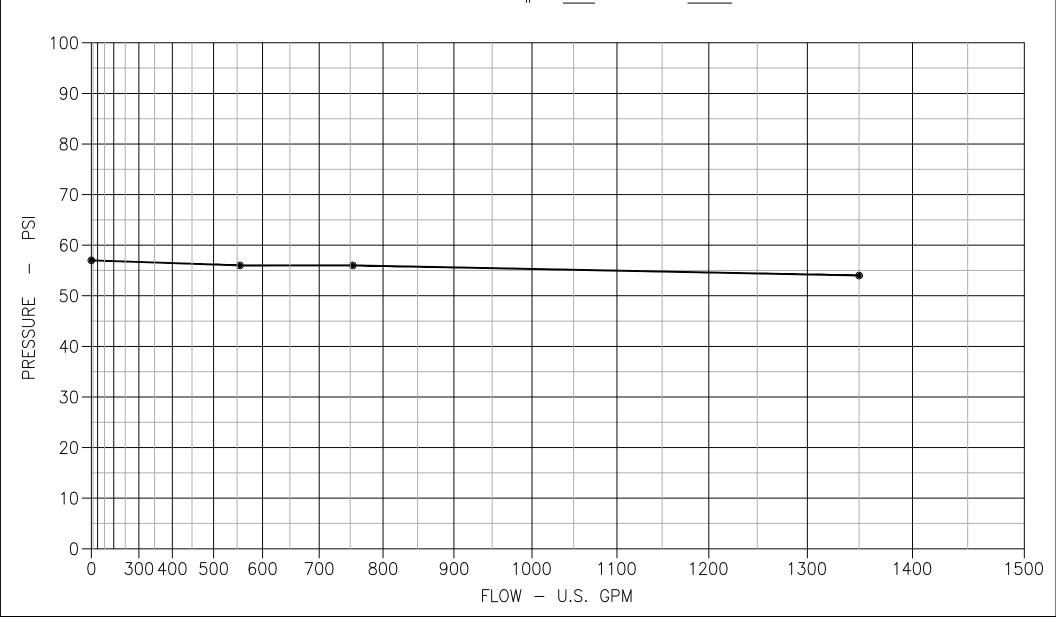
CITY OF BARRIE

ONTARIO

STATIC:

DESIDUAL:

BY: LEN K./KRYSTIAN. K


OFFICE: BARRIE

TEST BY: VIPOND & PUC

DATE: AUG 31, 2021

 STATIC:
 RESIDUAL:
 FLOW:
 L

 57 PSI
 TEST#1 56 PSI @ 563 GPM TEST#2 56 PSI @ 754 GPM TEST#3 54 PSI @ 1350 GPM

108, 116, 122 Harvie Road, Barrie Fire Flow Calculations - Detached Homes

Location:

108, 116, 122 Harvie Road, Barrie

OBC Occupancy:

Residential Occupancies - Class C

Building Foot Print:

94 m²

of Stories: 2 Single Family *based on worst case scenario for proposed single-family homes

Construction Class:

Wood Frame

Automated Sprinkler Protection NFPA 13 sprinkler standard Standard Water Supply Fully Supervised System

	Credit	Total
No	30%	
No	10%	0%
No	10%	

Project:

ASA Harvie Road

Project Number:

21092

Construction Class	Charge
Wood Frame	1.5
Ordinary	1.0
Non-Combustible	0.8
Fire Resistive	0.6

Contents	Charge
Non-Combustible	-25%
Limited Combustible	-15%
Combustible	0%
Free Burning	15%
Rapid Burning	25%

Contents Factor:

Limited Combustible

Charge:

-15%

Exposure 1 (north)	Distance to Exposure Building (m)	1.8	25%
Exposure 2 (east)	Distance to Exposure Building (m)	> 45.1	0%
Exposure 3 (south)	Distance to Exposure Building (m)	22.0	10%
Exposure 4 (west)	Distance to Exposure Building (m)	8.7	20%

Separation	Charge
0 - 3.0 m	25%
3.1 - 10.0 m	20%
10.1 - 20.0 m	15%
20.1 - 30.0 m	10%
30.1 - 45.0 m	5%
> 45.1 m	0%

Total:

55% *no more than 75%

Are Buildings Contigious?

No

Fire Resistant Building:

Are vertical openings and exterior vertical communications protected with a minimum one (1) hr rating?

Calculations:

1.5

Wood Frame

 $RFF = 220 \times C \times \sqrt{A}$

188

Where: RFF= required fire flow in liters per minute

C= Coefficient related to the type of construction A = the total floor area in square meters (excluding

basements in building considered

RFF =

RFF = 4,525 L/min

*Must be > 2000 L/min or < 45,000 L/min

Round to Nearest 1000 L/min **Correction Factors:**

Occupancy Fire Flow Adjusted for Occupancy Reduction For Sprinkler

-750 L/min E = 4,250 0 4,250

L/min

L/min I /min L/min

L/min

As per "Water Supply for Public Fire Protection" pg.20 note H:

RFF = E - F + G

Fire Flow w/ Sprinkler Reduction **Exposure Charge** Fire Flow w/ Exposure Charge F= 2,338 L/min 6,588 L/min

Required Fire Flow: **RFF =** 6,588 4,250 2,338

Round to Nearest 1,000 L/min

RFF = 7,000 L/min

RFF= 4250 L/min - 0 L/min + 2338 L/min RFF = 6,588 L/min

RFF= 1,848 GPM

RFF = 117

108, 116, 122 Harvie Road, Barrie Fire Flow Calculations - Townhouse

Location: OBC Occupancy:

108, 116, 122 Harvie Road, Barrie Residential Occupancies - Class C

Building Foot Print: # of Stories:

258 m² 4 units **Townhouse Buildings** 3

**Utilizing worst case scenario for townhouse units

Construction Class:

Wood Frame

*Assuming a fire wall every

Automated Sprinkler Protection NFPA 13 sprinkler standard Standard Water Supply Fully Supervised System

	Credit	Total
No	30%	
Yes	10%	10%
No	10%	

ASA Harvie Road Project:

Project Number: 21092

Construction Class	Charge
Wood Frame	1.5
Ordinary	1.0
Non-Combustible	0.8
Fire Resistive	0.6

Contents	Charge
Non-Combustible	-25%
Limited Combustible	-15%
Combustible	0%
Free Burning	15%
Rapid Burning	25%

Contents Factor:

Exposure 1 (north)

Exposure 2 (east)

Exposure 3 (south)

Limited Combustible

Distance to Exposure Building (m) 3.4 25% Distance to Exposure Building (m) 8.7 20% Distance to Exposure Building (m) 22.7 10% 17.6 15%

-15% Charge:

Separation	Charge
0 - 3.0 m	25%
3.1 - 10.0 m	20%
10.1 - 20.0 m	15%
20.1 - 30.0 m	10%
30.1 - 45.0 m	5%
> 45.1 m	0%

Exposure 4 (west) Distance to Exposure Building (m)

Total:

70% *no more than 75%

Are Buildings Contigious?

Yes

Fire Resistant Building:

Are vertical openings and exterior vertical communications protected with a minimum one (1) hr rating?

Calculations:

1.5

Wood Frame

 $RFF = 220 \times C \times \sqrt{A}$

Where: RFF= required fire flow in liters per minute

C= Coefficient related to the type of construction A = the total floor area in square meters (excluding

basements in building considered

RFF = 9,181

Round to Nearest 1000 L/min RFF = L/min

L/min

*Must be > 2000 L/min or < 45,000 L/min

RFF =

Correction Factors:

Round to Nearest 1,000 L/min

Occupancy -1,350 Fire Flow Adjusted for Occupancy E = Reduction For Sprinkler F= Fire Flow w/ Sprinkler Reduction

L/min 7,650 L/min I /min 765 6,885 L/min **Exposure Charge** 5,355 L/min Fire Flow w/ Exposure Charge 12,240 L/min

As per "Water Supply for Public Fire Protection" pg.20 note H: *RFF* = E - F + G

7,650 765 5,355 RFF= 7650 L/min - 765 L/min + 5355 L/min

12,240 L/min

Required Fire Flow: RFF = 12,240 L/min

> RFF = 12,000 L/min RFF= 3,168 GPM

RFF = 200

108, 116, 122 Harvie Road, Barrie Fire Flow Calculations - Apartment Building

Location:

108, 116, 122 Harvie Road, Barrie

OBC Occupancy: **Building Foot** 1,375 m²

Print: # of Stories: Residential Occupancies - Class C

Apartment Building 4

Project:

ASA Harvie Road

Project Number:

21092

Construction Class	Charge
Wood Frame	1.5
Ordinary	1.0
Non-Combustible	0.8
Fire Resistive	0.6

Contents	Charge
Non-Combustible	-25%
Limited Combustible	-15%
Combustible	0%
Free Burning	15%
Rapid Burning	25%

Construction Class:

Ordinary

Automated Sprinkler Protection NFPA 13 sprinkler standard Standard Water Supply Fully Supervised System

	Credit	Total
Yes	30%	
Yes	10%	50%
Yes	10%	

Limited Combustible

Charge:

-15%

Separation	Charge
0 - 3.0 m	25%
3.1 - 10.0 m	20%
10.1 - 20.0 m	15%
20.1 - 30.0 m	10%
30.1 - 45.0 m	5%
> 45.1 m	0%

Contents Factor:

Exposure 1 (north)

Distance to Exposure Building (m)

Exposure 2 (east) Distance to Exposure Building (m)

Exposure 3 (south) Distance to Exposure Building (m)

Exposure 4 (west) Distance to Exposure Building (m)

Total:

22.8

> 45.1

> 45.1

30.3

0%

0%

5%

15% *no more than 75%

Are Buildings Contigious?

Yes

Fire Resistant Building:

Are vertical openings and exterior vertical communications protected with a minimum one (1) hr rating?

Calculations: $RFF = 220 \times C \times \sqrt{A}$

1.0

5,500

Ordinary

Where: RFF= required fire flow in liters per minute C= Coefficient related to the type of construction

A = the total floor area in square meters (excluding

basements in building considered

Round to Nearest 1000 L/min

Reduction For Sprinkler

Fire Flow w/ Sprinkler Reduction

Fire Flow w/ Exposure Charge

RFF = 16,316 L/min RFF =

*Must be > 2000 L/min or < 45,000 L/min

Correction Factors:

Occupancy Fire Flow Adjusted for Occupancy

Exposure Charge

E = F= 6,800 6,800 2,040

RFF = 8,840

-2,400 13,600 L/min I /min

L/min

L/min

L/min

L/min

L/min

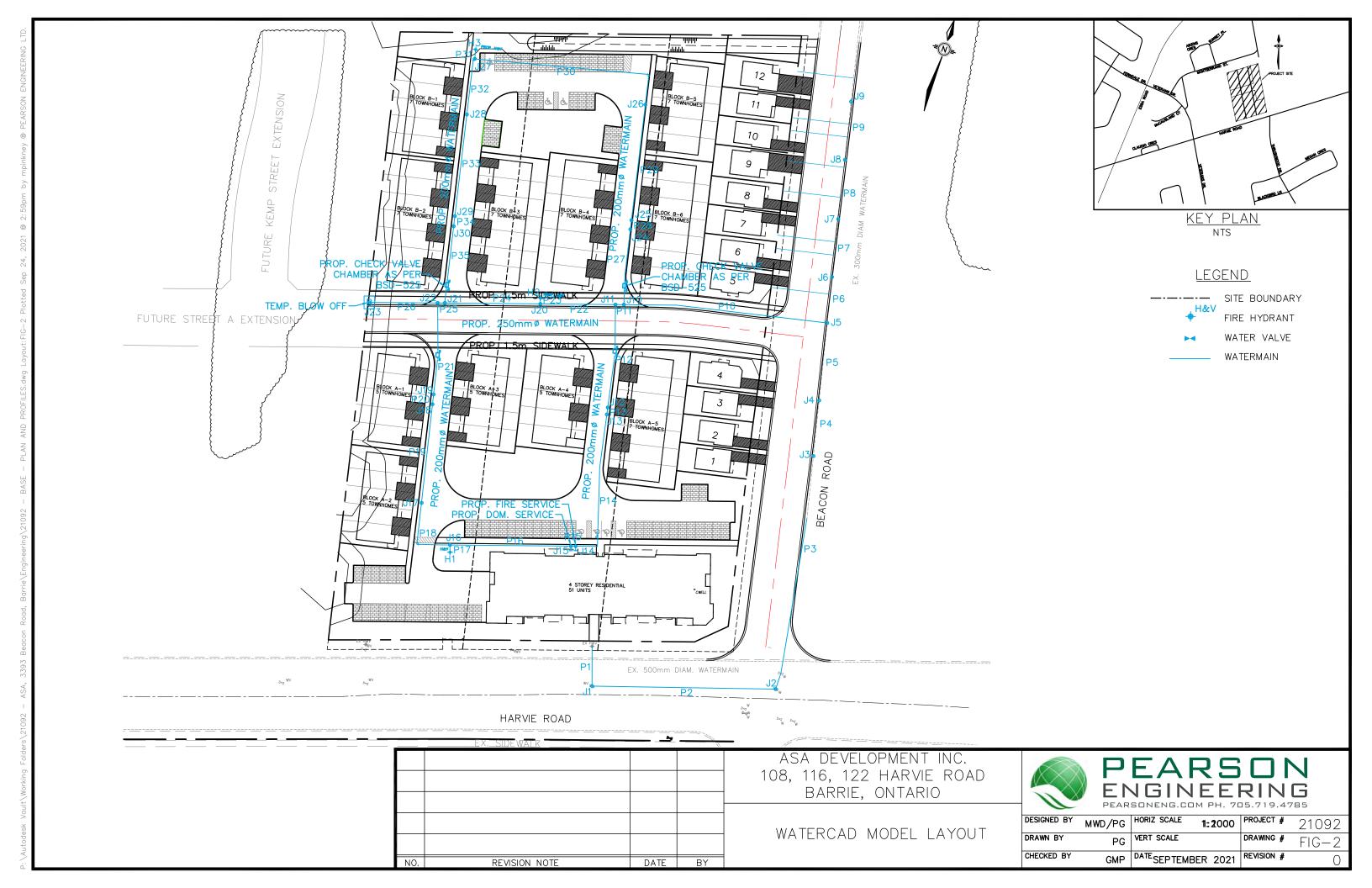
L/min

As per "Water Supply for Public Fire Protection" pg.20 note H:

RFF = E - F + G

13,600 6,800 2,040 RFF= 13600 L/min - 6800 L/min + 2040 L/min

RFF = 8,840 L/min


Required Fire Flow: Round to Nearest 1,000 L/min

RFF = 9,000 L/min

8,840

RFF= 2,376 GPM

RFF = 150

108, 116, 122 Harvie Road, Barrie WaterCAD FlexTable: Junction Table - Domestic Report

	Elevation	Head	Demand	Pressure
Label	(m)	(m)	(gpm)	(psi)
Ex. H-4209	305.1			
(Harvie Rd)	303.1	-	•	-
J-1	305.0	40.14	0.00	57.0
J-2	303.4	41.74	0.00	59.3
J-3 (Lot 1 & 2)	303.0	42.14	0.09	59.8
J-4 (Lot 3 & 4)	302.9	42.24	0.09	60.0
J-5	303.1	42.04	0.00	59.7
J-6 (Lot 5 & 6)	302.9	42.24	0.09	60.0
J-7 (Lot 7 & 8)	302.6	42.54	0.09	60.4
J-8 (Lot 9 & 10)	302.3	42.84	0.09	60.8
J-9 (Lot 11 & 12)	302.6	42.54	0.09	60.4
J-10	303.9	41.21	0.00	58.5
J-11	303.9	41.21	0.00	58.5
J-12 (TH - 5 Units)	303.9	41.21	0.18	58.5
J-13 (TH - 7 Units)	303.9	41.21	0.25	58.5
J-14 (Apt - Fire Service)	299.7	45.41	0.00	64.5
J-15 (Apt - Dom. Service)	300.2	44.91	1.20	63.8
J-16	304.6	40.51	0.00	57.5
Prop. H-1	304.6	40.51	0.00	57.5
J-17 (TH - 5 Units)	304.7	40.41	0.18	57.4
J-18 (TH - 5 Units)	304.9	40.21	0.18	57.1
J-19 (TH - 5 Units)	304.9	40.21	0.18	57.1
J-20	304.4	40.71	0.00	57.8
Prop. H-2	304.4	40.71	0.00	57.8
J-21	305.0	40.11	0.00	56.9
J-22	305.0	40.11	0.00	56.9
J-23	305.4	39.71	0.00	56.4
J-24 (TH - 7 Units)	305.0	40.11	0.25	56.9
J-25 (TH - 7 Units)	304.9	40.21	0.25	57.1
J-26 (TH - 5 Units)	303.8	41.31	0.18	58.6
J-27	304.6	40.51	0.00	57.5
Prop. H-3	304.6	40.51	0.00	57.5
J-28 (TH - 5 Units)	304.7	40.41	0.18	57.4
J-29 (TH - 7 Units)	304.9	40.21	0.25	57.1
J-30 (TH - 7 Units)	304.9	40.21	0.25	57.1

108, 116, 122 Harvie Road, Barrie WaterCAD FlexTable: Pipe Table - Domestic Report

Label	Diameter (mm)	Hazen- Williams C	Material	Velocity (m/s)	Headloss (m)	Headloss Gradient (m/m)	Water Age (Hours)	Start Node	Pressure (Start) (psi)	Stop Node	Pressure (Stop) (psi)
P-1A	500	120	PVC	0.02	0.00	0.00	-	7256: Ex. H-4209	-	7258: PMP-1	-
P-1B	500	120	PVC	0.02	0.00	0.00		7258: PMP-1	56.9	7252: J-1	57.0
P-2	500	120	PVC	0.02	0.00	0.00	-	7252: J-1	57.0	7253: J-2	59.3
P-3	300	120	PVC	0.06	0.00	0.00	-	7253: J-2	59.3	7242: J-3	59.8
P-5	300	120	PVC	0.06	0.00	0.00	-	7240: J-4	60.0	7242: J-3	59.8
P-4	300	120	PVC	0.06	0.00	0.00	-	7193: J-5	59.7	7240: J-4	60.0
P-6	300	120	PVC	0.01	0.00	0.00	-	7193: J-5	59.7	7244: J-6	60.0
P-7	300	120	PVC	0.00	0.00	0.00	-	7244: J-6	60.0	7246: J-7	60.4
P-8	300	120	PVC	0.00	0.00	0.00	-	7246: J-7	60.4	7248: J-8	60.8
P-9	300	120	PVC	0.00	0.00	0.00	-	7248: J-8	60.8	7250: J-9	60.4
P-10	155	110	PVC	0.19	0.03	0.00	-	7193: J-5	59.7	7194: J-10	58.5
P-11	200	110	PVC	0.08	0.00	0.00	-	7194: J-10	58.5	7196: J-11	58.5
P-12	200	110	PVC	0.04	0.00	0.00	-	7196: J-11	58.5	7261: J-12	58.5
P-13	200	110	PVC	0.04	0.00	0.00	-	7261: J-12	58.5	7206: J-13	58.5
P-14	200	110	PVC	0.03	0.00	0.00	-	7206: J-13	58.5	7208: J-14	64.5
P-15	200	110	PVC	0.03	0.00	0.00	-	7208: J-14	64.5	7210: J-15	63.8
P-16	200	110	PVC	0.01	0.00	0.00	-	7210: J-15	63.8	7212: J-16	57.5
P-17	200	110	PVC	0.00	0.00	0.00	-	7212: J-16	57.5	7221: H-1	57.5
P-18	200	110	PVC	0.01	0.00	0.00	-	7212: J-16	57.5	7214: J-17	57.4
P-19	200	110	PVC	0.02	0.00	0.00	-	7214: J-17	57.4	7216: J-18	57.1
P-20	200	110	PVC	0.02	0.00	0.00	-	7216: J-18	57.1	7218: J-19	57.1
P-21	200	110	PVC	0.03	0.00	0.00	-	7218: J-19	57.1	7202: J-22	56.9
P-22	200	110	PVC	0.03	0.00	0.00	-	7196: J-11	58.5	7198: J-20	57.8
P-23	200	110	PVC	0.00	0.00	0.00	-	7198: J-20	57.8	7223: H-2	57.8
P-24	200	110	PVC	0.03	0.00	0.00	-	7198: J-20	57.8	7200: J-21	56.9
P-25	200	110	PVC	0.03	0.00	0.00	-	7200: J-21	56.9	7202: J-22	56.9
P-26	200	110	PVC	0.00	0.00	0.00	-	7202: J-22	56.9	7204: J-23	56.4
P-27	200	110	PVC	0.04	0.00	0.00	-	7237: J-24	56.9	7194: J-10	58.5
P-28	200	110	PVC	0.03	0.00	0.00	-	7235: J-25	57.1	7237: J-24	56.9
P-29	200	110	PVC	0.02	0.00	0.00	-	7233: J-26	58.6	7235: J-25	57.1
P-30	200	110	PVC	0.01	0.00	0.00	-	7231: J-27	57.5	7233: J-26	58.6
P-31	200	110	PVC	0.00	0.00	0.00	-	7231: J-27	57.5	7264: H-3	57.5
P-32	200	110	PVC	0.01	0.00	0.00	-	7229: J-28	57.4	7231: J-27	57.5
P-33	200	110	PVC	0.01	0.00	0.00	-	7227: J-29	57.1	7229: J-28	57.4
P-34	200	110	PVC	0.00	0.00	0.00	-	7225: J-30	57.1	7227: J-29	57.1
P-35	200	110	PVC	0.01	0.00	0.00	-	7200: J-21	56.9	7225: J-30	57.1

108, 116, 122 Harvie Road, Barrie WaterCAD FlexTable: Fire Flow Report

Fire Flow Required for the Detached Homes:

Label	Satisfies Fire Flow Constraints?	Fire Flow (Required) (L/s)	Fire Flow (Available)* (Upper Limit) (L/s)	Pressure Required (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)
J-3 (Lot 1 & 2)	TRUE	117	353.4	20.3	59.8
J-4 (Lot 3 & 4)	TRUE	117	340.7	20.3	60.0
J-6 (Lot 5 & 6)	TRUE	117	327.4	20.3	60.0
J-7 (Lot 7 & 8)	TRUE	117	327.4	20.3	60.4
J-8 (Lot 9 & 10)	TRUE	117	323.6	20.3	60.8
J-9 (Lot 11 & 12)	TRUE	117	314.6	20.3	60.4
J-14 (Apt - Fire Service)	TRUE	117	226.7	20.3	64.5
Prop. H-1	TRUE	117	209.4	20.3	57.5
Prop. H-2	TRUE	117	249.6	20.3	57.8
Prop. H-3	TRUE	117	211.5	20.3	57.5

Fire Flow Required for the Townhouse Blocks:

Label	Satisfies Fire Flow Constraints?	Fire Flow (Required) (L/s)	Fire Flow (Available)* (Upper Limit) (L/s)	Pressure Required (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)
J-3 (Lot 1 & 2)	TRUE	200	353.4	20.3	59.8
J-4 (Lot 3 & 4)	TRUE	200	340.7	20.3	60.0
J-6 (Lot 5 & 6)	TRUE	200	327.4	20.3	60.0
J-7 (Lot 7 & 8)	TRUE	200	327.4	20.3	60.4
J-8 (Lot 9 & 10)	TRUE	200	323.6	20.3	60.8
J-9 (Lot 11 & 12)	TRUE	200	314.6	20.3	60.4
J-14 (Apt - Fire Service)	TRUE	200	226.7	20.3	64.5
Prop. H-1	TRUE	200	209.4	20.3	57.5
Prop. H-2	TRUE	200	249.6	20.3	57.8
Prop. H-3	TRUE	200	211.5	20.3	57.5

Fire Flow Required for the Apartment Building:

Label	Satisfies Fire Flow Constraints?	Fire Flow (Required) (L/s)	Fire Flow (Available)* (Upper Limit) (L/s)	Pressure Required (Residual Lower Limit) (psi)	Pressure (Calculated Residual) (psi)
J-3 (Lot 1 & 2)	TRUE	200	353.4	20.3	59.8
J-4 (Lot 3 & 4)	TRUE	200	340.7	20.3	60.0
J-6 (Lot 5 & 6)	TRUE	200	327.4	20.3	60.0
J-7 (Lot 7 & 8)	TRUE	200	327.4	20.3	60.4
J-8 (Lot 9 & 10)	TRUE	200	323.6	20.3	60.8
J-9 (Lot 11 & 12)	TRUE	200	314.6	20.3	60.4
J-14 (Apt - Fire Service)	TRUE	200	226.7	20.3	64.5
Prop. H-1	TRUE	200	209.4	20.3	57.5
Prop. H-2	TRUE	200	249.6	20.3	57.8
Prop. H-3	TRUE	200	211.5	20.3	57.5

APPENDIX B SANITARY SERVICING CALCULATION

108, 116, 122 Harvie Road, Barrie **Sanitary Flow Calculations**

Design Criteria

225 L/cap/day Qp = P * Q * M / 86400 + I * A M = 1 + (14 / (4 + (P / 1000) ^ 0.5)) Flow per capita (Q): Peak Flow

Peaking Factor (Harmon Formula) Where: 2 <= "M" <= 4

Extraneous Flow: 0.10 L/s/ha

Site	Data

Description		Density		Jnits	Flo	w Rate				
Single Detached Home	3.25	people/unit	12	units	225	L/cap/d				
Townhouse	2.57	people/unit	65	units	225	L/cap/d				
Apartment	1.67	people/unit	51	units	225	L/cap/d				
Calculate Population										
Pop. Single Family Home	=	3.25	x	12	=	39				
Pop. Townhouse	=	2.57	x	65	=	167				
Pop. Apartments	=	1.67	х	51	=	85				
Pop. Total	=	291	people							
Calculate Average Daily Flows										
ADF (L/s)	=	225	x	291						
ADF (L/s)	=	65,525	L/day							
ADF (L/s)	=	0.76	L/s							
Calculate Peaking Factor										
M	=	1	+		14		+	0.1	*	0.12
		•		4	+	291 0		· · ·		0.12
				7	•	1,000				
M	=	4.10				1,000				
141		se Max Peaking	Factor 4							
	0.0	o wax r calling	i dotor i							
Calculate Peak Flow										
Qp	=	0.76	х	4.00						
	=	3.03	L/s							
Infiltration Allowance	=	0.10	х	2.48						
	=	0.25	L/s							
Qp (Inc. Infiltration Allowance)	=	3.28	L/s							

APPENDIX C

STORMWATER MANAGEMENT CALCULATIONS

ASA Development Inv. Harvie Roard, Barrie Calculation of Runoff Coefficients

Runoff Coefficient	=	0.16	0.08	0.95	0.95	0.60	0.95	Weighted
Surface Cover	=	Grass	Forest	Asphalt	Building	Gravel	Concrete	Runoff Coefficient
PRE	Total Area	Area	Area	Area	Area	Area	Area	
<u>DEVELOPMENT</u>	(m ²)							
1	24009	23133	10760	172	507	197	0	0.22
EXT1	24872	23729	3840	439	704	0	0	0.21
EXT 2	3880	3175	0	75	580	0	50	0.30
Pre Total	52761	50037	14600	686	1791	197	50	0.22
POST	Total Area	Area	Area	Area	Area	Area	Area	
DEVELOPMENT	(m ²)							
1	5071	2117	0	1600	798	0	556	0.62
2	10583	3594	0	3182	3458	0	349	0.68
3	7906	2752	0	2389	2526	0	240	0.68
4	449	449	0	0	0	0	0	0.16
EXT 1	24872	23729	3840	439	704	0	0	0.21
EXT 2	3880	3175	0	75	580	0	50	0.30
Post Total	52761	35816	3840	7685	8066	0	1195	0.42

Modified Rational Method

ASA Development Inv. Harvie Roard, Barrie Allowable Peak Flows

City of Barrie

Storm (yrs)	Coeff A	Coeff B	Coeff C		$Q = C_i CIA / 36$		
-				Ī			
2	678.085	4.699	0.781		Where:		
5	853.608	4.699	0.766		Q -	Flow Rate (m ³ /	
10	975.865	4.699	0.760		Ci -	Peaking Coeffi	
25 50	1146.275 1236.152	4.922 4.699	0.757		C - I -		od Runoff Coefficient
100	1426.408	5.273	0.751 0.759		A -	Storm Intensity Area (ha.)	(111111/1111)
100	1420.400	3.273	0.733		Α-	Alea (IIa.)	
Area Number	1		EXT1		EXT 2		
Area	2.40	ha	2.49	ha	0.39	ha	
Runoff Coefficient	0.22		0.21		0.30		
Time of Concentration	10	min	10	min	10	min	
Return Rate	2	year	2	year	2	year	
Peaking Coefficient (C _i)	1.0	, -	1.0	-	1.0	•	
Rainfall Intensity	83.1	mm/hr	83.1	mm/hr	83.1	mm/hr	
Pre-Development Peak Flow	0.123		0.120	m ³ /s	0.027	m ³ /s	
Datum Data	-		_		_		
Return Rate Peaking Coefficient (C _i)		year		year		year	
Rainfall Intensity	1.0	mm/hr	1.0	mm/hr	1.0	mm/hr	
Pre-Development Peak Flow	0.161		0.157		0.036		
1 10-Development I can I low	0.101	111 /5	0.137	111 /5	0.000	111 /5	
Return Rate		year		year		year	
Peaking Coefficient (C _i)	1.0		1.0		1.0		
Rainfall Intensity		mm/hr		mm/hr		mm/hr	
Pre-Development Peak Flow	0.187	m³/s	0.182	m³/s	0.041	m³/s	
Return Rate	25	year	25	year	25	year	
Peaking Coefficient (C _i)	1.1		1.1		1.1		
Rainfall Intensity	148.2	mm/hr	148.2	mm/hr	148.2	mm/hr	
Pre-Development Peak Flow	0.241	m ³ /s	0.235	m ³ /s	0.053	m ³ /s	
Return Rate	50	year	50	year	50	year	
Peaking Coefficient (C _i)	1.2	•	1.2	-	1.2	•	
Rainfall Intensity		mm/hr		mm/hr		mm/hr	
Pre-Development Peak Flow	0.292		0.284		0.064		
Return Rate	100	year	100	year	100	year	
Peaking Coefficient (C _i)	1.25	year	1.25		1.25		
Rainfall Intensity		mm/hr		mm/hr		mm/hr	
Pre-Development Peak Flow	0.333		0.325		0.074		
	- 0.000	10	3.020	, 0	3.371	,	

ASA Development Inv. Harvie Roard, Barrie Post-Development Peak Flows

Storm (yrs)	City of Barrie Coeff A Coeff B	Coeff C	Modified Rational Method Q = C _i CIA / 360	
2	678.085 4.699	0.781	Where:	
5	853.608 4.699	0.766	Q - Flow Rate (m	³ /s)
10	975.865 4.699	0.760	Ci - Peaking Coef	
25	1146.275 4.922	0.757	· ·	nod Runoff Coefficient
50	1236.152 4.699	0.751	I - Storm Intensi	ty (mm/hr)
100	1426.408 5.273	0.759	A - Area (ha.)	,
			, ,	
	To be Controlled	To be Uncontrolled		
Area Number	2 & 3	1 & 4	EXT1	EXT2
Area	1.85 ha	0.55 ha	2.49 ha	0.39 ha
Runoff Coefficient	0.68	0.58	0.21	0.30
Time of Concentration	10 min	10 min	10 min	10 min
D		•	2	
Return Rate	2 year	2 year	2 year	2 year
Peaking Coefficient (C _i)	1.00	1.00	1.00	1.00
Rainfall Intensity	83.1	83.1	83.1	83.1
Post-Development Peak Flow	0.290 m ³ /s	$0.074 \text{ m}^3/\text{s}$	0.120 m ³ /s	$0.027 \text{ m}^3/\text{s}$
Datum Data	Even	F	F	F
Return Rate	5 year	5 year	5 year 1.00	5 year 1.00
Peaking Coefficient (C _i)	1.00 108.9	1.00 108.9	108.9	108.9
Rainfall Intensity Post-Development Peak Flow	0.380 m ³ /s	0.097 m ³ /s	0.157 m ³ /s	0.036 m ³ /s
r ost-bevelopment reak r low	0.500 m /s	0.097 M /S	0.137 M/S	0.030 fff /s
Return Rate	10 year	10 year	10 year	10 year
Peaking Coefficient (C _i)	1.00	1.00	1.00	1.00
Rainfall Intensity	126.5	126.5	126.5	126.5
Post-Development Peak Flow	0.441 m ³ /s	0.113 m ³ /s	0.182 m ³ /s	0.041 m ³ /s
r det Bereiepinent i dan i ion	0 III / 3	3.7.10 III 73	0.102 11173	0.0 · · · · · · · · · · · · · · ·
Return Rate	25 year	25 year	25 year	25 year
Peaking Coefficient (C _i)	1.10	1.10	1.10	1.10
Rainfall Intensity	148.2	148.2	148.2	148.2
Post-Development Peak Flow	0.568 m ³ /s	0.146 m ³ /s	0.235 m ³ /s	$0.053 \text{ m}^3/\text{s}$
Return Rate	50 year	50 year	50 year	50 year
Peaking Coefficient (C _i)	1.20	1.20	1.20	1.20
Rainfall Intensity	164.2	164.2	164.2	164.2
Post-Development Peak Flow	0.687 m ³ /s	$0.176 \text{ m}^3/\text{s}$	$0.284 \text{ m}^3/\text{s}$	$0.064 \text{ m}^3/\text{s}$
D. D.	465	405	46-	400
Return Rate	100 year	100 year	100 year	100 year
Peaking Coefficient (C _i)	1.25	1.25	1.25	1.25
Rainfall Intensity	180.2	180.2	180.2	180.2
Post-Development Peak Flow	0.785 m ³ /s	0.201 m ³ /s	0.325 m ³ /s	$0.074 \text{ m}^3/\text{s}$

ASA Development Inv. Harvie Roard, Barrie Permeable Pavers Sizing Calculations

Infiltration volumes from MOE Stormwater Management Planning and Design Manual to size Permeable Pavers Table 3.2 Water Quality Storage Requirements are as follows:

Design Area Total = 1.85 ha **Total Imperviousness** 68% Storage Volume m³/ha (Enhanced 80% long-term S.S. removal) = 34.5 1.85 34.5 Area 1 Storage Volume Required Х m^3 63.8

Required storage volume calculated over 12.5 mm of the total impervious area on the site as per the LSRCA Volume Control:

Storage Volume = 15098 x 0.0125Area Storage Volume Required = 188.7 m³

Note: Therefore, the storage required with 12.5 mm over the total impervious area on the site governs.

Find Storage Volume provided in Permeable Pavers:

Area of Pavers (A) = 1125.0 m^2 Depth of Trench (d) = 0.50 mStorage Volume (V) = 0.4(A x d)= 225.0 m^3

Required Provided

Area Storage Volume = 188.7 m^3 225.0 m^3

Use Equation 4.12 to find Area of Permeable Pavers:

 m^3 Area Design Volume (V) 225.0 = Depth of Controlling Filter Medium (d) 0.50 m Coefficient of Permeability of the 45.0 mm/hr Controlling Filter Media (k) Operating Head of Water On the Filter (h) 0.15 m Design Drawdown Time (t) 24 hr Surface Area Of Filter (A) 1000Vd k(h+d)t m^2 160.3

Required Provided

Area 1 Surface Area = 134.4 m^2 1125.0 m^2

DATE: FILE: CONTRACT/PROJECT:

COMPLETED BY:

ASA Development Inv. Harvie Roard, Barrie Quantity Control Volume Calculations - Block A

Modified Rational Method Parameters

	Pre Development Area (ha)	Post Development Area (ha)	Time of Concentration (min)	Time Increments (min)	Pre Development Runoff Coefficient	Post Development Runoff Coefficient
Г	2.40	1.06	10	1	0.22	0.68

Note: Refer to page Calculation of Runoff Coefficients for detailed calculations of Modified Rational Method parameters.

Pre-Development Runoff Rate

	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
С	0.22	0.22	0.22	0.22	0.22	0.22
Ci	1.00	1.00	1.00	1.10	1.20	1.25
I	83.11	108.92	126.55	148.15	164.22	180.15
Α	2.40	2.40	2.40	2.40	2.40	2.40
Q	0.12	0.16	0.19	0.24	0.29	0.33

Note: Q= 0.00278CC_iIA

Rainfall Station	Barrie
Kaliliali Station	Dairie

SWM Pond Design Input

Storm Event (yrs)	A B 2 678.085 4.699 5 853.608 4.699 10 975.865 4.699		Chicago Storm Coefficient	Allowable Outflow (m3/s)	Post Development Runoff Coefficient
2	678.085	4.699	0.781	0.040	0.68
5	853.608	4.699	0.766	0.052	0.68
10	975.865	4.699	0.760	0.061	0.68
25	1146.275	4.922	0.757	0.078	0.75
50	1236.152	4.699	0.751	0.095	0.82
100	1426.408	5.273	0.759	0.108	0.85

Results

Storm Event	Storage	Time
(yrs)	(m ³)	(min)
2	108	42
5	146	44
10	171	47
25	225	48
50	271	49
100	315	49

Note: Storage volume calculated as per Hydrology Handbook, Second Edition, American Society of Civil Engineers, 1996

		2 \	Year				5 Year				10	Year				25 Y	ear				50 Y	Year				100 Ye	ear		
Time	Intensity	Inflow	Outflow	Storage	Difference	Intensity		Outflow Storage	Difference	Intensity	Inflow	Outflow	Storage	Difference	Intensity		Outflow	Storage	Difference	Intensity		Outflow	Storage	Difference	Intensity			Storage Di	ifference
(min)	mm/hr	m ³ /s	m³/s	m ³		mm/hr	m ³ /s	m³/s m³		mm/hr	m ³ /s	m³/s	m ³		mm/hr	m ³ /s	m ³ /s	m ³		mm/hr	m ³ /s	m ³ /s	m ³		mm/hr	m ³ /s	m ³ /s	m ³	
		111 /3	111 /3	III			111 /3	111/5 111		,	111 /3	111 /3	III			111 /3	111 /3	- '''			111 /3	111 /3	- 111			111 /3	111 /3	-'''	-
1	174.18	0.35	0.04	Ω	15	225.07	0.45	0.05 10	19	260.01	0.52	0.06	11	22	298.22	0.66	0.08	14	28	334.55	0.80	0.09	17	34	353.96	0.89	0.11	18	39
2	153.52	0.31	0.04	23	12	198.85	0.40	0.05 10	15	229.94	0.46	0.06	33	18	264.99	0.58	0.08	42	22	296.30	0.80	0.09	51	27	316.38	0.89	0.11	56	31
2	137.71	0.28		34	0	178.75	0.36	0.05 29	12	206.87	0.40	0.06	53 51	14	239.26	0.53	0.08	64	18	266.91	0.71	0.09	79	22	286.90	0.79	0.11	87	26
3			0.04		9									12															
4	125.19	0.25	0.04	43	8	162.79	0.33	0.05 56	10	188.54	0.38	0.06	65		218.67	0.48	0.08	83	15	243.52	0.59	0.09	101	19	263.10	0.66	0.11	113	22
5	114.99	0.23	0.04	51	/	149.77	0.30	0.05 67	9	173.57	0.35	0.06	77	10	201.77	0.44	80.0	98	13	224.41	0.54	0.09	119	16	243.43	0.61	0.11	134	18
6	106.50	0.21	0.04	58	6	138.93	0.28	0.05 75	7	161.10	0.32	0.06	87	9	187.63	0.41	80.0	111	11	208.47	0.50	0.09	135	14	226.85	0.57	0.11	153	16
7	99.33	0.20	0.04	63	5	129.73	0.26	0.05 83	6	150.52	0.30	0.06	96	8	175.59	0.39	0.08	123	10	194.94	0.47	0.09	149	12	212.68	0.53	0.11	169	14
8	93.16	0.19	0.04	68	4	121.83	0.24	0.05 89	6	141.42	0.28	0.06	103	7	165.20	0.36	0.08	133	9	183.29	0.44	0.09	160	10	200.41	0.50	0.11	183	12
9	87.81	0.18	0.04	72	4	114.96	0.23	0.05 95	5	133.51	0.27	0.06	110	6	156.14	0.34	0.08	141	8	173.15	0.42	0.09	171	9	189.66	0.48	0.11	195	11
10	83.11	0.17	0.04	76	3	108.92	0.22	0.05 100	4	126.55	0.25	0.06	116	5	148.15	0.33	80.0	149	7	164.22	0.39	0.09	180	8	180.15	0.45	0.11	206	10
11	78.94	0.16	0.04	79	3	103.57	0.21	0.05 104	4	120.37	0.24	0.06	121	5	141.05	0.31	0.08	156	6	156.30	0.38	0.09	188	7	171.69	0.43	0.11	216	9
12	75.23	0.15	0.04	82	3	98.78	0.20	0.05 108	4	114.85	0.23	0.06	126	4	134.69	0.30	0.08	162	6	149.22	0.36	0.09	196	7	164.09	0.41	0.11	225	8
13	71.88	0.14	0.04	85	2	94.48	0.19	0.05 112	3	109.89	0.22	0.06	130	4	128.97	0.28	0.08	168	5	142.84	0.34	0.09	203	6	157.23	0.39	0.11	233	7
14	68.86	0.14	0.04	87	2	90.58	0.18	0.05 115	3	105.39	0.21	0.06	134	3	123.77	0.27	0.08	173	5	137.07	0.33	0.09	209	6	151.00	0.38	0.11	240	7
15	66.12	0.13	0.04	89	2	87.04	0.17	0.05 118	3	101.30	0.20	0.06	137	3	119.04	0.26	0.08	177	4	131.81	0.32	0.09	214	5	145.31	0.36	0.11	247	6
16	63.61	0.13	0.04	91	2	83.80	0.17	0.05 110	2	97.56	0.20	0.06	140	I 3	114.71	0.25	0.08	182	4	127.00	0.32	0.09	219	5	140.09	0.35	0.11	253	6
17	61.31	0.13	0.04	93	2	80.82	0.17	0.05 120	2	94.12	0.19	0.06	143] 3	110.72	0.23	0.08	186	4	122.58	0.31	0.09	224	4	135.29	0.33	0.11	258	5
18	59.19	0.12		95	2	78.08	0.16	0.05 125	2	90.95	0.18	0.06	146	2	107.05	0.24	0.08	189	2	118.50	0.28	0.09	228	4	130.86	0.34	0.11	263	5
19		0.12	0.04	96	1		0.15		2				148	2	107.03		0.08		3				232	4		0.33	0.11	268	3
	57.23		0.04			75.55			2	88.02	0.18	0.06		2		0.23		192	3	114.72	0.28	0.09			126.75				4
20	55.41	0.11	0.04	97	1	73.19	0.15	0.05 129	2	85.30	0.17	0.06	150	2	100.48	0.22	0.08	195	3	111.22	0.27	0.09	236	3	122.92	0.31	0.11	272	4
21	53.72	0.11	0.04	99	1	71.00	0.14	0.05 131	2	82.77	0.17	0.06	152	2	97.53	0.22	0.08	198	3	107.95	0.26	0.09	239	3	119.35	0.30	0.11	276	4
22	52.14	0.10	0.04	100	1	68.95	0.14	0.05 132	1	80.40	0.16	0.06	154	2	94.78	0.21	80.0	201	2	104.90	0.25	0.09	242	3	116.02	0.29	0.11	280	3
23	50.67	0.10	0.04	101	1	67.04	0.13	0.05 134	1	78.18	0.16	0.06	156	2	92.19	0.20	0.08	203	2	102.04	0.25	0.09	245	3	112.89	0.28	0.11	283	3
24	49.28	0.10	0.04	102	1	65.24	0.13	0.05 135	1	76.10	0.15	0.06	158	1	89.77	0.20	0.08	205	2	99.36	0.24	0.09	248	2	109.95	0.28	0.11	286	3
25	47.98	0.10	0.04	102	1	63.55	0.13	0.05 136	1	74.15	0.15	0.06	159	1	87.49	0.19	0.08	207	2	96.84	0.23	0.09	250	2	107.18	0.27	0.11	289	3
26	46.76	0.09	0.04	103	1	61.96	0.12	0.05 137	1	72.31	0.14	0.06	160	1	85.34	0.19	0.08	209	2	94.46	0.23	0.09	252	2	104.57	0.26	0.11	292	2
27	45.60	0.09	0.04	104	1	60.46	0.12	0.05 138	1	70.57	0.14	0.06	162	1	83.31	0.18	0.08	211	2	92.21	0.22	0.09	254	2	102.10	0.26	0.11	294	2
28	44.51	0.09	0.04	104	1	59.04	0.12	0.05 139	1	68.92	0.14	0.06	163	1	81.39	0.18	0.08	212	1	90.09	0.22	0.09	256	2	99.76	0.25	0.11	297	2
29	43.47	0.09	0.04	105	0	57.69	0.12	0.05 140	1	67.36	0.13	0.06	164	1	79.56	0.18	0.08	214	1	88.07	0.21	0.09	258	2	97.55	0.24	0.11	299	2
30	42.49	0.09	0.04	106	0	56.41	0.11	0.05 141	1	65.88	0.13	0.06	165	1	77.83	0.17	0.08	215	1	86.16	0.21	0.09	259	1	95.44	0.24	0.11	301	2
31	41.56	0.08	0.04	106	0	55.20	0.11	0.05 141	1	64.47	0.13	0.06	166	1	76.19	0.17	0.08	216	1	84.34	0.20	0.09	261	1	93.44	0.23	0.11	302	2
32	40.67	0.08	0.04	106	0	54.04	0.11	0.05 142	1	63.13	0.13	0.06	166	1	74.62	0.16	0.08	217	1	82.61	0.20	0.09	262	1	91.53	0.23	0.11	304	1
33	39.83	0.08	0.04	107	0	52.94	0.11	0.05 143	0	61.86	0.12	0.06	167	1	73.13	0.16	0.08	218	1	80.96	0.19	0.09	263	1	89.71	0.22	0.11	305	1
34	39.02	0.08	0.04	107	Ô	51.89	0.10	0.05 143	n	60.64	0.12	0.06	168	1 1	71.70	0.16	0.08	219	1	79.38	0.19	0.09	265	1	87.97	0.22	0.11	307	1
35	38.25	0.08	0.04	107	Ô	50.89	0.10	0.05 144	n	59.47	0.12	0.06	168	1 1	70.33	0.16	0.08	220	1	77.87	0.19	0.09	266	1	86.31	0.22	0.11	308	1
36	37.51	0.08	0.04	107	0	49.92	0.10	0.05 144	0	58.36	0.12	0.06	169	'n	69.03	0.15	0.08	221	1	76.43	0.18	0.09	266	1	84.71	0.21	0.11	309	1
37	36.81	0.07	0.04	108	0	49.01	0.10	0.05 144	0	57.29	0.12	0.06	169	0	67.78	0.15	0.08	221	1	75.05	0.18	0.09	267	1	83.19	0.21	0.11	310	1
38	36.13	0.07		108	0	48.12	0.10	0.05 144	0	56.27	0.11	0.06	170	0	66.58	0.15	0.08	222	1	73.73	0.18	0.09	268		81.73	0.21	0.11	310	1
39	35.49	0.07	0.04	108	0	47.28	0.09	0.05 145	0	55.29	0.11		170	0	65.43	0.13	0.08		,	72.46	0.16		269		80.32	0.20	0.11		1
			0.04		0				0			0.06		0				222	0			0.09		1				312	-
40	34.87	0.07	0.04	108	0	46.47	0.09	0.05 145	0	54.35	0.11	0.06	170	0	64.32	0.14	0.08	223	0	71.24	0.17	0.09	269	0	78.97	0.20	0.11	313	1
41	34.27	0.07	0.04	108	U	45.68	0.09	0.05 145	U	53.44	0.11	0.06	170	U	63.26	0.14	0.08	223	U	70.06	0.17	0.09	270	U	77.67	0.19	0.11	313	1
42	33.69	0.07	0.04	108	0	44.93	0.09	0.05 145	0	52.57	0.11	0.06	171	0	62.24	0.14	0.08	224	0	68.93	0.17	0.09	270	0	76.42	0.19	0.11	314	0
43	33.14	0.07	0.04	108	0	44.21	0.09	0.05 145	0	51.73	0.10	0.06	171	0	61.25	0.14	80.0	224	0	67.84	0.16	0.09	270	0	75.22	0.19	0.11	314	0
44	32.61	0.07	0.04	108	0	43.51	0.09	0.05 145	0	50.92	0.10	0.06	171	0	60.30	0.13	80.0	224	0	66.80	0.16	0.09	271	0	74.05	0.19	0.11	315	0
45	32.09	0.06	0.04	108	0	42.84	0.09	0.05 146	0	50.14	0.10	0.06	171	0	59.39	0.13	0.08	224	0	65.78	0.16	0.09	271	0	72.93	0.18	0.11	315	0
46	31.60	0.06	0.04	108	0	42.19	0.08	0.05 146	0	49.38	0.10	0.06	171	0	58.50	0.13	0.08	224	0	64.81	0.16	0.09	271	0	71.85	0.18	0.11	315	0
47	31.12	0.06	0.04	108	0	41.57	0.08	0.05 145	0	48.66	0.10	0.06	171	0	57.65	0.13	0.08	225	0	63.86	0.15	0.09	271	0	70.81	0.18	0.11	315	0
48	30.66	0.06	0.04	108	0	40.96	0.08	0.05 145	0	47.95	0.10	0.06	171	0	56.82	0.13	0.08	225	0	62.95	0.15	0.09	271	0	69.80	0.17	0.11	315	0
49	30.21	0.06	0.04	108	0	40.37	0.08	0.05 145	0	47.27	0.09	0.06	171	0	56.02	0.12	0.08	225	0	62.07	0.15	0.09	271	0	68.82	0.17	0.11	315	0
50	29.78	0.06	0.04	107	ó	39.81	0.08	0.05 145	0	46.61	0.09	0.06	171	Ō	55.25	0.12	0.08	225	Ö	61.21	0.15	0.09	271	Ö	67.87	0.17	0.11	315	Ô
	200	0.00	0.04		Ĭ	00.01	0.00		Ĭ		0.00	0.00		l	00.20	0	5.55		ĭ	3	30	0.00		I	0	0	3	3.0	Ĭ
	l .									ı																			

Maximum Storage Volume

DATE: FILE: CONTRACT/PROJECT:

COMPLETED BY:

ASA Development Inv. Harvie Roard, Barrie Quantity Control Volume Calculations - Block B

Modified Rational Method Parameters

	Pre Development Area (ha)	Post Development Area (ha)	Time of Concentration (min)	Time Increments (min)	Pre Development Runoff Coefficient	Post Development Runoff Coefficient
Γ	2.40	0.79	10	5	0.22	0.68

Note: Refer to page Calculation of Runoff Coefficients for detailed calculations of Modified Rational Method parameters.

Pre-Development Runoff Rate

	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
С	0.22	0.22	0.22	0.22	0.22	0.22
Ci	1.00	1.00	1.00	1.10	1.20	1.25
I	83.11	108.92	126.55	148.15	164.22	180.15
Α	2.40	2.40	2.40	2.40	2.40	2.40
Q	0.12	0.16	0.19	0.24	0.29	0.33

Note: Q= 0.00278CC_iIA

Rainfall Station	Barrie

SWM Pond Design Input

Storm Event (yrs)	Chicago Storm Coefficient	Chicago Storm Coefficient	Chicago Storm Coefficient	Allowable Outflow (m3/s)	Post Development Runoff Coefficient			
2	678.085	4.699	0.781	0.009	0.68			
5	853.608	4.699	0.766	0.011	0.68			
10	975.865	4.699	0.760	0.013	0.68			
25	1146.275	4.922	0.757	0.017	0.74			
50	1236.152	4.699	0.751	0.021	0.81			
100	1426.408	5.273	0.759	0.024	0.84			

Results

Storm Event	Storage	Time
(yrs)	(m ³)	(min)
2	135	165
5	186	180
10	220	195
25	291	205
50	354	210
100	408	205

Note: Storage volume calculated as per Hydrology Handbook, Second Edition, American Society of Civil Engineers, 1996

		2 1	Year		ı		5 Year		ı	1	10	Year		ı	1	25 Y	'ear				50 Ye	aar	-			100 Ye	925	
Time	Intensity	Inflow	Outflow	Storage	Difference	Intensity		utflow Storage	Difference	Intensity	Inflow	Outflow	Storage	Difference	Intensity			Storage	Difference	Intensity	Inflow		Storage	Difference	Intensity			Storage Differen
(min)	mm/hr	m³/s	m³/s	3	Dillerence	mm/hr			Dilleferice	mm/hr	m ³ /s	m³/s	Siorage 3	Dillefelice	mm/hr		m ³ /s	m ³	Dillelelice	mm/hr	m³/s	m ³ /s	m ³	Dillelelice	mm/hr	m ³ /s	m ³ /s	3
	11111/111	m /s	m /s	m		11111/111	m /s	m³/s m³		11111/111	m /s	m /s	m'		11111/111	m³/s	m /s	m.		11111/111	m /s	m /s	m.		11111/111	m /s	m /s	m.
5	114.99	0.17	0.01	47	21	149.77	0.22	0.01 61	29	173.57	0.26	0.01	71	33	201.77	0.33	0.02	91	44	224.41	0.40	0.02	110	52	243.43	0.45	0.02	125 61
10	83.11	0.12	0.01	69	13	108.92		0.01 90	18	126.55	0.19	0.01	105	21	148.15	0.24	0.02	135	27	164.22	0.29	0.02	163	33	180.15	0.33	0.02	186 38
15	66.12	0.10	0.01	82	9	87.04		0.01 108	12	101.30	0.15	0.01	125	15	119.04	0.19	0.02	162	19	131.81	0.23	0.02	195	23	145.31	0.27	0.02	225 27
20	55.41	0.08	0.01	91	7	73.19		0.01 120	9	85.30	0.13	0.01	140	11	100.48	0.16	0.02	181	15	111.22	0.20	0.02	219	18	122.92	0.23	0.02	252 21
25	47.98	0.07	0.01	98	5	63.55		0.01 129	7	74.15	0.11	0.01	151	9	87.49	0.14	0.02	196	12	96.84	0.17	0.02	237	14	107.18	0.20	0.02	273 17
30	42.49	0.06	0.01	103	4	56.41		0.01 137	6	65.88	0.10	0.01	160	7	77.83	0.13	0.02	208	10	86.16	0.15	0.02	251	12	95.44	0.18	0.02	290 14
35	38.25	0.06	0.01	107	4	50.89		0.01 143	5	59.47	0.09	0.01	167	6	70.33	0.11	0.02	218	8	77.87	0.14	0.02	263	10	86.31	0.16	0.02	304 12
40	34.87	0.05	0.01	111	3	46.47		0.01 148	4	54.35	0.08	0.01	173	5	64.32	0.10	0.02	226	7	71.24	0.13	0.02	273	9	78.97	0.15	0.02	316 10
45	32.09	0.05	0.01	114	3	42.84		0.01 153	4	50.14	0.07	0.01	179	5	59.39	0.10	0.02	233	6	65.78	0.12	0.02	282	8	72.93	0.14	0.02	326 9
50	29.78	0.04	0.01	117	2	39.81		0.01 156	3	46.61	0.07	0.01	183	4	55.25	0.09	0.02	239	5	61.21	0.11	0.02	289	7	67.87	0.13	0.02	335 8
55	27.81	0.04	0.01	119	2	37.23		0.01 160	3	43.62	0.06	0.01	187	4	51.72	0.08	0.02	245	5	57.32	0.10	0.02	296	6	63.55	0.12	0.02	342 7
60	26.12	0.04	0.01	121	2	35.00		0.01 163	3	41.03	0.06	0.01	191	3	48.68	0.08	0.02	250	4	53.96	0.10	0.02	302	5	59.82	0.11	0.02	349 6
65	24.64	0.04	0.01	123	2	33.06		0.01 165	2	38.77	0.06	0.01	194	3	46.02	0.08	0.02	254	4	51.03	0.09	0.02	307	5	56.56	0.10	0.02	355 6
70	23.35	0.03	0.01	124	1	31.35		0.01 168	2	36.78	0.05	0.01	197	3	43.67	0.07	0.02	258	3	48.44	0.09	0.02	312	4	53.69	0.10	0.02	361 5
75	22.19	0.03	0.01	126	1	29.84		0.01 170	2	35.02	0.05	0.01	200	2	41.59	0.07	0.02	261	3	46.14	0.08	0.02	316	4	51.13	0.09	0.02	366 4
80	21.16	0.03	0.01	127	1	28.48		0.01 172	2	33.44	0.05	0.01	202	2	39.72	0.06	0.02	265	3	44.08	0.08	0.02	320	4	48.84	0.09	0.02	370 4
85	20.24	0.03	0.01	128	1	27.25	0.04	0.01 173	2	32.01	0.05	0.01	204	2	38.04	0.06	0.02	267	3	42.22	0.08	0.02	324	3	46.77	0.09	0.02	374 4
90	19.40	0.03	0.01	129	1	26.14		0.01 175	1	30.72	0.05	0.01	206	2	36.51	0.06	0.02	270	2	40.54	0.07	0.02	327	3	44.90	0.08	0.02	378 3
95	18.63	0.03	0.01	130	1	25.13	0.04	0.01 176	1	29.54	0.04	0.01	208	2	35.12	0.06	0.02	272	2	39.00	0.07	0.02	330	3	43.19	0.08	0.02	381 3
100	17.94	0.03	0.01	131	1	24.21	0.04	0.01 177	1	28.46	0.04	0.01	209	1	33.84	0.06	0.02	274	2	37.59	0.07	0.02	333	2	41.62	0.08	0.02	384 3
105	17.29	0.03	0.01	131	1	23.36	0.03	0.01 179	1	27.47	0.04	0.01	211	1	32.67	0.05	0.02	276	2	36.30	0.06	0.02	335	2	40.18	0.07	0.02	387 3
110	16.70	0.02	0.01	132	1	22.58	0.03	0.01 180	1	26.55	0.04	0.01	212	1	31.59	0.05	0.02	278	2	35.10	0.06	0.02	337	2	38.85	0.07	0.02	390 2
115	16.15	0.02	0.01	133	0	21.85		0.01 180	1	25.71	0.04	0.01	213	1	30.59	0.05	0.02	280	1	34.00	0.06	0.02	339	2	37.62	0.07	0.02	392 2
120	15.65	0.02	0.01	133	0	21.18		0.01 181	1	24.92	0.04	0.01	214	1	29.66	0.05	0.02	281	1	32.97	0.06	0.02	341	2	36.47	0.07	0.02	394 2
125	15.17	0.02	0.01	133	0	20.55		0.01 182	1	24.19	0.04	0.01	215	1	28.79	0.05	0.02	283	1	32.01	0.06	0.02	343	2	35.41	0.07	0.02	396 2
130	14.73	0.02	0.01	134	0	19.96		0.01 183	1	23.50	0.03	0.01	216	1	27.98	0.05	0.02	284	1	31.11	0.06	0.02	344	1	34.41	0.06	0.02	398 2
135	14.32	0.02	0.01	134	0	19.41		0.01 183	0	22.86	0.03	0.01	216	1	27.22	0.04	0.02	285	1	30.27	0.05	0.02	346	1	33.47	0.06	0.02	399 1
140	13.93	0.02	0.01	134	0	18.89		0.01 184	0	22.26	0.03	0.01	217	1	26.50	0.04	0.02	286	1	29.48	0.05	0.02	347	1	32.59	0.06	0.02	401 1
145	13.57	0.02	0.01	134	0	18.41		0.01 184	0	21.69	0.03	0.01	218	1	25.83	0.04	0.02	287	1	28.74	0.05	0.02	348	1	31.77	0.06	0.02	402 1
150	13.22	0.02	0.01	134	0	17.95		0.01 184	0	21.15	0.03	0.01	218	0	25.20	0.04	0.02	287	1	28.04	0.05	0.02	349	1	30.99	0.06	0.02	403 1
155	12.90	0.02	0.01	135	0	17.52		0.01 185	0	20.65	0.03	0.01	219	0	24.60	0.04	0.02	288	1	27.38	0.05	0.02	350	1	30.25	0.06	0.02	404 1
160	12.59	0.02	0.01	135	0	17.11		0.01 185	0	20.17	0.03	0.01	219	0	24.03	0.04	0.02	289	1	26.75	0.05	0.02	351	1	29.55	0.05	0.02	405 1
165	12.30	0.02	0.01	135 135	0	16.72		0.01 185	0	19.72	0.03	0.01	219	0	23.50	0.04	0.02 0.02	289	0	26.16	0.05	0.02	352	1	28.89	0.05	0.02	405 1
170	12.02	0.02	0.01		0	16.36		0.01 185 0.01 185	0	19.29	0.03	0.01	220	0	22.99	0.04		290	0	25.59	0.05	0.02	352	1	28.27	0.05	0.02	406 1
175 180	11.76 11.51	0.02 0.02	0.01	135 135	0	16.01 15.67		0.01 185 0.01 185	0	18.88 18.49	0.03 0.03	0.01 0.01	220 220	0	22.50 22.04	0.04 0.04	0.02 0.02	290 290	0	25.06 24.54	0.04 0.04	0.02	353 353	0	27.67 27.10	0.05 0.05	0.02 0.02	407 0 407 0
185	11.51	0.02	0.01	135	0	15.57		0.01 185 0.01 186	, v	18.49	0.03	0.01	220	0	21.60	0.04	0.02	290 290	0	24.54	0.04	0.02	353 354	0	26.56	0.05	0.02	407 0
190	11.05	0.02	0.01 0.01	134	0	15.05		0.01 185	l v	17.76	0.03	0.01	220	0	21.00	0.04	0.02	290 291	0	23.59	0.04	0.02	354 354	0	26.04	0.05	0.02	408 0
190	10.83	0.02	0.01	134	0	14.76		0.01 185	l ő	17.76	0.03	0.01	220	l v	20.77	0.03	0.02	291	0	23.59	0.04	0.02	354 354	0	25.55	0.05	0.02	408 0
200	10.62	0.02	0.01	134	0	14.49		0.01 185	l ő	17.10	0.03	0.01	220	ň	20.77	0.03	0.02	291	n	22.72	0.04	0.02	354	0	25.07	0.05	0.02	408 0
205	10.43	0.02	0.01	134	0	14.22		0.01 185	0	16.79	0.03	0.01	220	0	20.39	0.03	0.02	291	0	22.72	0.04	0.02	354	0	24.62	0.05	0.02	408 0
210	10.24	0.02	0.01	134	0	13.97		0.01 185	0	16.49	0.02	0.01	220	0	19.67	0.03	0.02	291	0	21.92	0.04	0.02	354	0	24.02	0.03	0.02	408 0
215	10.05	0.02	0.01	133	o o	13.72		0.01 185	l ő	16.20	0.02	0.01	220	l ő	19.33	0.03	0.02	291	n	21.55	0.04	0.02	354	0	23.76	0.04	0.02	408 0
220	9.88	0.01	0.01	133	ő	13.49		0.01 185	l ŏ	15.93	0.02	0.01	220	o o	19.00	0.03	0.02	290	0	21.18	0.04	0.02	354	0	23.36	0.04	0.02	408 0
220	0.00	0.0.	0.01		Ŭ		0.02		Ĭ	10.00	0.02	0.01				0.00	0.02	200		2	0.0.	0.02			20.00	0.0.	3.02	

Maximum Storage Volume

APPENDIX D

WATER BALANCE CALCULATIONS

ASA Development Inv. Harvie Roard, Barrie Pre-Development Water Balance

		S	ite		
Catchment Designation		Gravel/			
Outomient Besignation	Grassed	Paved	Building	Total	
Area	23133	369	507	24009	
Pervious Area	23133	0	0	23133	
Impervious Area	0 tration Facto	369	507	876	
Topography Infiltration Factor	0.3	0	0		(From MOE Table 3.1 for Flat Land)
	0.5	U	0		(From MOE Table 3.1 for Medium
Soil Infiltration Factor	0.4	0	0		combinations of clay and loam)
Land Cover Infiltration Factor	0.1	0	0		
MOE Infiltration Factor Actual Infiltration Factor	0.8 0.8	0 0	0		
Run-Off Coeffiecient	0.6	1	1		
Runoff from Impervious Surfaces	0.2	0.95	0.95		
	s (per Unit A		0.00		
Precipitation	932.9	932.9	932.9	932.9	(Precipitation values from Environment Canada)
Run-On	0	0	0	0	Callada)
Other Inputs	0	0	0	0	
Total Inputs	932.9	932.9	932.9	932.9	
	ts (per Unit				
Precipitation Surplus	371.9	886.3	886.3	390.7	
Net Surplus	371.9	886.3	886.3	390.7	
Evapotranspiration	561.0	46.6	46.6	542.2	
Infiltration	297.5	0.0	0.0	0.0 286.7	
Rooftop Infiltration	0.0	0.0	0.0	0.0	
Total Infiltration	297.5	0.0	0.0	286.7	
Runoff Pervious Areas	74.4	0.0	0.0	71.7	
Runoff Impervious Areas	0.0	886.3	886.3	32.3	
Total Runoff	74.4	886.3	886.3	104.0	
Total Outputs	932.9	932.9	932.9	932.9	
Difference (Inputs - Outputs)	0.0	0.0	0.0	0.0	
	uts (Volume				
Precipitation	21581	344	473	22398	
Run-On	0	0 0	0	0 0	
Other Inputs Total Inputs	21581	344	473	22398	
	puts (Volum		473	22330	
Precipitation Surplus	8603	327	449	9379	
Net Surplus	8603	327	449	9379	
Evapotranspiration	12978	17	24	13019	
Infiltration	6883	0	0	6883	
Rooftop Infiltration	0	0	0	0	
Total Infiltration	6883	0	0	6883	
Runoff Pervious Areas	1721	0	0	1721	
Runoff Impervious Areas	0	327	449	776	
Total Runoff	1721	327	449	2497	
Total Outputs	21581	344	473	22398	
Difference (Inputs - Outputs)	0	0	0	0	

Note: Highlighted cells are input cells.

ASA Development Inv. Harvie Roard, Barrie Post-Development Water Balance (No Infiltration)

		S	ite		
Catchment Designation					
	Grassed	Paved	Building	Total	
Area	8911	8316	6782	24009	
Pervious Area	8911	0	0	8911	
Impervious Area	0	8316	6782	15098	
	tration Facto		1 0		(F. MOET II 046 FI (I)
Topography Infiltration Factor	0.3	0	0		(From MOE Table 3.1 for Flat Land) (From MOE Table 3.1 for Medium
Soil Infiltration Factor	0.4	0	0		combinations of clay and loam)
Land Cover Infiltration Factor	0.1	0	0		
MOE Infiltration Factor	0.8	0	0		
Actual Infiltration Factor	0.8	0	0		
Run-Off Coefficient	0.2 0	1	1		
Runoff from Impervious Surfaces	s (per Unit A	0.95	0.95		
			000.0	000.0	(Precipitation values from Environment
Precipitation	932.9	932.9	932.9	932.9	Canada)
Run-On	0	0	0	0	
Other Inputs	0	0	0	0	
Total Inputs	932.9	932.9	932.9	932.9	
Precipitation Surplus	ts (per Unit / 371.9	886.3	886.3	695.3	
Net Surplus	371.9	886.3	886.3	695.3	
Evapotranspiration	561.0	46.6	46.6	237.6	
	001.0	10.0	10.0	201.0	
Infiltration	297.5	0.0	0.0	110.4	
Rooftop Infiltration	0.0	0.0	0.0	0.0	
Total Infiltration	297.5	0.0	0.0	110.4	
Runoff Pervious Areas	74.4	0.0	0.0	27.6	
Runoff Impervious Areas	0.0	886.3	886.3	557.3	
Total Runoff	74.4	886.3	886.3	584.9	
Total Outputs	932.9	932.9	932.9	932.9	
Difference (Inputs - Outputs)	0.0	0.0	0.0	0.0	
	uts (Volume				
Precipitation	8313	7758	6327	22398	
Run-On	0	0	0	0	
Other Inputs Total Inputs	0 8313	0 7758	0 6327	0	
	outs (Volum		0321	22398	
Precipitation Surplus	3314	7370	6011	16695	
Net Surplus	3314	7370	6011	16695	
Evapotranspiration	4999	388	316	5703	
Infiltration	2651	0	0	2651	
Rooftop Infiltration	0	0	0	0	
Total Infiltration	2651	0	0	2651	
Runoff Pervious Areas	663	0	0	663	
Runoff Impervious Areas	0	7370	6011	13381	
Total Runoff	663	7370	6011	14043	
Total Outputs	8313	7758	6327	22398	
Difference (Inputs - Outputs)	0	0	0	0	

Note: Highlighted cells are input cells.

ASA Development Inv. Harvie Roard, Barrie Post Development Water Balance (With Infiltration)

		Si	te		1
Catchment Designation		<u> </u>			1
Catchment Designation	Grassed	Impervious	Building (with Infil.)	Total	
Area	8911	8316	6782	24009	
Pervious Area	8911	0	0	8911	
Impervious Area	0 filtration Fac	8316	6782	15098	4
Topography Infiltration Factor	0.3	0	0		(From MOE Table 3.1 for Flat Land)
					(From MOE Table 3.1 for Medium
Soil Infiltration Factor	0.4	0	0		combinations of clay and loam)
Land Cover Infiltration Factor	0.1	0	0		
MOE Infiltration Factor Actual Infiltration Factor	0.8 0.8	0	0		
Run-Off Coefficcient	0.6	1	1		
Runoff from Impervious Surfaces	0.2	0.95	0.95		
	ıts (per Unit		0.00		1
Precipitation	932.9	932.9	932.9	932.9	(Precipitation values from Environment Canada)
Run-On	0	0	0	0	Cariada)
Other Inputs	0	0	Ö	0	
Total Inputs	932.9	932.9	932.9	932.9	1
Outp	uts (per Uni	Area)			
Precipitation Surplus	371.9	886.3	886.3	695.3	
Net Surplus	371.9	886.3	886.3	695.3	
Evapotranspiration	561.0	46.6	46.6	237.6	
Infiltration	297.5	0.0	0.0	110.4	
Rooftop Infiltration	0.0	0.0	624.0	176.3	Depth of rainfall over the rooftop required to be infiltrated to achieve water balance.
Total Infiltration	297.5	0.0	624.0	286.7	to be inimitated to achieve water balance.
Runoff Pervious Areas	74.4	0.0	0.0	27.6	
Runoff Impervious Areas	0.0	886.3	262.3	381.0	
Total Runoff	74.4	886.3	262.3	408.7	
Total Outputs	932.9	932.9	932.9	932.9	
Difference (Inputs - Outputs)	0.0	0.0	0.0	0.0	
	puts (Volum		0007	00000	
Precipitation Run-On	8313 0	7758 0	6327 0	22398 0	
Other Inputs	0	0	0	0	
Total Inputs	8313	7758	6327	22398	
	tputs (Volur				
Precipitation Surplus	3314	7370	6011	16695	1
Net Surplus	3314	7370	6011	16695	
Evapotranspiration	4999	388	316	5703	
Infiltration	2651	0	0	2651	
Rooftop Infiltration	0	0	4232	4232	
Total Infiltration	2651	0	4232	6883	
Runoff Pervious Areas	663	0	0	663	
Runoff Impervious Areas	0	7370	1779	9149	
Total Runoff	663	7370	1779	9811	
Total Outputs	8313	7758	6327	22398	
Difference (Inputs - Outputs)	0	0	0	0	J

Note: Highlighted cells are input cells.

ASA Development Inv. Harvie Roard, Barrie Water Balance Calculations

Annual Rainfall Depth Req'd

Required Rainfall Depth = 624.0 mm (From Post-Development Water Balance (With Infiltration))

Find Percent of Annual Rainfall that Req'd Rainfall Depth represents:

From MOE Figure C-2, 67% of annual rainfall occurs for storm events of 10 mm or less.

Find storage volume required for rainfall events of 13 mm to rooftop infiltration gallery:

Minimum Infiltration Volume as per City of Barrie Storm Drainage and Stormwater Management Policies and Design Guidelines Section 4.1.3 is as follows:

Storage Volume Required = Site Area x 5 mm
=
$$24,009$$
 x 0.005
= 120 m³

It is proposed to infiltrate the 25 mm storm event over the rooftop areas, resulting in a storage volume of 172m³ exceeding the City of Barrie Criteria. Therefore, water balance for the site is achieved.

APPENDIX E

PHOSPHORUS CALCULATIONS

Table 2. Land-Use Specific Phosphorus Export Coefficients (kg/ha/yr) for Lake Simcoe Subwatersheds

				Ph	osphor	us Exp	ort (kg	/ha/yr))			
Subwatershed		ē	olf	High In Develo		ity ent		pad		c		-e
	Cropland	Hay-Pasture	Sod Farm/Golf Course	Commercial /Industrial	Residential	Low Intensity Development	Quarry	Unpaved Road	Forest	Transition	Wetland	Open Water
		ı	Monito	red Sub	watersh	neds						
Beaver River	0.22	0.04	0.01	1.82	1.32	0.19	0.06	0.83	0.02	0.04	0.02	0.26
Black River	0.23	0.08	0.02	1.82	1.32	0.17	0.15	0.83	0.05	0.06	0.04	0.26
East Holland River	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Hawkestone Creek	0.19	0.10	0.06	1.82	1.32	0.09	0.10	0.83	0.03	0.04	0.03	0.26
Lovers Creek	0.16	0.07	0.17	1.82	1.32	0.07	0.06	0.83	0.06	0.06	0.05	0.26
Pefferlaw/Uxbridge Brook	0.11	0.06	0.02	1.82	1.32	0.13	0.04	0.83	0.03	0.04	0.04	0.26
Whites Creek	0.23	0.10	0.42	1.82	1.32	0.15	0.08	0.83	0.10	0.11	0.09	0.26
		Ur	nmonit	ored Su	ıbwater	sheds						
Barrie Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
GeorginaCreeks	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Hewitts Creek	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Innisfil Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Maskinonge River	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Oro Creeks North	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26
Oro Creeks South	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Ramara Creeks	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
Talbot/Upper Talbot River	0.19	0.07	0.12	1.82	1.32	0.13	0.08	0.83	0.05	0.06	0.05	0.26
West Holland River	0.36	0.12	0.24	1.82	1.32	0.13	0.08	0.83	0.10	0.16	0.10	0.26

3.2.2 Methods - Calculating Pre-development Conditions

The pre-development or "existing conditions" phosphorus load is calculated through the following steps, by the user:

- 1. The user will rely on the information documented and detailed in the EIS for the development that will be used to support the planning application to the Municipality.
- 2. The user will choose the subwatershed or geographic area of the Lake Simcoe watershed in which the development is proposed from a drop down list provided by the database. If the development area spans two or more subwatersheds, the areas within each subwatershed should be modelled separately.
- 3. Specific land use classifications will be delineated and their boundaries overlain on an orthographic aerial photograph that shall be included in their submission.

that class of BMP. In two cases, (sorbtive media interceptors and soakways/infiltration trenches), although there are no Ontario phosphorus removal efficiencies reported in the review materials, the techniques are not limited by geography. The reported ranges in efficiency for these BMP classes are narrow so the median efficiency is chosen as a representative phosphorus removal efficiency. In all other cases, there are unacceptable regional differences and wide ranges in efficiencies that would not support the derivation of single representative phosphorus removal efficiencies. In the case of dry swales, the non-Ontario removal efficiencies may be usable, but the range of reported values is large such that it will be necessary to identify design criteria that will limit the range in efficiencies for this class of BMPs before a value can be chosen.

Table 3. Phosphorus Removal Efficiencies for Major Classes of BMPs Using the Decision Tree (Figure 5)

BMP Class	Reference IDs ¹	Phosp	orted phorus loval ncy (%)	Relevant to Ontario?	Range <40%?	Are Non- Ontario values	Possible design criteria?	Median % Removal Efficiency
		Min	Max	a C		acceptable?		•
	Post-development BMPs							
Bioretention Systems	8-10, 12,13, 34- 38, 40	-1552	80	no	no	no	No	none
Constructed Wetlands	104, 106, 109	72	87	yes	yes			77
Dry Detention Ponds	104, 109	0	20	no	yes	yes		10
Dry Swales	24, 26-32	-216	94	no	no	no	possible	none
Enhanced Grass/Water Quality Swales	21, 104	34	55	no	yes	no	No	none
Flow Balancing Systems	106	7	7	no	?	yes	Min data	77
Green Roofs	2	-2	48	no	no	no	No	none
Hydrodynamic Devices	109	-	8	no	?	yes		none
Perforated Pipe Infiltration/Exfiltration Systems	7, 4	81	93	yes	yes			87
Sand or Media Filters	104, 109	30	59	no	yes	yes		45
Soakaways - Infiltration Trenches	6, 104	50	70	no	yes	yes		60
Sorbtive Media Interceptors	111	78	80	no	yes	yes		79
Underground Storage	106	2	5	no	?	yes	Min data	25
Vegetated Filter Strips/Stream Buffers	6, 42, 104	60	70	no	yes	yes	Yes	65
Wet Detention Ponds	104-106, 109	42	85	yes	yes			63

Notes: ¹References associated with IDs are provided in Appendix 7.

ASA Development Inv. Harvie Roard, Barrie Phosphorus Budget

Barrie Creeks	Low Intensity Development	Forest	High Intensity Residential	
Phosphorus Export (kg/ha/year)	0.13	0.05	1.32	

Pre-Development Condition

	Low Intensity Development	Forest	High Intensity Residential
Area (ha)	1.32	1.08	0.00
Total P (kg)	0.17	0.05	0.00

Total Pre-Development P (kg) 0.23

Post-Development Condition (Uncontrolled):

	Low Intensity Development	Forest	High Intensity Residential
Area (ha):	0.00	0.00	2.40
Гotal P (kg) :	0.00	0.00	3.17

Total Uncontrolled Post-Development (kg): 3.17

Post-Development Condition (Controlled):

Untreated Area	Low Intensity Development	Forest	High Intensity Residential
Area (ha):	0.00	0.00	1.07
Total P (kg) :	0.00	0.00	1.41
Area Draining to Underground Infiltration & Pavers	Low Intensity Development	Forest	High Intensity Residential
Area Draining to Underground Infiltration & Pavers Area (ha):	,	Forest 0.00	,

Soakaway Infiltration Rooftops

COUNTRY THE COURT	- to o i to p o
Total P (kg):	0.90
Soakaway Infiltration Proficiency (%):	60
P Removed (kg):	0.54
P Remaining (kg):	0.36

Sand or Media Filters Permeable Pavers

Total P (kg):	0.81
Sand or Media Filters Proficiency (%):	45
P Removed (kg):	0.37
P Remaining (kg):	0.45

Total Post-Development P (kg): 2.21

APPENDIX F

LETTERS TO UTILITIES

September 23, 2021 File:21092

Lorraine Cibirka Attention:

Bell Canada Access Network Design 2nd Floor, 136 Bayfield Street Barrie, ON L4M 3B1

Dear Lorraine,

Re: **Proposed Residential Development**

108, 116 and 122 Harvie Road, City of Barrie

Request for Confirmation - Bell Canada Servicing

We are currently preparing a Functional Servicing Report to examine the infrastructure requirements for a proposed residential development located at 108, 116 and 122 Harvie Road in the City of Barrie. The development proposes construction of 128 units consisting of a 4-storey residential building having 51 units, 12 single family townhomes and 11 townhouse blocks with 65 units. The site is currently three existing residential properties, and the proposed development can be found on the attached Site Plan.

We request that, if available, you provide us your existing servicing and plan in this area, and we would appreciate any comments you could provide on the serviceability of the proposed development.

We thank you in advance for your assistance and co-operation in providing the background data. If you have any questions regarding the enclosed or require any additional information, please feel free to give me a call at (705) 719-4785 ext. 233.

Regards,

PEARSON ENGINEERING LTD.

April Cleaves, C.E.T.

September 23, 2021 File:21092

Attention: David Smith

Enbridge 10 Churchill Dr. Barrie ON L4N 8Z5

Dear David,

Re: Proposed Residential Development

108, 116 and 122 Harvie Road, City of Barrie Request for Confirmation – Enbridge servicing

We are currently preparing a Functional Servicing Report to examine the infrastructure requirements for a proposed residential development located at 108, 116 and 122 Harvie Road in the City of Barrie. The development proposes construction of 128 units consisting of a 4-storey residential building having 51 units, 12 single family townhomes and 11 townhouse blocks with 65 units. The site is currently three existing residential properties, and the proposed development can be found on the attached Site Plan.

We request that, if available, you provide us your existing servicing and plan in this area, and we would appreciate any comments you could provide on the serviceability of the proposed development.

We thank you in advance for your assistance and co-operation in providing the background data. If you have any questions regarding the enclosed or require any additional information, please feel free to give me a call at (705) 719-4785 ext. 233.

Regards,

PEARSON ENGINEERING LTD.

April Cleaves, B.A. Tech., C.E.T.

September 24, 2021 File:21092

Attention: **Stephen Cranley**

Power Stream Inc. 55 Patterson Road Barrie, ON L4N 3W2

Dear Stephen,

Re: **Proposed Residential Development**

> 108, 116 and 122 Harvie Road, City of Barrie Request for Confirmation - Electric servicing

We are currently preparing a Functional Servicing Report to examine the infrastructure requirements for a proposed residential development located at 108, 116 and 122 Harvie Road in the City of Barrie. The development proposes construction of 128 units consisting of a 4-storey residential building having 51 units, 12 single family townhomes and 11 townhouse blocks with 65 units. The site is currently three existing residential properties, and the proposed development can be found on the attached Site Plan.

We request that, if available, you provide us your existing servicing and plan in this area, and we would appreciate any comments you could provide on the serviceability of the proposed development.

We thank you in advance for your assistance and co-operation in providing the background data. If you have any questions regarding the enclosed or require any additional information, please feel free to give me a call at (705) 719-4785 ext. 233.

Regards,

PEARSON ENGINEERING LTD.

April Cleaves, B.A. Tech., C.E.T.

September 24, 2021 File:21092

Attention: Xinyi Wang

Rogers Cable 1 Sperling Drive Barrie, Ontario L4M 6B8

Dear Xinyi,

Re: Proposed Residential Development

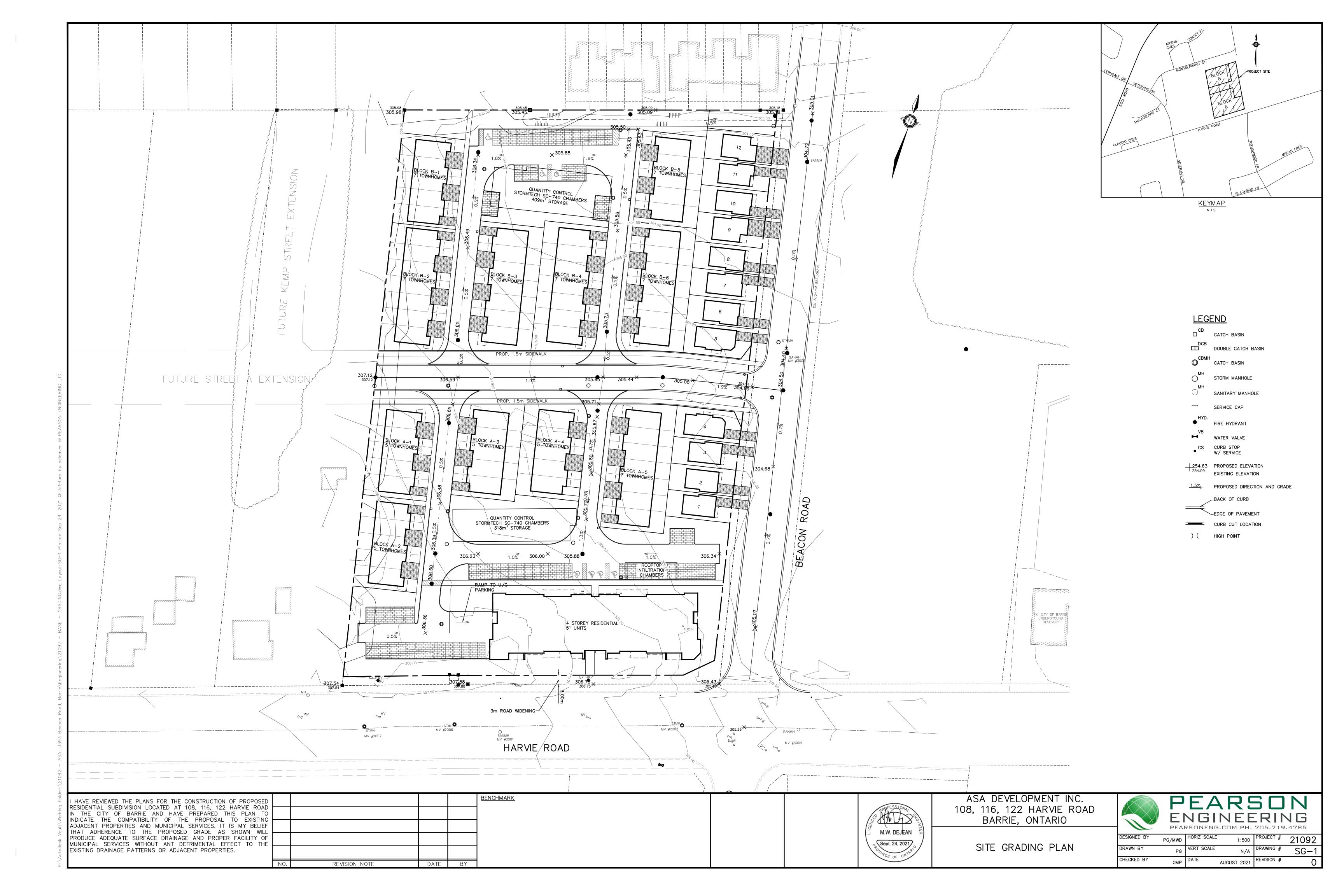
108, 116 and 122 Harvie Road, City of Barrie Request for Confirmation – Rogers servicing

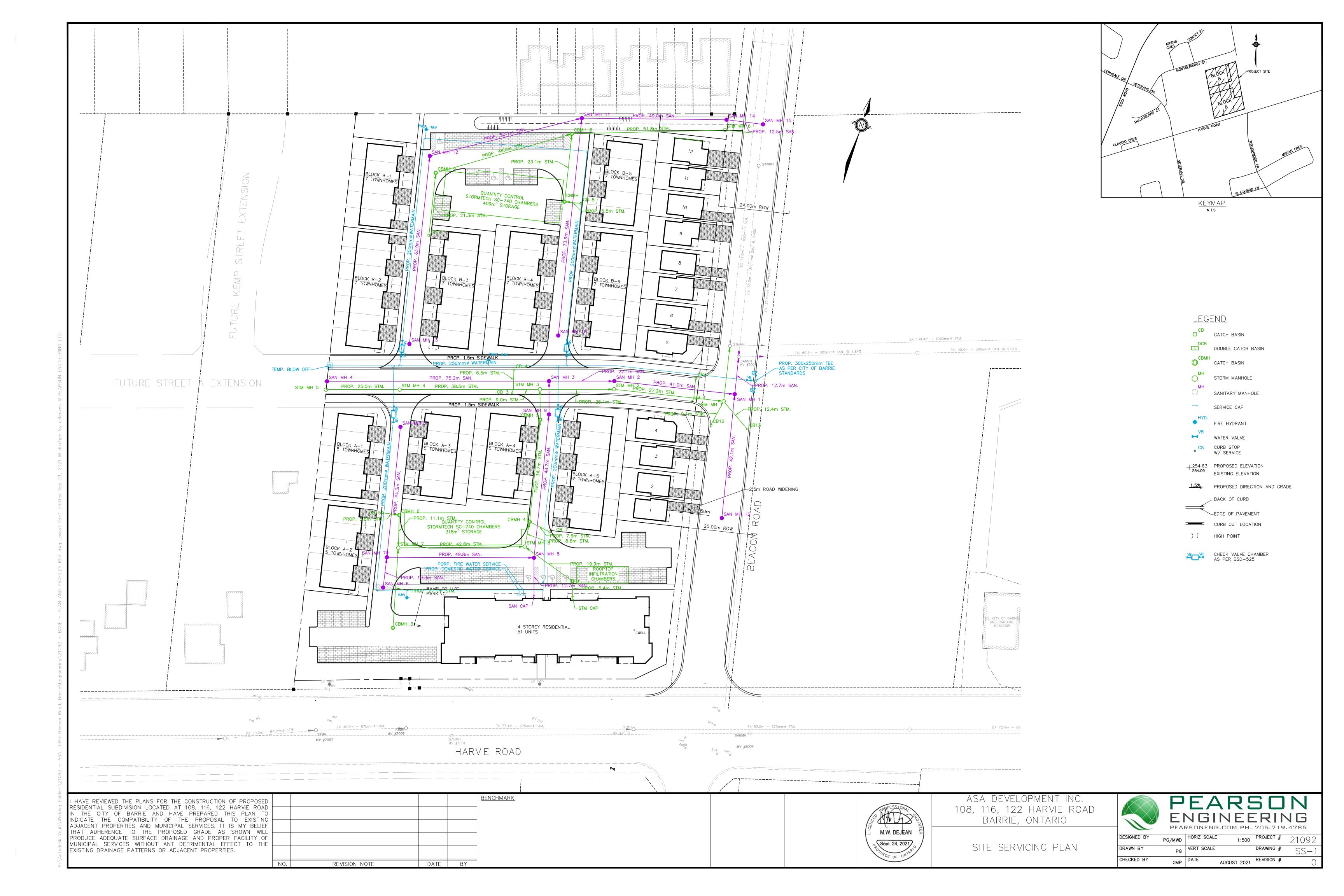
We are currently preparing a Functional Servicing Report to examine the infrastructure requirements for a proposed residential development located at 108, 116 and 122 Harvie Road in the City of Barrie. The development proposes construction of 128 units consisting of a 4-storey residential building having 51 units, 12 single family townhomes and 11 townhouse blocks with 65 units. The site is currently three existing residential properties, and the proposed development can be found on the attached Site Plan.

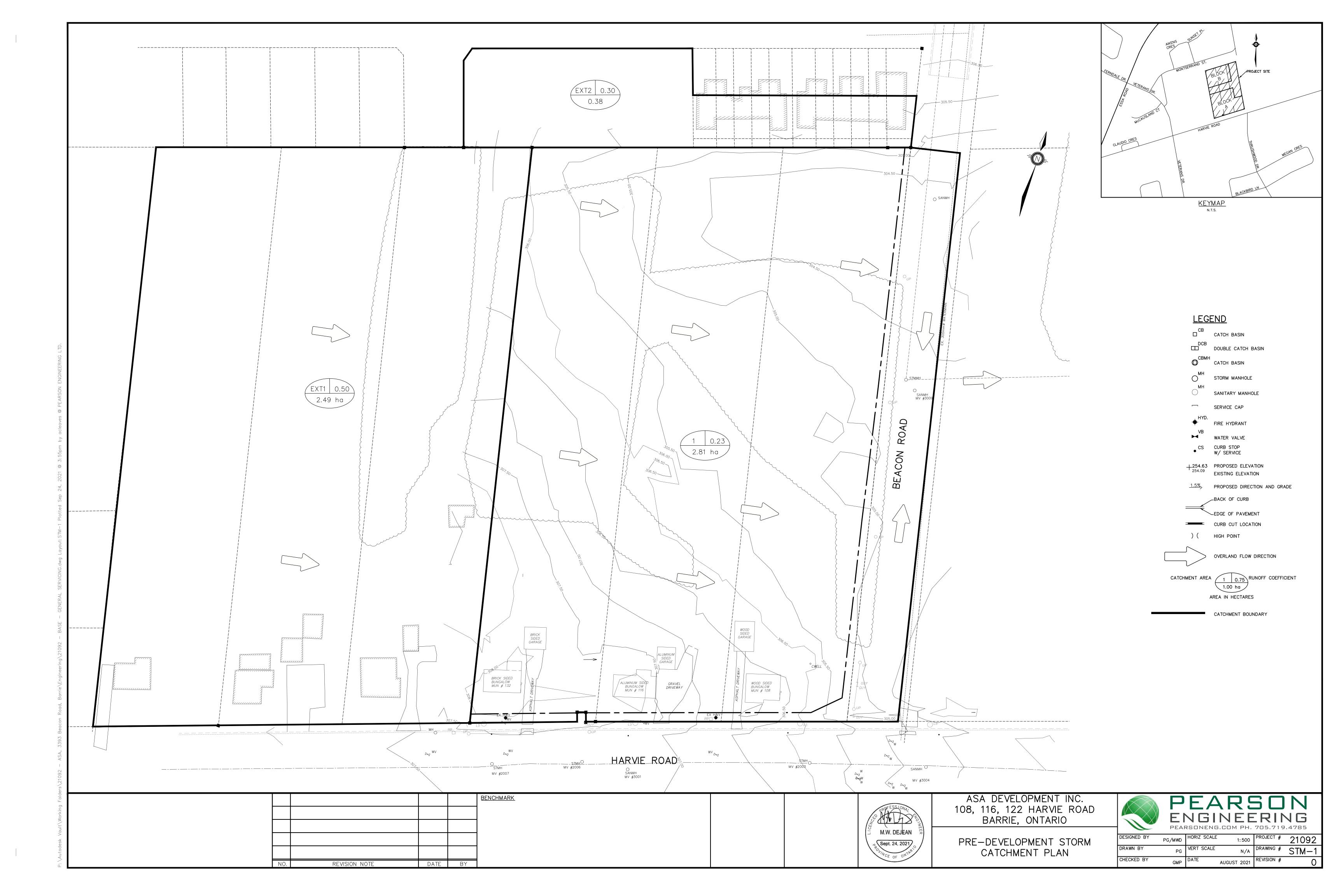
We request that, if available, you provide us your existing servicing and plan in this area, and we would appreciate any comments you could provide on the serviceability of the proposed development.

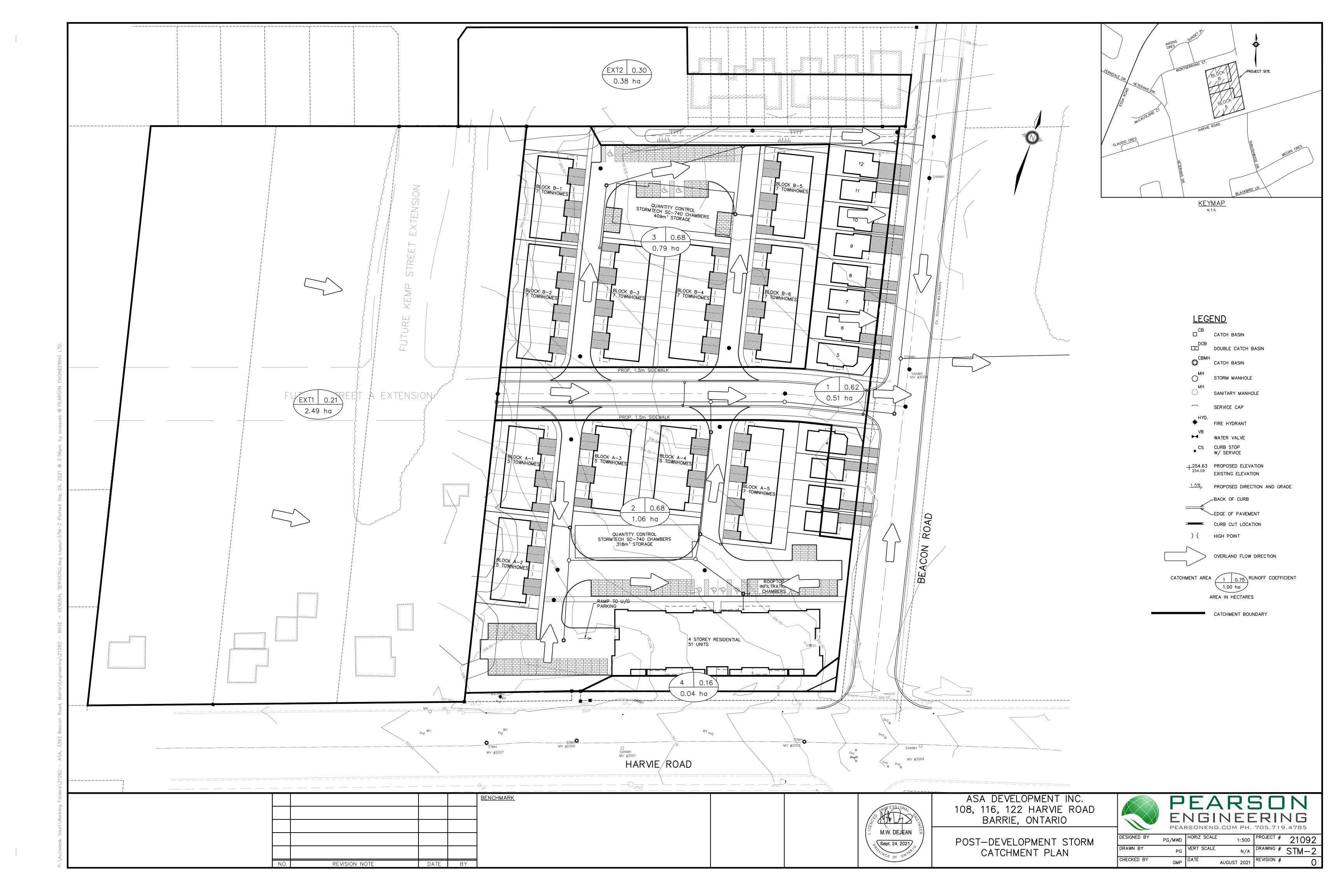
We thank you in advance for your assistance and co-operation in providing the background data. If you have any questions regarding the enclosed or require any additional information, please feel free to give me a call at (705) 719-4785 ext. 233.

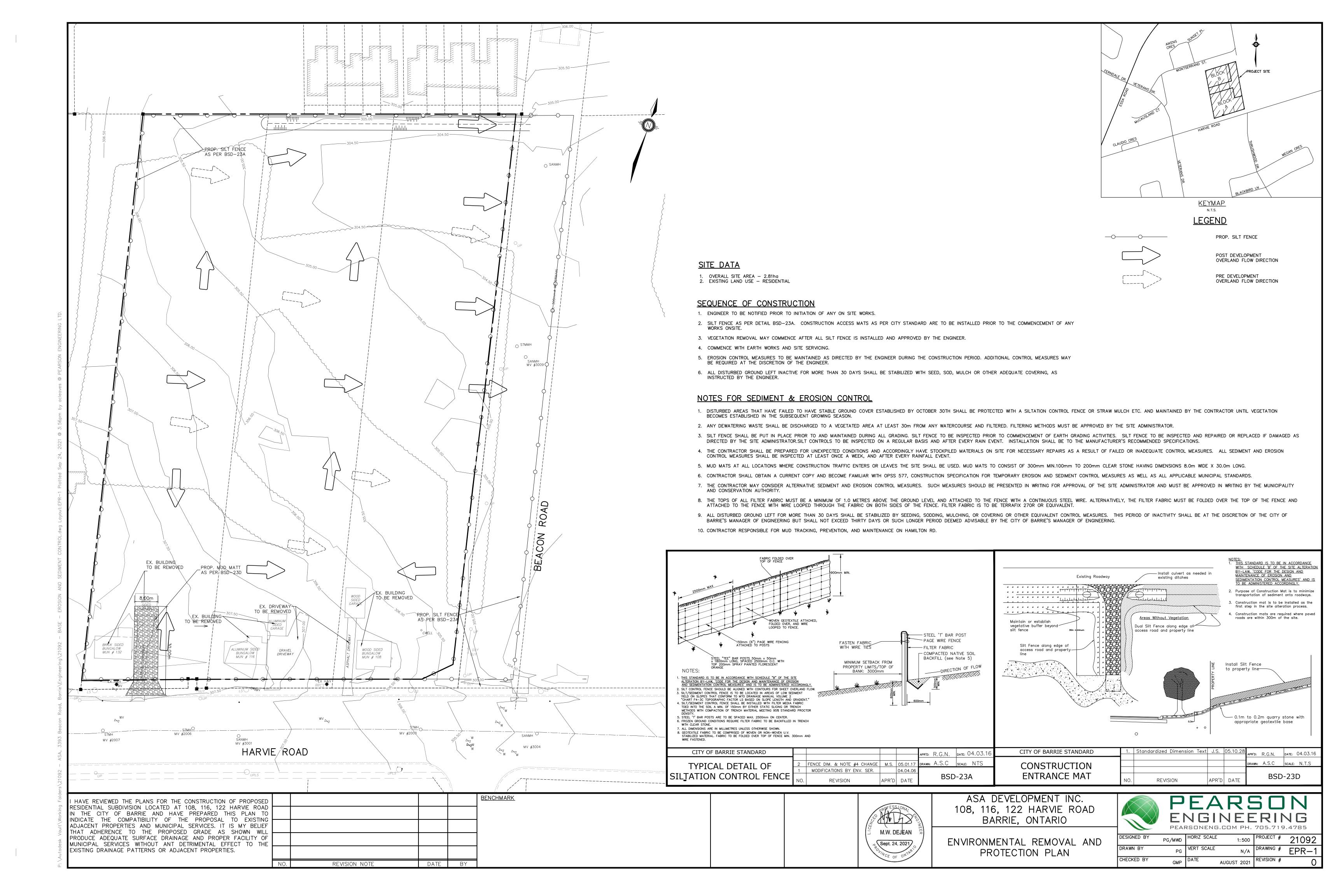
Regards,

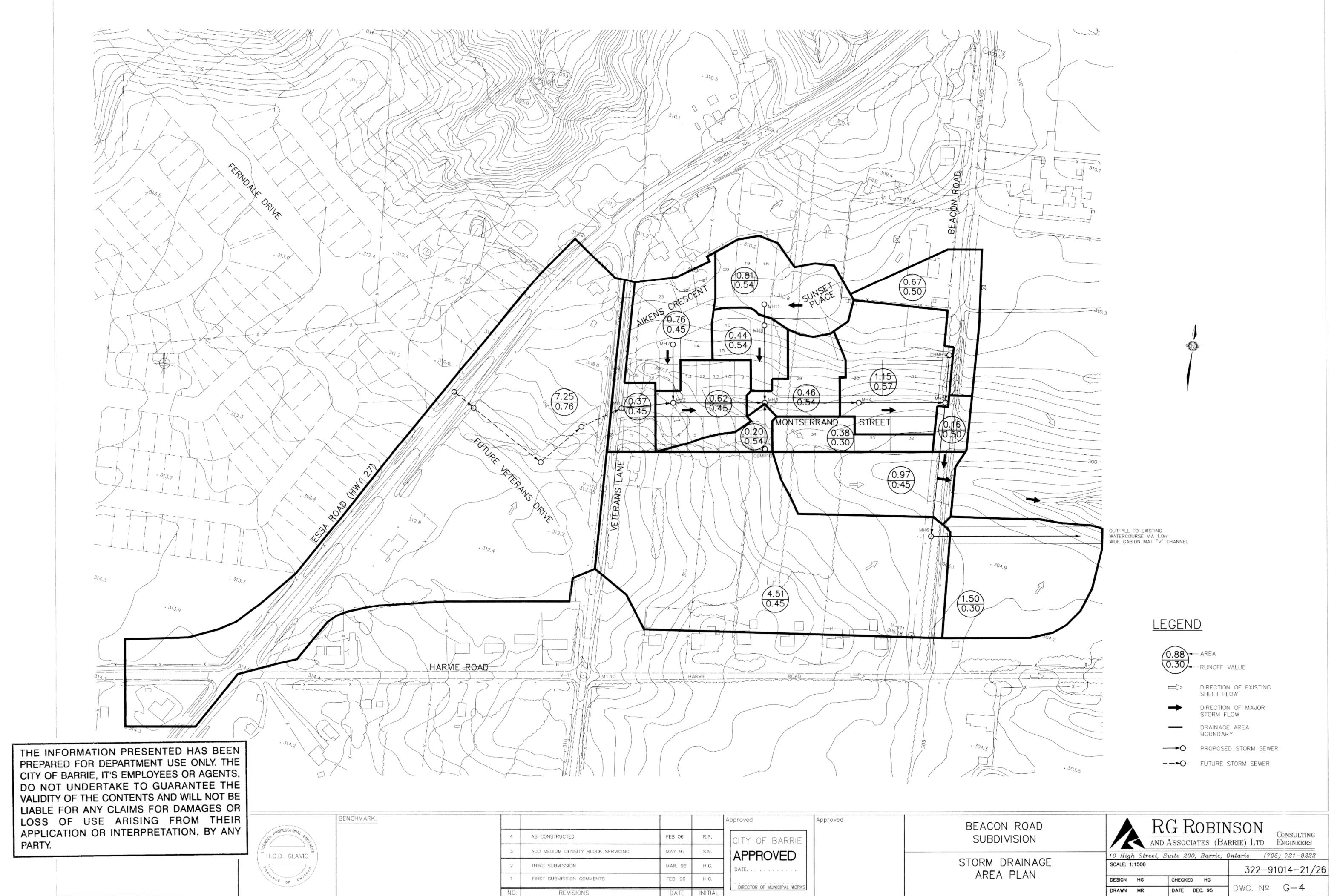

PEARSON ENGINEERING LTD.


April Cleaves, B.A. Tech., C.E.T.




APPENDIX G


PEARSON ENGINEERING DRAWINGS



APPENDIX H

EXTERNAL DRAWINGS

