

GEOTECHNICAL INVESTIGATION
SLOPE STABILITY AND EROSION HAZARD LIMIT
PROPOSED 22 UNIT TOWNHOUSE DEVELOPMENT
435 BIG BAY POINT ROAD
BARRIE, ONTARIO
FOR
ADA HOMES LTD.

PETO MacCALLUM LTD. 19 CHURCHILL DRIVE BARRIE, ONTARIO L4N 8Z5

PHONE: (705) 734-3900 FAX: (705) 734-9911

EMAIL: barrie@petomaccallum.com

Distribution: PML Ref.: 17BF012

2 cc: Client (+email) Report: 1 1 cc: PML Barrie June 2017

June 13, 2017 PML Ref.: 17BF012

Report: 1

Mr. Andrew Adamek ADA Homes Ltd. 1 Channen Court Barrie, Ontario L4M 6T4

Dear Mr. Adamek

Geotechnical Investigation
Slope Stability and Erosion Hazard Limit
Proposed 22 Unit Townhouse Development
435 Big Bay Point Road
Barrie, Ontario

Peto MacCallum Ltd. (PML) is pleased to present the results of the geotechnical investigation recently completed at the above noted project site. Authorization for this work was provided by Mr. A. Adamak, in the signed Engineering Services Agreement, PML Ref.: 17BF012, dated March 30, 2017.

A 22 unit townhouse development is planned on the parcel of land at 435 Big Bay Point Road in Barrie. Full depth basements, site servicing and paved access are proposed. The east part of the property comprises Lover's Creek ravine which is about 10 m deep. The proposed site layout is shown on Drawing 1, appended.

The purpose of this investigation was to determine the subsurface conditions at the site, and based on this information provide comments and geotechnical engineering recommendations for the building foundations. An assessment of the slope stability of the Lover's Creek ravine and Erosion Hazard Limit was carried out.

Geo-environmental services (observations, recording, testing or assessment of the environmental conditions of the soil and ground water) were not within the terms of reference for this assignment, and no work has been carried out in this regard. If excess soils requiring off-site disposal are generated, a program of sampling and testing will be needed to determine the chemical properties of the soil to evaluate receiving site options, in accordance with the MOECC document; Management of Excess Soil – A Guide for Best Management Practices, January 2014.

The comments and recommendations provided in this report are based on the site conditions at the time of the investigation, and are applicable only to the proposed works as addressed in the report. Any changes in the proposed plans will require review by PML to assess the validity of the report, and may require modified recommendations, additional investigation and/or analysis.

PML Ref.: 17BF012, Report: 1

June 13, 2017, Page 2

PML

INVESTIGATION PROCEDURES

The field work for this investigation was carried out on April 20 and 21, 2017 and consisted of

Boreholes 1 and 2 advanced to 15.7 and 15.4 m, respectively, near the edge of the ravine slope,

and Boreholes 3 and 4, advanced to 6.5 m depth set away from the slope. The borehole locations

are shown on Drawing 1, appended.

Co-ordination of clearances of underground utilities was provided by PML with the aid of a sub-

contracted private utility locating company.

The boreholes were advanced using continuous flight solid stem augers, powered by a rubber tire

mounted CME-75 drill rig, equipped with an automatic hammer, supplied and operated by a

specialist drilling contractor working under the full time supervision of a member of PML's

engineering staff.

Representative samples of the overburden in the boreholes were recovered at frequent depth

intervals for identification purposes using a conventional split spoon sampler. Standard

penetration tests were carried out simultaneously with the sampling operations to assess the

strength characteristics of the substrata. The ground water conditions in the boreholes were

assessed during drilling by visual examination of the soil samples, the sampler and drill rods as

the samples were retrieved, and measurement of the water level in the open boreholes, if any.

Piezometers comprising 19 mm PVC pipe were installed in two of the boreholes to permit

monitoring of the ground water table.

Boreholes without piezometers were backfilled in accordance with O.Reg. 903. As per

O.Reg. 903 the piezometers become the property of the Owner and will have to be

decommissioned when no longer required. PML would be pleased to assist in this regard.

The location of the boreholes were established in the field by PML, utilizing a plan provided by the

Client, and cognizant of underground utilities. Surface elevations of the boreholes were

referenced to the following Temporary Bench Mark (TBM), as shown on Drawing 1, attached, and

described as follows:

PML Ref.: 17BF012, Report: 1

June 13, 2017, Page 3

PML

TBM: Top of SIB at Northwest Corner of Property

Elevation 250.50 (metric, geodetic)

All recovered soil samples were returned to our laboratory for moisture content determinations and detailed examination to confirm field classification. Two soil samples were submitted for grain size analysis and accompanying Atterberg limits testing. The results are presented on Figures 1 and 2, appended.

SITE DESCRIPTION AND SUMMARIZED SUBSURFACE CONDITIONS

The lot at 435 Big Bay Point Road is currently occupied by a single detached residence at the northwest corner on the site, with a side yard clearing at the northeast corner of the site. The south portion of the site is lightly wooded, bordered be residences to the south and west, with the east part of the site comprising the approximate 10 m deep Lover's Creek ravine. Based on the topographic plan provided, the tableland is relatively flat with relief of about 2 m from west to east.

Reference is made to the appended Log of Borehole sheets for details of the subsurface conditions, including soil classifications, inferred stratigraphy, Standard Penetration test N values, standpipe installation details, ground water observations and the results of laboratory moisture content determinations.

Due to the soil sampling procedures and limited sample size, the depth demarcations on the borehole logs must be viewed as "transitional" zones between layers, and cannot be construed as exact geologic boundaries between layers. PML should be retained to assist in determining geologic boundaries in the field during construction, if required.

The stratigraphy encountered in the boreholes consisted of topsoil, locally over sand, underlain by a major silty sand till deposit.

Topsoil

A 180 to 220 mm layer of sand topsoil was encountered at the surface of all boreholes.

PML Ref.: 17BF012, Report: 1

June 13, 2017, Page 4

PIMIL

<u>Sand</u>

Below the topsoil in Boreholes 2 and 3, a sand unit was encountered down to 1.4 m depth

(elevation 247.2 to 249.1). The layer contained trace silt and gravel and was very loose to

compact. The sand was moist or very moist, with moisture contents of 5 to 18%.

Within the till deposit in Borehole 2, a lower sand deposit was encountered between 10 and 13 m

depth (elevation 235.6 to 238.6). The layer was very dense and was moist to wet with a water

content of 9%.

Silty Sand Till

A major till deposit was encountered below the topsoil of sand in all boreholes, extending to the

6.5 to 15.7 m depth of exploration. The till unit comprised silty sand, with cobbles and boulders

noted. Samples of the till (less aggregates greater than 20 mm size) from Boreholes 1 and 2

were submitted for grain size analyses and the results are presented on Figures 1 and 2.

Associated Atterberg limits testing showed both samples were non-plastic. The till was compact

to very dense, locally very loose in the upper 1.0 m. The unit was typically moist with water

contents typically less than 12%. Wet sand seams were noted locally.

Ground Water

The first water strike and the ground water levels measured upon completion of augering, are

provided in the table below, on a borehole by borehole basis. The water levels were also

measured in the piezometers about two weeks after installation and are also tabulated below:

PML Ref.: 17BF012, Report: 1

June 13, 2017, Page 5

BOREHOLE	FIRST WATER STRIKE IN BOREHOLE AT TIME OF DRILLING (APRIL 20 & 21, 2017) DEPTH (m)	WATER / WET CAVE LEVEL UPON COMPLETION OF AUGERING (APRIL 20 & 21, 2017) DEPTH (m) / ELEVATION	MEASURED WATER LEVEL IN PIEZOMETERS (MAY 5, 2017) DEPTH (m) / ELEVATION				
1	7.6	Wet Cave at 7.0 / 242.4	4.9 / 244.5				
2	9.1	Water at 6.7 / 241.9	2.0 / 246.6				
3	3.2	Water at 5.5 / 245.0	1				
4	3.1	Water at 3.4 / 246.9	-				

Ground water levels are subject to seasonal fluctuations, and in response to variations in precipitation.

GEOTECHNICAL ENGINEERING CONSIDERATIONS

General

A 22 unit townhouse development is planned on the parcel of land at 435 Big Bay Point Road in Barrie. Full depth basements, site servicing and paved access are proposed. The east side of the property comprises the approximate 10 m deep Lover's Creek ravine. The proposed site layout is shown on Drawing 1, appended.

The stratigraphy encountered in the boreholes consisted of topsoil, locally over sand, underlain by a major silty sand till deposit. The stabilized ground water table in the Borehole 1 and 2 piezometers was measured to be 2.0 and 4.9 m below grade, elevation 244.5 and 246.6, respectively.

Foundations

The proposed townhouses can be supported on strip and spread footings. Design elevations have yet to be established. However, with only minor grading anticipated, it is anticipated that basement footings will be founded in the native silty sand till deposit.

PML Ref.: 17BF012, Report: 1

June 13, 2017, Page 6

PIMIL

A geotechnical bearing resistance at Serviceability Limit State (SLS) of 150 kPa and a factored

bearing resistance at Ultimate Limit State (ULS) of 225 kPa can be adopted for design of footings

supported on the native till.

Footings subject to frost action should be provided with a minimum 1.2 m of earth cover or

equivalent.

Settlement based on the geotechnical bearing resistance at SLS should be less than 25 mm with

a differential settlement of 75% of the value. The factored bearing resistance at ULS assumes a

minimum footing width of 600 mm with minimum footing embedment of 600 mm.

Prior to placement of structural concrete, all founding surfaces must be inspected by PML to verify

the design bearing capacity is available, or to reassess the design parameters based on the

actual conditions.

Seismic Design

Site Classification D is applicable for Seismic Site Response as set out in Table 4.1.8.4.A of the

Ontario Building Code (2012). Based on the soil profile revealed in the boreholes there is a low

potential for liquefaction.

Basement Walls and Floor Slab

Basement walls must be designed to resist the unbalanced lateral pressure due to the weight of

the retained soil. The lateral earth pressure, p, may be computed using the following equation

and assuming a triangular pressure distribution:

 $p = K(\gamma h + q)$

Where K = lateral earth pressure coefficient

= 0.5, assuming level backfill

 γ = unit weight of retained soil

 $= 20.0 \text{ kN/m}^3$

h = depth at which pressure is computed

g = surcharge adjacent to the wall (kPa)

PML Ref.: 17BF012, Report: 1

June 13, 2017, Page 7

PML

It is recommended that the exterior of basement walls be damp proofed and the backfill behind

the wall comprise free draining material such as OPSS Granular B, in conjunction with perimeter

weeping tile system to prevent the buildup of hydrostatic pressure behind the wall. The weeping

tile should be surrounded by a minimum 150 mm thick layer of clear crushed stone (20 mm

nominal size) or pea gravel, fully wrapped with synthetic filter fabric to prevent migration of fines

which may otherwise clog the system. The weeping tile should be positively sloped to a frost free

sump or outlet.

Alternatively, in lieu of imported OPSS Granular B, a proprietary drainage board product could be

provided in conjunction with reuse of site excavated soil as wall backfill.

Backfill should be placed in maximum 200 mm thick lifts and compacted to 95% Standard Proctor

maximum dry density. Over compaction close to the wall should be avoided as this could

generate excessive pressure on the wall. Suitable bracing and/or precautions should be taken to

ensure the wall is not damaged during backfill/compaction activities.

Basement floor slab construction is considered feasible on the native till material.

A minimum 200 mm thick base layer of crushed stone (nominal 20 mm size) is recommended

directly beneath the floor slab. Where a vapour sensitive floor finish is to be used then the use of

polyethylene sheeting or similar means should be incorporated as a vapour barrier.

Exterior grades should be established to promote surface drainage away from the building.

Site Servicing

It is understood that only minor grading is required to achieve proposed site grades. Invert

elevations were not provided by the Client, however are generally anticipated to be 2.0 and 3.5 m

below proposed grade.

Trench Excavation and Ground Water Control

Trench excavation and ground water control are described later in the report under

Excavation and Ground Water Control.

PML Ref.: 17BF012, Report: 1

June 13, 2017, Page 8

PIMIL

Pipe Bedding

Native soils are suitable for supporting utilities. Locally, existing fill may exist at proposed invert

levels for shallow services. Where existing fill or other deleterious material is encountered at the

design invert level, such material should be sub-excavated and replaced with an increased

thickness of bedding.

Standard Granular A bedding, in accordance with OPSS, compacted to 95% Standard Proctor

maximum dry density should be satisfactory. For flexible pipes, bedding and cover material

should comprise OPSS Granular A. For rigid pipes, the bedding material should comprise

OPSS Granular A and cover material may comprise select native soil free of oversized material.

Trench Backfill

Backfill in trenches should be placed in maximum 200 mm thick loose lifts compacted to at least

95% Standard Proctor maximum dry density to minimize post construction settlement in the

backfill. Backfill for at least the upper 1 m of trench should be close to the optimum moisture

content to prevent subgrade instability issues.

Backfill for service trenches should comprise inorganic soil, free of boulders, frozen or otherwise

deleterious material, at a moisture content suitable for compaction. The excavated inorganic site

soil is generally considered suitable for reuse, subject to exclusions of deleterious content, and

subject to geotechnical field review and approval during construction.

Earthworks operations should be inspected by PML to verify subgrade preparation, backfill

materials, placement and compaction efforts and ensure the specified degree of compaction is

achieved throughout.

Excavation and Ground Water Control

Excavation for proposed services is expected to extend to about 2.0 to 4.0 m depth below existing

grade. Excavations for basements are anticipated to extend to about 3.0 m below existing grade.

PML Ref.: 17BF012, Report: 1

June 13, 2017, Page 9

PIMIL

Excavation utilizing open cut methods is considered feasible and based on the boreholes will encounter fill and the major till deposit. Harder digging and the presence of cobbles and boulders

should be expected in the till soil.

The site soils should be considered as Type 3 soil requiring excavation sidewalls to be constructed at no steeper than one horizontal to one vertical (1H:1V) from the base of the

excavation in accordance with the Occupational Health and Safety Act.

The stabilized ground water level noted in the piezometers in Boreholes 1 and 2 was at 2.0 to 4.9 m depth (elevation 244.5 to 246.6), although the ground water level encountered during drilling was significantly lower. It is believed that excavation will typically be above the ground water level and it is anticipated that conventional sump pumping techniques should be adequate

to handle ground water seepage quantities, where encountered.

Water taking in Ontario is governed by the Ontario Water Resources Act (OWRA) and the Water Taking and Transfer Regulation O.Reg. 387/040, Section 34 of the OWRA requires any one taking more than 50,000 L/d to obtain a PTTW from the Ministry of Environment and Climate Change (MOECC). This requirement applies to all withdrawals, whether for consumption, temporary construction dewatering or permanent drainage improvements. In April of 2016 the MOECC made some changes to the PTTW requirements. Projects assessed to be taking more than 50,000 L/d but less than 400,000 L/d of ground water can obtain a permit/permission online via the Environmental Activity and Sector Registry (EASR) system. Where water taking is

assessed to be more than 400,000 L/d then a Category 3 PTTW will be required.

Neither a PTTW nor registry on the EASR is anticipated for the excavation as described above.

It is recommended that a test dig be undertaken to allow prospective contractors an opportunity to observe and evaluate the conditions likely to be encountered and assess preferred means of

excavation and ground water control measures based on their own experience.

Pavement Design and Construction

The site soils comprise variable low frost susceptible sand to highly frost susceptible silty sand till.

The following typical pavement thicknesses are provided:

PML Ref.: 17BF012, Report: 1 June 13, 2017, Page 10

MATERIAL	LIGHT DUTY (PARKING)	HEAVY DUTY (SITE ACCESS / FIRE ROUTE)
Asphalt (mm)	70	110
Granular A Base Course (mm)	150	150
Granular B Subbase Course (mm)	300	300
Total Thickness (mm)	520	560

Following rough grading, subgrade preparation should include proofrolling and compacting the exposed subgrade with a heavy compactor. Any unstable zones identified during this process should be sub-excavated and replaced with compacted select material.

Imported material for the granular base and subbase should conform to OPSS gradation specifications for Granular A and Granular B, and should be compacted to 100% Standard Proctor maximum dry density. Asphalt should be compacted in accordance with OPSS 310.

The pavement design considers that construction will be carried out during the drier time of the year and that the subgrade is stable, as determined by proofrolling operations. Where wet and/or unstable subgrade is identified, remediation may include increasing the depth of subbase, the use of Granular B Type II and/or use of geogrid reinforcement, subject to geotechnical review during construction.

For the pavement to function properly, it is essential that provisions be made for water to drain and not collect in the base material. The incorporation of subdrains is recommended in conjunction with crowning of the final surface to promote drainage away from the structure. Subdrains should be installed at least 300 mm below the subgrade level. For details regarding pipe, filter cloth or pipe sock, bedding and cover material, refer to OPSD 216 Series. Subdrains should lead to a frost free outlet and/or be connected to storm sewer system. Maintenance holes/catch basins should be backfilled using free draining material with frost tapers and stub drains extending out from the structures. The above measures will help drain the pavement structure as well as minimize frost movement between maintenance hole/catch basins and pavement.

PML Ref.: 17BF012, Report: 1 June 13, 2017, Page 11

Geotechnical Review and Construction Inspection and Testing

It is recommended that the final design drawings be submitted to PML to review the compatibility with site conditions and recommendations of this report.

Earthworks operations should be carried out under the supervision of PML to approve subgrade preparation, backfill materials, placement and compaction procedures, and verify that the specified compaction standards are achieved throughout fill materials.

Prior to placement of structural concrete, all founding surfaces must be inspected by PML to verify the design bearing capacity is available, or to reassess the design parameters based on the actual conditions.

The comments and recommendations provided in the report are based on the information revealed in the boreholes. Conditions away from and between boreholes may vary, considering previous activity at the site. Geotechnical review during construction should be on going to confirm the subsurface conditions are substantially similar to those encountered in the boreholes, which may otherwise require modification to the original recommendations.

PML Ref.: 17BF012, Report: 1 June 13, 2017, Page 12 PML

Slope Stability Assessment

The east part of the site comprises the approximate 10 m deep Lover's Creek ravine. PML attended the site on April 26, 2017, to review the existing condition of the slope. The existing slope was rated using the Slope Stability Rating Chart, from the MNR Technical Guide, appended as Enclosure 1. Observations are tabulated on the Chart and described below.

- 1. The slope was 2H:1V or flatter, however a local area at the north end adjacent to Big Bay Point Road was steeper at about 1H:1V slope (Photograph 1).
- 2. Based on the boreholes the slope comprises predominantly glacial till.
- 3. No seepage was observed on the slope.
- 4. The slope is up to 10 m high.
- 5. The slope is occupied by mature trees with sparse surface vegetation (Photographs 2 and 3).
- 6. It appears that there may be minor drainage from the tableland over the slope, but there was no active erosion.
- 7. Lover's Creek was more than 15 m from the toe of the slope.
- 8. There is no visual evidence of slope instability.

Based on the observations and Slope Stability Rating, there is a low potential for slope instability.

We conducted a Slope Stability Analysis utilizing the software SLOPE from RocScience. The soil/slope model and results are shown on Enclosure 2. The computed minimum Factor of Safety was 1.8 which is satisfactory against an overall slope failure.

As noted earlier, there is a local area adjacent to Big Bay Point Road where the ravine slope is steeper at about 1H:1V. It appeared that this may have been a result of regrading/fill placement. This local slope area should be flattened to match the remainder of the slope and vegetated.

PML Ref.: 17BF012, Report: 1

June 13, 2017, Page 13

Erosion Hazard Limit

In order to determine the development set back from the top of slope, it is necessary to define the Erosion Hazard Limit at the site which includes assessment of the stability of the slope. In this regard, reference is made to the Technical Guide - River and Stream Systems: Erosion Hazard Limit, Ontario Ministry of Natural Resources, 2002. (Technical Guide).

The Erosion Hazard Limit is determined by:

Toe Erosion Allowance

Stable Slope Allowance

Flooding Hazard Limit or Meander Belt Allowance

Erosion Access Allowance

The Toe Erosion Allowance is a set back to accommodate potential erosion due to current action from a creek within 15 m of the toe of valley slope that may weaken and/or undermine the toe. Where the creek is greater than 15 m from the toe of the valley slope the Toe Erosion Allowance component is removed from the assessment. In this regard, Lover's Creek is more than 15 m from the toe of the valley slope, and therefore there is no requirement for Toe Erosion Allowance.

The Stable Slope Allowance is a setback to ensure safety if slumping or failure of the existing slope should occur. In accordance with Table 4.3 of the Technical Guide, a design minimum factor of safety of 1.3 to 1.5 is recommended for active land use (habitable structures). As discussed earlier, a Slope Stability Analyses was carried out which determined a minimum Factor of Safety of 1.8 for the subject slope which is within the guideline. Thus, the existing slope is safe and a Stable Slope Allowance is not required.

The Lover's Creek system at the location of the site is a Confined System (a valley surrounds the creek). Therefore, there is no requirement for a Flood Hazard Limit.

PML Ref.: 17BF012, Report: 1

June 13, 2017, Page 14

The Erosion Access Allowance is intended to facilitate access to maintain the slope, if required. This requirement should be confirmed by regulatory authorities.

In summary, no set back is required, except an allowance to facilitate access to maintain the ravine slope, if required. This requirement should be confirmed by regulatory authorities.

CLOSURE

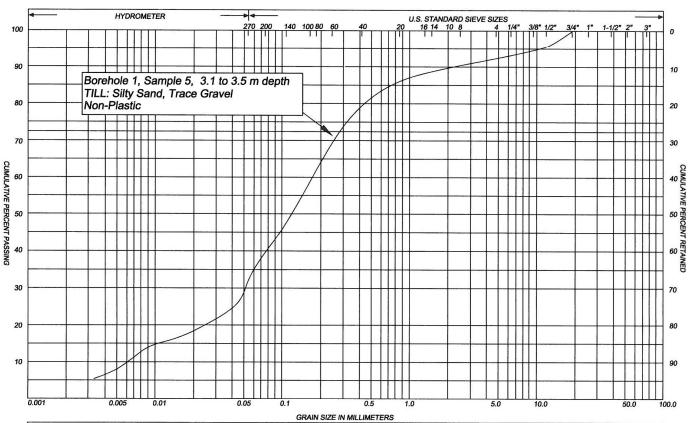
We trust this report is complete within our terms of reference, and the information presented is sufficient for your present purposes. If you have any questions, or when we may be of further assistance, please do not hesitate to call our office.

Sincerely

Peto MacCallum Ltd.

Turney Lee-Bun, P.Eng. Vice-President

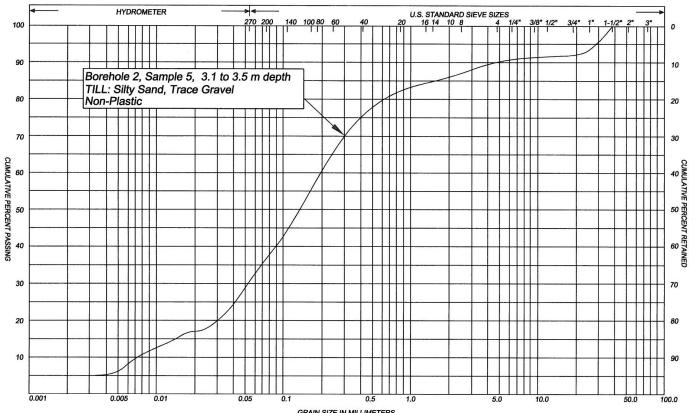
TLB:jlb


Enclosure(s): Figures 1 and 2

Figures 1 and 2 – Particle Size Distribution Charts List of Abbreviations
Log of Borehole Nos. 1 to 4
Drawing No. 1 - Borehole Location Plan
Photograph No.'s 1 to 4
Enclosure 1 – Slope Stability Rating Chart
Enclosure 2 – Slope Stability Analysis

PARTICLE SIZE DISTRIBUTION CHART

PML Ref.: Figure No.: 17BF012



SILT & CLAY					FINE		MEDIUM	COARSE	CDAVE.	COB	UNIFIED
SILT & CLAT							SAND		GRAVEL	BLES	UNIFIED
CLAY	FINE	E MEDIUM COARSE		FI	NE	MEDIUM	COAR	SE	0041/5/		1
SILT					SAND			GRAVEL	COBBLES	M.I. I .	
	CLAY	SILT		V. FINE	FINE MED		COARSE		-		
CLAY		SILI	The second second second	SAND				GRAVEL			U.S. BUREAU

PARTICLE SIZE DISTRIBUTION CHART

PML Ref.: 17BF012 Figure No.: 2

					GRAIN S	IZE IN MILLIM	EIERS					
SILT & CLAY					FINE		MEDIUM	COARSE	0041/51	COB	UNIFIED	
SILT & CLAT							SAND		GRAVEL	BLES	UNIFIED	
CLAY	FINE	MEDIUM	COARSE	F	INE	MEDIUM	COARSE		CDAVE	COBBLES	1	
0211	SILT				SAND				GRAVEL		M.I. I .	
	CLAY	SILT		V. FINE	FINE FINE MED COARSE					U.S. BUREAU		
CLAY				SAND				GRAVEL				

LIST OF ABBREVIATIONS

PENETRATION RESISTANCE

Standard Penetration Resistance N: - The number of blows required to advance a standard split spoon sampler 0.3 m into the subsoil. Driven by means of a 63.5 kg hammer falling freely a distance of 0.76 m.

Dynamic Penetration Resistance: - The number of blows required to advance a 51 mm, 60 degree cone, fitted to the end of drill rods, 0.3 m into the subsoil. The driving energy being 475 J per blow.

DESCRIPTION OF SOIL

The consistency of cohesive soils and the relative density or denseness of cohesionless soils are described in the following terms:

CONSISTE	NCY N (blows/0.3 m)	<u>с (kРа)</u>	<u>DENSENESS</u>	N (blows/0.3 m)
Very Soft	0 - 2	0 - 12	Very Loose	0 - 4
Soft	2 - 4	12 - 25	Loose	4 - 10
Firm	4 - 8	25 - 50	Compact	10 - 30
Stiff	8 - 15	50 - 100	Dense	30 - 50
Very Stiff	15 - 30	100 - 200	Very Dense	> 50
Hard	> 30	> 200		
WTPL	Wetter Than Plastic Limit			
APL	About Plastic Limit			
DTPL	Drier Than Plastic Limit			

TYPE OF SAMPLE

PM

SS	Split Spoon	ST	Slotted Tube Sample
WS	Washed Sample	TW	Thinwall Open
SB	Scraper Bucket Sample	TP	Thinwall Piston
AS	Auger Sample	os	Oesterberg Sample
CS	Chunk Sample	FS	Foil Sample
GS	Grab Sample	RC	Rock Core
	PH Sample Advanced Hy	draulical	y

Sample Advanced Manually

SOIL TESTS

Qu	Unconfined Compression	LV	Laboratory Vane
Q	Undrained Triaxial	FV	Field Vane
Qcu	Consolidated Undrained Triaxial	С	Consolidation
Qd	Drained Triaxial		

PML-GEO-508A Rev. 2016-05

LOG OF BOREHOLE NO. 1 1 of 2 17T 607301E 4912191N PROJECT Proposed 22 Unit Townhouse Development PML REF. 17BF012 LOCATION 435 Big Bay Point Road, Barrie, Ontario BORING DATE April 21, 2017 **ENGINEER** GW BORING METHOD Continuous Flight Solid Stem Augers TECHNICIAN AT SOIL PROFILE SAMPLES SHEAR STRENGTH (kPa) +FIELD VANE △TORVANE ○ QU PLASTIC MOISTURE LIMIT CONTENT LIQUID LIMIT WEIGHT GROUND WATER STRAT PLOT **OBSERVATIONS** "N" VALUES NUMBER 100 150 200 DESCRIPTION AND REMARKS FLFV LIND DYNAMIC CONE PENETRATION × STANDARD PENETRATION TEST metres GRAIN SIZE DISTRIBUTION (%) GR SA SI&CL WATER CONTENT (%) 20 30 SURFACE ELEVATION 249.40 kN/m 0.0 0.18 TOPSOIL: Dark brown, sand, trace silt, Stick-up pipe Concrete 249.22 trace gravel, very moist 1 SS 2 SILTY SAND TILL: Very loose to dense, brown, silty sand, trace gravel, cobbles and boulders, moist 2 SS 31 0 1.0 SS 3 9 2.0 2.1 | 247.3 | Becoming dense to very dense Bentonite seal 4 SS 31 3.0 5 SS 69 4.0 6 SS 52 5.0 19 mm slotted pipe Filter sand 6.0 SS 7 48 7.0 First water strike at 7.6 m 8 SS 42 8.0 9.0 9 SS 73 240 10.0 239 SS 80/290 mm 11.0 12.0 66/290 mm 237 13.0 236 12 SS 59 14.0 235 CONTINUED 15.0 NOTES

PML - BH/TP LOG GEO/ENV WITH MWS 17BF012 2017-06-12 BH LOGS.GPJ ON_MOT.GDT 12/06/2017 3:17:17 PM

LOG OF BOREHOLE NO. 1

17T 607301E 4912191N

PROJECT Proposed 22 Unit Townhouse DevelopmentLOCATION 435 Big Bay Point Road, Barrie, Ontario

BORING DATE April 21, 2017

PML REF. 17BF012

2 of 2

ENGINEER GW

BORING METHOD Continuous Flight Solid Stem Augers TECHNICIAN AT SOIL PROFILE SAMPLES SHEAR STRENGTH (kPa) PLASTIC NATURAL MOISTURE CONTENT +FIELD VANE △TORVANE ○ Qu LIQUID LIMIT WEIGHT **GROUND WATER** ▲ POCKET PENETROMETER O Q **OBSERVATIONS** NUMBER VALUES ELEVATION 100 150 200 DEPTH ELEV 50 DESCRIPTION AND REMARKS LIND DYNAMIC CONE PENETRATION STANDARD PENETRATION TEST metres GRAIN SIZE DISTRIBUTION (%) ż WATER CONTENT (%) 40 60 10 20 30 80 CONTINUED FROM PREVIOUS PAGE kN/m GR SA SI&CL 15.0 15.0 SILTY SAND TILL: Very dense, grey, silty sand, trace gravel, cobbles and boulders, 234 13 SS 47 moist, local wet seams 233.7 BOREHOLE TERMINATED AT 15.7 m Upon completion of augering 16.0 Wet cave at 7.0 m
 Date
 Depth
 Elev.

 2017-05-05
 4.9
 244.5
 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 NOTES

LOG OF BOREHOLE NO. 2 1 of 2 17T 607305E 4912192N PROJECT Proposed 22 Unit Townhouse Development PML REF. 17BF012 LOCATION 435 Big Bay Point Road, Barrie, Ontario **ENGINEER** BORING DATE April 21, 2017 GW BORING METHOD Continuous Flight Solid Stem Augers TECHNICIAN AT SOIL PROFILE SAMPLES SHEAR STRENGTH (kPa) PLASTIC NATURAL MOISTURE LIMIT CONTENT +FIELD VANE ATORVANE Qu WEIGHT GROUND WATER LIMIT ▲ POCKET PENETROMETER O Q **OBSERVATIONS** VALUES NUMBER **DEPTH** 100 150 200 DESCRIPTION AND REMARKS FLFV FIND DYNAMIC CONE PENETRATION × STANDARD PENETRATION TEST • metres) GRAIN SIZE DISTRIBUTION (%) WATER CONTENT (%) ż 20 30 SURFACE ELEVATION 248.60 N/m 0.0 0.18 TOPSOIL: Dark brown, sand, trace silt, Stick-up pipe Concrete 248.42 trace gravel, very moist 1 SS 3 SAND: Very loose to compact, brown, sand, trace silt, trace gravel, moist 2 SS 20 1.0 1.4 247.2 Bentonite seal SILTY SAND TILL: Dense to compact. brown, silty sand, trace gravel, cobbles 3 SS 32 and boulders, moist 2.0 4 SS 28 246 2.9 245.7 Becoming very dense 5 SS 66 0 245 19 mm slotted pipe 4.0 Filter sand SS 90/270 mm 0 5.0 6.0 7 SS 50/140 mm 0 7.0 8 SS 50/140 mm 8.0 9.0 First water strike at 9.1 m SS 72/270 mm 10.0 238.6 SAND: Very dense, brown, sand, trace silt, trace gravel, moist to wet SS 86/270 mm 11.0 237 12.0 11 SS 50/140 mm 13.0 13.0 SILTY SAND TILL: Very dense, grey, silty 235.6 sand, trace gravel, cobbles and boulders, moist 12 SS 50/100 mm 0 14.0 15.0 NOTES

PML - BH/TP LOG GEO/ENV WITH MWS 17BF012 2017-06-12 BH LOGS.GPJ ON_MOT.GDT 12/06/2017 3:17:18 PM

LOG OF BOREHOLE NO. 2

17T 607305E 4912192N

PROJECT Proposed 22 Unit Townhouse Development

LOCATION 435 Big Bay Point Road, Barrie, Ontario

BORING DATE April 21, 2017

PML REF.

17BF012

2 of 2

ENGINEER GW

TECHNICIAN AT BORING METHOD Continuous Flight Solid Stem Augers SOIL PROFILE SAMPLES SHEAR STRENGTH (kPa) **ELEVATION SCALE** +FIELD VANE △TORVANE ○ QU PLASTIC MOISTURE
MOISTURE
LIMIT CONTENT LIQUID LIMIT UNIT WEIGHT **GROUND WATER** ▲ POCKET PENETROMETER OQ STRAT PLOT **OBSERVATIONS** VALUES NUMBER 100 w 200 150 DEPTH ELEV AND REMARKS DESCRIPTION DYNAMIC CONE PENETRATION X STANDARD PENETRATION TEST metres) GRAIN SIZE DISTRIBUTION (%) GR SA SI&CL WATER CONTENT (%) z 40 10 20 30 40 kN/m CONTINUED FROM PREVIOUS PAGE 15.0 15.0 -SILTY SAND TILL: Very dense, grey, silty sand, trace gravel, cobbles and boulders, 13 SS 233.2 moist BOREHOLE TERMINATED AT 15.4 m Upon completion of augering Water at 6.7 m Cave at 10.7 m 16.0
 Date
 Depth
 Elev.

 2017-05-05
 2.0
 246.6
 Date 2017-05-05 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 **NOTES**

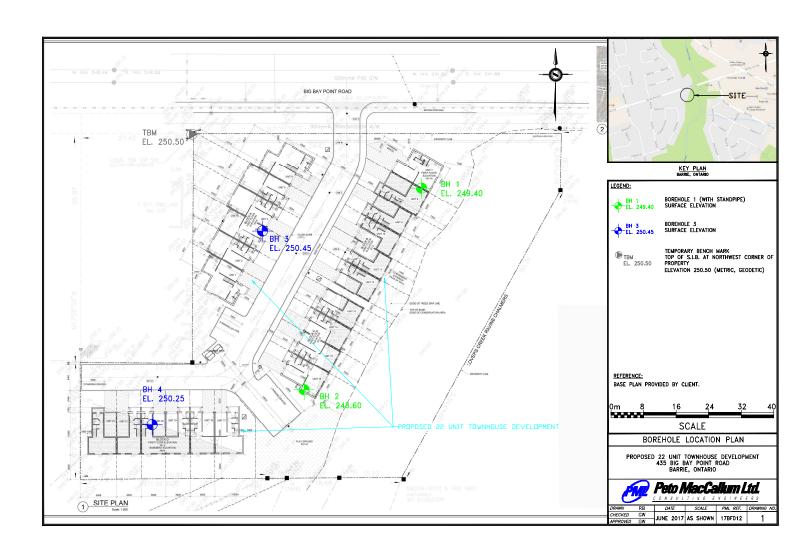
LOG OF BOREHOLE NO. 3 1 of 1 17T 607295E 4912217N PROJECT Proposed 22 Unit Townhouse Development PML REF. 17BF012 **ENGINEER** LOCATION 435 Big Bay Point Road, Barrie, Ontario BORING DATE April 20, 2017 GW TECHNICIAN AT BORING METHOD Continuous Flight Solid Stem Augers SOIL PROFILE SAMPLES SHEAR STRENGTH (kPa) **ELEVATION SCALE** PLASTIC NATURAL MOISTURE LIMIT CONTENT +FIELD VANE △TORVANE ○ Qu LIQUID LIMIT UNIT WEIGHT **GROUND WATER** ▲ POCKET PENETROMETER O Q STRAT PLOT **OBSERVATIONS** VALUES NUMBER w 100 150 200 DEPTH ELEV AND REMARKS DESCRIPTION DYNAMIC CONE PENETRATION STANDARD PENETRATION TEST metres GRAIN SIZE DISTRIBUTION (%) GR SA SI&CL WATER CONTENT (%) ż 40 60 80 10 20 30 40 kN/m³ SURFACE ELEVATION 250.45 0.0 0.20 TOPSOIL: Dark brown, sand, trace silt, SS 1 3 250.25 trace gravel, very moist 250 SAND: Very loose to compact, brown, sand, trace silt, trace gravel, very moist 2 SS 22 0 1.0 249.1 SILTY SAND TILL: Compact to dense. brown, silty sand, trace gravel, cobbles and boulders, moist to very moist SS 3 15 2.0 248 4 SS 26 3.0 5 SS 42 First water strike at 3.2 m 4.0 246.5 Becoming very dense 77/290 mm SS 5.0 6.0 7 SS 72/270 mm 244.0 BOREHOLE TERMINATED AT 6.5 m Upon completion of augering Water at 5.5 m 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 **NOTES**

PML - BH/TP LOG GEO/ENV WITH MWS 17BF012 2017-06-12 BH LOGS GPJ ON_MOT.GDT 12/06/2017 3:17:19 PM

LOG OF BOREHOLE NO. 4

17T 607283E 4912174N

PROJECT Proposed 22 Unit Townhouse Development LOCATION 435 Big Bay Point Road, Barrie, Ontario


BORING DATE April 20, 2017

PML REF. 17BF012 1 of 1

ENGINEER GW

TECHNICIAN AT

	BOR	ING METHOD Continuous Flight Solid Ste	em Au	gers			_	,								TE	CHNIC	IAN	AT
		SOIL PROFILE			SAM	PLES	LE	SHEA	AR STR	ENGTH	(kPa)	O 011	DIAG	TIC N	IATUR	AL I	JQUID	L	
	DEPTH ELEV (metres)	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	ELEVATION SCALE	▲ POO	MIC COI DARD P	NE PENI ENETRA	50 2 ETRATI ATION T	Qu R Q Q 00 ON × EST •	W _P ⊢ W	/ATER	. CON	TENT	LIMIT W _L	WEIGHT WEIGHT	GROUND WATER OBSERVATIONS AND REMARKS GRAIN SIZE DISTRIBUTION (%) GR SA SI&CL
0.0	0.22	SURFACE ELEVATION 250.25 TOPSOIL: Dark brown, sand, trace silt,	~~						1					1				KINJIII	GR SA SIGUL
	250.03	trace gravel, very moist SILTY SAND TILL: Very loose to compact, brown, silty sand, trace gravel,		1	SS	3	250								5				-
1.0		cobbles and boulders, very moist		2	ss	10	249	,						0					
-				3	SS	16		/						0					l t
2.0		Becoming dense to very dense					248	-											
3.0				4	SS	43				1			0						
3.0		Sand seam, wet		5	ss	61	247	-					С						First water strike at 3.1 m
4.0																		- E	
				6	ss	50/290 mm	246					>>	0						
5.0				0	33	30/290 11111	245												
																			<u> </u>
6.0	6.5			7	SS	83/270 mm	244					>>1	C						<u> </u>
7.0	243.8	BOREHOLE TERMINATED AT 6.5 m																	Upon completion of augering Water at 3.4 m Cave at 4.1 m
8.0																			
-																			
9.0																			
10.0																			
10.0																			
11.0																			-
12.0																			
																			-
13.0																			
14.0																			
15.0	NOTE	ES																	

PML Ref.: 17BF012, Report: 1 June 13, 2017

Photograph 1: Steepest portion of slope (about 1H to 1V) adjacent Big Bay Point Road.

Photograph 2: Looking south, well vegetated with mature trees, however no surface vegetation.

PML Ref.: 17BF012, Report: 1 June 13, 2017

Photograph 3: Looking north, at south end of site, slightly more surface vegetation.

Photograph 4: At toe of slope, looking east, Lover's Creek in distance, over 15 m away.

Proposed 22 Unit Townhouse Development, 435 Big Bay Point Road, Barrie, Ontario PML Ref.: 17BF012, Report: 1 June 13, 2017, Enclosure: 1

		S	LOPE STABILITY	' RATING CHART (1)	
Site	Location: 435 Big Bay Poi	nt Road, Barrie	, Ontario	PML Ref: 17BF012	
Prop	erty Owner: ADA Homes I	_td.		Inspection Date: April 26, 2017	
Insp	ected By: Geoffrey White,	P.Eng. / Richa	rd Blair, P.Eng .	Weather: Cloudy, 13 C	
1.	OVERALL SLOPE INC	LINATION			
١.	Degrees	LINATION	horiz :	vert	
	a) 18 or less			· flatter	0
	b) 18 – 26			more than 3 : 1	6
	c) more than 26			r than 2 : 1	16
2.	SOIL STRATIGRAPHY		эссерс	THAITZ. I	10
۷.	a) Shale, Limestone, G		ď		0
	b) Sand, Gravel	rante (Bearon	()		6
	c) Glacial Till				9
	d) Clay, Silt				12
	e) Fill				16
	f) Leda Clay				24
3.	SEEPAGE FROM SLO	PE FACE			
	a) None or Near bottom	n only			0
	b) Near mid-slope only	,			6
	c) Near crest only, or F	rom several lev	rels		12
4.	SLOPE HEIGHT				
	a) 2 m or less				0
	b) 2.1 to 5 m				2
	c) 5.1 to 10 m				4
	d) more than 10 m				8
5.	VEGETATION COVER	ON SLOPE FA	ACE		
	a) Well vegetated; heav	y shrubs or for	ested with mature	trees	0
	b) Light vegetation; Mo	stly grass, wee	ds, occasional tree	es, shrubs	4
	c) No vegetation, bare				8
6.	TABLE LAND DRAINA	GE			
	a) Table land flat, no ap	parent drainag	e over slope		0
	b) Minor drainage over	slope, no activ	e erosion		2
	c) Drainage over slope,	active erosion	, gullies		4
7.	PROXIMITY OF WATER	RCOURSE TO	SLOPE TOE		
	a) 15 metres or more	from slope toe			0
	b) Less than 15 mete	rs from slope to	oe		6
8.	PREVIOUS LANDSLID	E ACTIVITY			
	a) No				0
	b) Yes				6
SLO	PE INSTABILITY	RATING VALU	JES INVESTIGAT	ION	TOTAL
RATI	NG	TOTAL	REQUIREME	NTS	21
	ow potential	< 24		on only, confirmation, report letter.	
	ight potential oderate potential	25-35 > 35		n and surveying, preliminary study, de ezometers, lab tests, surveying, detail	

Slope Stability Analysis using SLIDE program from RocScience Lover's Creek Ravine

