

City of Barrie - Hewitt's Secondary Plan Class Environmental Assessment (Phase 3 and 4) Study Environmental Study Report

Appendix H Geotechnical and Pavement Investigations

September 2016

PRELIMINARY GEOTECHNICAL INVESTIGATION

Hewitt's Secondary Plan Environmental Assessment City of Barrie, Ontario

Submitted to: Hatch Corporation 15 Allstate Parkway, Suite 300 Markham ON, L3R 5B4

Report Number: 1525357 Distribution: 1 e-Copy - Hatch Corporation

1 e-Copy - Golder Associates Ltd.

REPORT

Table of Contents

1.0	INTRODUCTION1									
2.0	PROJE	PROJECT BACKGROUND1								
3.0	INVES	IGATION PROCEDURES	1							
	3.1	Field Investigation	1							
4.0	SUBSURFACE CONDITIONS									
	4.1	General Overview	2							
	4.1.1	Pavement Structure / Topsoil / Fill	3							
	4.1.2	Silty Clay	3							
	4.1.3	Glacial Till	4							
	4.1.4	Silty Sand to Sand	4							
	4.2	Groundwater Conditions	5							
5.0	GEOTE	CHNICAL COMMENTS AND RECOMMENDATIONS	5							
	5.1	Subsurface Conditions Summary	5							
	5.2	Watercourse Crossing Structures	6							
	5.2.1	General	6							
	5.2.2	Temporary Excavations for Foundation Construction	6							
	5.2.3	Subexcavation Requirements and Foundation Design Parameters	6							
	5.3	Grade Separation Structures	7							
	5.3.1	General	7							
	5.3.2	Preliminary Foundation Input	8							
	5.3.3	Approach Embankments	9							
	5.4	Lateral Earth Pressures	9							
	5.5	Preliminary Pavement Design	11							
	5.6	Soil Submission	11							
	5.6.1	Soil Analytical Results	12							
	5.6.2	Discussion of Analytical Results	12							
6.0	ADDITI	ONAL WORK, INSPECTIONS AND TESTING	12							

PRELIMINARY GEOTECHNICAL INVESTIGATION HEWITT'S SECONDARY PLAN EA, CITY OF BARRIE, ONTARIO

ATTACHMENTS:

Important Information and Limitations of This Report Method of Soil Classification Abbreviations and Terms Used on Records of Boreholes List of Symbols

LIST OF FIGURES Figure 1: Site and Borehole Location Plan

APPENDICES

APPENDIX A Record of Borehole Sheets

APPENDIX B Laboratory Test Results

APPENDIX C Analytical Laboratory Results

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been retained by Hatch Corporation (Hatch) to provide geotechnical engineering services for the proposed infrastructure improvements as part of the Hewitt's Secondary Plan Environmental Assessment, in the City of Barrie, Ontario. The scope of work completed for this project is in accordance with our proposal submitted to Hatch (Proposal P1525357) dated April 2015.

The purpose of this report is to summarize the geotechnical information (soil and groundwater) acquired within the study areas and to provide preliminary recommendations and comments on the geotechnical aspects of the design and construction of the proposed structures.

This report should be read in conjunction with the "Important Information and Limitations of this Report", attached. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

2.0 PROJECT BACKGROUND

As described in the RFP (REF # FIN 2015-011P), the Hewitt's Study requires the following:

- Conceptual design of drainage works associated with the road widenings; and,
- Compliance with Phases 3-4 of the Municipal Class EA for arterial road widenings and two grade-separated railway crossings within the Hewitt's Secondary Plan Area.

Within the project boundaries, six watercourse crossings were identified that required investigation for arterial road widenings. The watercourses cross beneath either Mapleview Drive East or Lockhart Road. Both roadways are currently two lane paved roads that will be widened as part of future works.

In addition, two grade separation areas were identified where Metrolinx railway crossings currently exist:

- Mapleview Drive East, east of Yonge Street, and;
- Lockhart Road, east of Yonge Street.

The site location, showing the grade separation areas as well as the locations of the watercourse crossings is shown on Figure 1.

The existing watercourse crossings include Corrugated Steel Pipe (CSP) culverts and concrete box culvert structures. It is anticipated that some of the CSP culverts will be replaced entirely, whereas the existing box culverts may be extended / widened to support the widening of the roadways.

3.0 INVESTIGATION PROCEDURES

3.1 Field Investigation

The field work for this investigation was carried out between June 8 and June 15, 2015, during which time a total of ten boreholes were advanced using a track-mounted drill rig operated by a specialist drilling subcontractor. The boreholes, which are designated as BH16-01 to BH16-10 were advanced at approximately the locations shown on Figure 1.

The boreholes were advanced to depths ranging from 8.7 m to 11.3 m below existing ground surface using hollow stem auger drilling methods. The boreholes were advanced either through the paved roadway or through the gravel shoulder. Soil samples were obtained in the boreholes at 0.75 m and 1.5 m intervals of depth using 50 mm outer diameter split-spoon samplers driven by an automatic hammer, in accordance with the Standard Penetration Test (SPT) procedure. The results of the in-situ tests (SPT 'N'-values) given on the Record of Borehole sheets are uncorrected.

The groundwater conditions were observed in the open boreholes during and immediately following the drilling operations. Monitoring wells were installed in eight of the boreholes to permit monitoring of the groundwater levels at these locations. The monitoring wells consist of 50 mm diameter PVC pipe, with a slotted screen sealed within a sand filter pack at a selected depth interval within the borehole. The monitoring well details and the water level recorded in the open boreholes / monitoring wells are indicated on the borehole records contained in Appendix A. The two open boreholes were backfilled with bentonite upon completion, in accordance with Ontario Regulation 903 (as amended).

The field work was supervised on a full-time basis by a member of Golder's staff who observed the drilling, sampling and in situ testing operations, and logged the subsurface conditions encountered in the boreholes. The soil samples were identified in the field, placed in labelled containers and transported to Golder's laboratory in Barrie for further examination and laboratory testing. Index and classification tests consisting of water contents and grain size distributions were carried out on selected soil samples.

The borehole locations were noted relative to identifiable site features and the coordinates and ground surface elevations were obtained from the topographic plans provided to our office by Hatch.

4.0 SUBSURFACE CONDITIONS

The detailed subsurface soil and groundwater conditions encountered in the boreholes advanced at this site together with the results of geotechnical laboratory testing are shown on the Record of Borehole sheets in Appendix A. The Methods of Soil Classification, Symbols and Terms used on the Records of Boreholes are provided to assist in the interpretation of the Record of Borehole sheets. The results of the geotechnical laboratory testing on selected soil samples are presented in Appendix B.

The Record of Borehole sheets indicate the subsurface conditions at the borehole locations only. The stratigraphic boundaries shown on the borehole records are inferred from non-continuous sampling, observations of drilling progress as well as results of Standard Penetration Tests and, therefore, represent transitions between soil types rather than exact planes of geological change. Subsurface soil conditions will vary between and beyond the borehole locations.

The following sections of this report provide an overview of the subsurface conditions encountered at the site followed by more detailed descriptions of the major soil strata and shallow groundwater conditions encountered at the borehole locations.

4.1 General Overview

In summary, the subsoils encountered in the boreholes consist of non-cohesive fill underlain by interlayered native strata comprised of silty sand to sand, and silty sand glacial till. Minor thin cohesive deposits were encountered in two of the boreholes. In addition a layer of topsoil was also encountered between the fill and native stratum in

one of the boreholes. A more detailed description of the subsurface conditions encountered in the boreholes is provided in the following sections.

4.1.1 Pavement Structure / Topsoil / Fill

All of the boreholes penetrated through a layer of non-cohesive fill, in places through the existing asphalt overlying the fill. The asphalt thicknesses encountered generally ranged in thickness from 80 mm to 130 mm, except at one of the boreholes east of the railway crossing where the borehole encountered an asphalt thickness of 650 mm.

Borehole No.	Asphalt Thickness (mm)	Fill Thickness (m)
BH16-01	-	2.3
BH16-02	130	3.2
BH16-03	110	3.4
BH16-04	-	2.3
BH16-05	-	4.6
BH16-06	80	3.4
BH16-07	-	2.4
BH16-08	100	2.2
BH16-09	130	2.5
BH16-10	650	3.2

The thickness of asphalt and fill as encountered in each of the boreholes is summarized below.

The fill is variable in composition ranging from sand and gravel to sand to sandy silt. The fill is brown to grey to black. Topsoil and/or trace organic inclusions were noted in several of the fill samples.

A 2.3 m thick layer of silty sand topsoil was encountered underlying the fill at a depth of about 2.3 m below ground surface in Borehole BH16-04; and a 0.5 m thick layer of silty clay fill was encountered within the overall fill deposit in BH16-04.

The measured SPT "N"-values in the fill deposit ranged from weight of hammer to 56 blows per 0.3 m of penetration indicating that these soils are very loose to very dense compactness; however in general the fill deposit is compact. The SPT "N"-values in the silty sand topsoil deposit are 4 blows per 0.3 m of penetration to 8 blows per 0.3 m of penetration, indicating a loose compactness.

The natural water content of the non-cohesive fill deposit ranges from 2 percent to 29 percent and is generally less than 15 percent. The natural water content of the silty sand topsoil layer (pocket) ranges between 20 percent and 35 percent.

4.1.2 Silty Clay

A cohesive deposit comprised of silty clay was encountered in Boreholes BH16-03 and BH16-06 underlying the fill deposit. The silty clay deposit is 0.6 m and 1.1 m thick in the respective boreholes, grey to black in colour, and contains a trace sand or trace organics.

The measured SPT "N"-values within the silty clay deposit were 1 blow per 0.3 m of penetration and 8 blows per 0.3 m of penetration, suggestive of a soft to firm consistency.

The water content of the silty clay is noted to be wetter than the estimated plastic limit, and ranges between 11 percent and 20 percent as measured in three samples of the deposit.

4.1.3 Glacial Till

A glacial till was encountered in Boreholes BH16-01, BH16-03, BH16-04, BH16-06, BH16-07, BH16-08, and BH16-10 directly underlying the cohesive fill, the topsoil deposit, or the silty sand deposit (described in Section 6.1.4).

The till deposit ranges in composition from a silty sand to a silt and sand, is brown to grey and contains trace to some gravel content, and is moist to wet. Boreholes BH16-01, BH16-03, BH16-04, and BH16-08 were terminated in the till deposit at a maximum depth of 11.3 m below ground surface. Borehole BH16-03 encountered refusal at a depth of 9.8 m due to auger refusal inferred to be on a boulder.

Although not indicated on the borehole records except for the refusal condition, glacial till deposits in Ontario are known to contain cobbles and boulders; as such, these materials are anticipated to be present throughout the till deposits at this site.

The water content measured on samples of the till deposit range from 7 per cent to 18 per cent.

The measured SPT "N"-values within the till deposit range from 5 blows per 0.3 m of penetration to greater than 50 blows per 0.3 m of penetration, indicating this deposit is loose to very dense, but generally dense in compactness.

The results of grain size distribution tests completed on eight selected samples of the till deposit are shown on Figures B1 to B3.

4.1.4 Silty Sand to Sand

A silty sand to silt and sand to sand deposit was encountered in Boreholes BH16-01, BH16-02, BH16-05, BH16-07, BH16-09, and BH16-10 underlying the silty sand till deposit. The silty sand to sand is generally moist to wet, brown to grey, and contains trace to some gravel. Although the majority of the deposit ranges between silty sand to sand, a silty sand and gravel layer was encountered in Borehole BH16-01 underlying the fill. Boreholes BH16-02, BH16-05, BH16-07, BH16-09, BH16-10 were terminated in the silty sand to sand deposit. Borehole BH16-03 encountered refusal at a depth of 9.8 m due to auger refusal on a boulder. Borehole BH16-02 encountered refusal at a depth of 8.7 m due to auger refusal inferred to be on a boulder. Where fully penetrated, the deposit is about 1 m to 5.3 m thick and is greater than 4.7 m to greater than 8.7 m where not fully penetrated.

The water content measured on samples of the silty sand to sand deposit range from 8 per cent to 24 per cent.

The measured SPT "N"-values measured within the silty sand to sand deposit range from 5 blows per 0.3 m of penetration to greater than 50 blows per 0.3 m indicating these soils are typically loose to very dense, but generally dense in compactness.

The results of four gradation analyses of the silty sand to sand deposit are displayed on Figures B4 and B5.

4.2 Groundwater Conditions

The shallow groundwater conditions encountered in the open boreholes during this investigation and monitoring well installation details are presented on the Record of Borehole sheets in Appendix A. The detailed groundwater levels measured in the open boreholes upon completion of drilling and in the monitoring wells installed at the site are summarized below.

	Cround	Groundwater Levels						
Borehole	Elevation	Upon Co	ompletion	July 14, 2016				
NO.	(m)	Depth Elevation (m) (m)		Depth (m)	Elevation (m)			
BH16-01	241.8	1.8	240.0	2.0	239.8			
BH16-02	247.8	5.7	242.1	2.4	245.4			
BH16-03	248.6	4.1	244.5	1.6	247.0			
BH16-04	246.5	Dry		2.7	243.8			
BH16-05	260.2	2.4	257.8	2.5*	257.7*			
BH16-06	255.5	5.1	250.4	2.6	252.9			
BH16-07	267.4	3.6	263.8	4.7	262.7			
BH16-08	267.3	4.9**	262.4**					
BH16-09	260.6	2.8	257.8	3.1	257.5			
BH16-10	260.0	4.8**	255.2**					

* Groundwater was measured on August 15, 2016 in Borehole BH16-05

** Measured within the open borehole

It should be noted that the groundwater levels at the site are anticipated to fluctuate with seasonal variations in precipitation and runoff.

5.0 GEOTECHNICAL COMMENTS AND RECOMMENDATIONS

This section of the report provides preliminary design recommendations on geotechnical aspects of the proposed watercourse crossings and grade-separated railway crossings, based on interpretation of the factual data obtained from the boreholes advanced at the site and our understanding of the project requirements. The preliminary geotechnical information in this portion of the report is provided for the guidance of the design engineers and professionals. Where comments are made on construction, they are provided in order to highlight those aspects which could affect the design of the project. Contractors bidding on or undertaking any work at the site should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction and make their own interpretation of the factual information provided as it may affect equipment selection, proposed construction methods, scheduling and the like.

5.1 Subsurface Conditions Summary

As noted above in Section 4.1, the subsoils encountered in the boreholes consist of non-cohesive fill underlain by interlayered native strata comprised of loose to very dense silty sand to sand, and silty sand glacial till. Minor pockets / layers of soft to firm cohesive deposits and a topsoil layer were encountered in three of the boreholes.

Stabilized groundwater levels measured in the monitoring wells ranged from about 1.6 m to 4.7 m below existing ground surface.

5.2 Watercourse Crossing Structures

5.2.1 General

Details regarding the proposed founding elevations for the watercourse crossing structures were not available at the time of preparation of this report; however it is anticipated that these structures would be founded at relatively shallow depths taking into account the depth of frost penetration and scour protection requirements. It is anticipated that the structures will consist of a concrete culvert (either an open bottom or closed bottom box), either as an extension of the existing box culverts, or a replacement structure where CSP culverts currently exist.

Provided that the integrity of the native compact to dense silty sand to sand deposits and till deposits are protected during the construction process, these materials are considered suitable for the support of shallow foundations for the proposed crossing structures. As such, deep foundations are not anticipated to be required for this project.

5.2.2 Temporary Excavations for Foundation Construction

Strip footings for the culverts should be founded at a minimum depth of 1.5 m below the lowest surrounding grade, to provide adequate protection against frost penetration. In this regard, excavations for the construction of the foundations for each of the culverts will extend below the water level within predominantly granular soils (sand and/or till). As such, a dewatering system will be required to be implemented to provide a dry working area.

Consideration could be given to the use of sheet pile enclosures around all foundation excavation areas to separate and provide a groundwater cut-off between the work areas and the creek channel. Although sheet pile enclosures will limit lateral groundwater flow through the near-surface granular soils into the excavation areas, seepage from the base of the excavation would still occur from groundwater travelling below the tips of the sheet piles. In addition, basal instability (e.g. 'piping', 'quick conditions' or 'boiling') can occur where an unbalanced hydrostatic head results in large upward seepage gradients at the bottom of the excavation within a sheet pile enclosure. As such, additional analysis should be completed during the detail design stage to provide additional input into both dewatering requirements and sheet pile enclosure methods.

Due to the potential need for pumping from within the sheet pile enclosure and/or the installation of a dewatering well/system, an Environmental Activity and Sector Registry (EASR) or a Permit to Take Water (PTTW) will likely be required for these works.

Excavation works must be carried out in accordance with the guidelines outlined in the Occupational Health and Safety Act. Side slopes of temporary excavations into the existing embankment fill materials should not be steeper than 1H:1V and the stability of such temporary cut slopes should be confirmed at the detail design stage. An adequate temporary support system should be provided at all locations where space limitations prevent construction of sufficiently shallow slopes or where required to provide protection to buried services, roadways or other existing facilities.

5.2.3 Subexcavation Requirements and Foundation Design Parameters

As noted in Section 5.2.2, strip footings for the culverts should be founded at a minimum depth of 1.5 m below the lowest surrounding grade, to provide adequate protection against frost penetration. The footings should also be

founded at sufficient depth to provide protection against scour and scour protection (such as adequate rip-rap) should be provided at all footings locations.

The proposed culverts should be founded on the compact to very dense, native granular deposits or till deposits below any topsoil and/or fill materials. It is not recommended to found the culverts on the soft to firm clayey soils encountered in Boreholes BH16-03 and BH16-06. As noted in Section 5.2.1, design grades were not available at the time of this report; however subexcavation through the fill materials, organic soils (buried topsoil as in BH16-04) or soft, loose, or otherwise unsuitable materials which extend below the proposed founding levels will be necessary to be able to found the foundations for each culvert on suitable material.

Strip footings for the culverts that are founded on the compact to very dense granular soils or till materials may be designed based on a preliminary factored ultimate geotechnical resistance at Ultimate Limit States (ULS) of 200 kPa assuming a minimum footing width of 0.9 m. A preliminary factored serviceability geotechnical resistance at Serviceability Limit States (SLS) of 80 kPa may be used in the design of the culvert foundations for foundations 0.9 m to 2.5 m wide.

The factored ULS and SLS resistances provided above should be considered preliminary and are dependent on the footing size, configuration and applied loads; the geotechnical resistances should, therefore, be reviewed if the selected footing widths are outside of the range outlined above or the founding levels differ significantly from those discussed above. The factored geotechnical resistances provided are given under the assumption that the loads will be applied perpendicular to the surface of the footings. Where the load is not applied perpendicular to the surface of the footing, inclination of the load should be taken into account in accordance with the *Canadian Highway Bridge Design Code (CHBDC, 2014).*

The foundation subgrade soils should be inspected by qualified geotechnical personnel following excavation to ensure that all existing fill, organic soils or other unsuitable material have been removed; any subexcavated area should be backfilled with granular materials meeting Ontario Provincial Standard Specifications (OPSS.MUNI) for Granular A or Granular B Type II materials that are placed in maximum 200 mm thick lifts and compacted to a minimum of 100 percent of their Standard Proctor maximum dry density.

The foundation subgrade soils are considered to be highly susceptible to disturbance as a result of groundwater seepage, ponding of water and/or construction activity. In order to limit this degradation, it is recommended that a concrete working slab of concrete be placed on the subgrade immediately after preparation, inspection and approval of the footing or base slab subgrade.

5.3 Grade Separation Structures

5.3.1 General

Similar to the culverts, details regarding the proposed founding elevations for the grade separation structures were not available at the time of preparation of this report; however similar to the culverts it is anticipated that these structures would be founded at relatively shallow depths taking into account protection from frost penetration requirements. Approach embankment construction will be required as part of these structures; it is anticipated that the embankment heights would range between 7 m and 10 m above existing site grades.

Based on the results of the field investigation, compact to very dense till soils were encountered underlying the fill at the Lockhart Road crossing. At the Mapleview Drive East crossing, the surficial roadway fill is underlain by compact silty sand and silty sand till deposits at a depth of about 4.0 m below existing site grades.

Provided that the integrity of the native compact to dense silty sand and till deposits is protected during the construction process, these materials are suitable for the support of shallow foundations for the proposed crossing structures. As such, deep foundations are not anticipated to be required for this project, although deep foundations such as steel H-piles or augered piles (caissons) would also be suitable to support such structures.

5.3.2 Preliminary Foundation Input

Spread footings for support of the grade separation structures should be founded below any existing fill materials, on the generally compact to very dense silty sand deposit or the silty sand till deposit.

At the Lockhart Road proposed structure location (Boreholes BH16-07 and BH16-08), compact silty sand till was encountered at a depth of about 2.5 m below existing site grades. At the Mapleview Drive East proposed structure location (Boreholes BH16-09 and BH16-10), loose silty sand and marginally compact silty sand till was encountered to depths of up to 4 m to 5.5 m below existing site grades. As such, at the Mapleview Drive East structure location subexcavation of the upper native materials (i.e. 2.6 m to 3.8 m of fill and 1.4 m to 1.7 m of silty sand fill) should be expected to be able to found the footings on suitable native compact materials.

For 3 m wide concrete footings founded at the depths indicated above, the following preliminary factored resistances are provided:

Location	LocationApproximate Depth below Existing Road Grades (m)Lockhart Road2.5 m		Preliminary Factored Serviceability Geotechnical Resistance at SLS (for 25 mm of settlement)
Lockhart Road	2.5 m	500 kPa	200 kPa
Mapleview Drive East	4.0 m – 5.5 m	500 kPa	160 kPa

The preliminary factored geotechnical resistances provided above are dependent on the footing size, configuration and applied loads; therefore, additional analyses should be completed during the detailed design stages once design elevations, footing dimensions, and loading requirements are known.

The preliminary factored geotechnical resistances provided above are given for loadings that will be applied perpendicular to the surface of the footings. Where the load is not applied perpendicular to the surface of the footing, inclination of the load should be taken into account in accordance with the *Canadian Highway Bridge Design Code (CHBDC)*.

The base of each footing excavation should be cleaned of loose / softened material. It is recommended that the founding level for the footings be inspected by geotechnical personnel immediately prior to pouring concrete to confirm the adequacy of the foundation conditions for the above-noted geotechnical resistances. If the concrete for the footings cannot be poured immediately after excavation and inspection, it is recommended that a concrete working slab be placed on the subgrade to protect the integrity of the bearing stratum.

5.3.3 Approach Embankments

As noted above, new approach embankments will be required to be constructed at each of the grade separation structures. Although embankment heights and geometry have not been provided at this time, it is estimated that the embankments could be as high as 10 m above existing grades.

A preliminary settlement analysis was completed for Lockhart Road and Mapleview Drive East to determine the approximate amount of settlement that may occur as a result of loading the existing roadways with the embankment fill. The maximum fill thickness of 10 m was used for each analysis. Further, it is assumed that all existing fill is removed from the embankment footprint and that the embankment is constructed on a suitable compact native material subgrade. The values of input parameters used in the analyses of settlement are based on field and laboratory test data and correlations suggested by Bowles (1984) from the soil conditions encountered in Boreholes BH16-07, BH16-08, BH16-09, and BH16-10.

The estimated preliminary magnitude of (factored) settlement for the approach embankment areas is provided below.

Location	Boreholes	Estimated Elastic Settlement (mm)	
Lockhart Road	BH16-07, BH16-08	35 mm	
Mapleview Drive East	BH16-09, BH16-10	95 mm	

The majority of the settlement is expected to occur during or shortly after construction in response to filling, based on the non-cohesive nature of the silty sand and silty sand till deposits. However, given the loose to low compact soil conditions at Mapleview Drive East, consideration should be given preloading within the areas of the embankments at this site to mitigate the potential for future settlement associated with the embankment construction.

Additional settlement analyses should be completed during the detail design stage and when the embankment geometry is known.

5.4 Lateral Earth Pressures

The lateral earth pressures acting on the grade separation structures, culverts and any associated wing walls / retaining walls will depend on the type and method of placement of the backfill materials, the nature of the soils behind the backfill, the magnitude of surcharge including construction loadings, the freedom of lateral movement of the structure, and the drainage conditions behind the walls. Seismic (earthquake) loading must also be taken into account in the design.

The following recommendations are made concerning the design of the grade separation structures, culverts and walls. It should be noted that these design recommendations and parameters assume level backfill and ground surface behind the walls. Where there is sloping ground behind the walls, the coefficient of lateral earth pressure must be adjusted to account for the slope.

Select, free-draining granular fill in accordance with OPSS.MUNI 1010 Granular 'A' or Granular 'B' Type II should be used as backfill behind the walls. Longitudinal drains and weep holes should be installed to provide positive drainage of the granular backfill. Other aspects of the granular backfill requirements with respect to

sub drains and frost taper should be in accordance with OPSD 3101.150 (*Wall, Abutments, Backfill*) and OPSD 3121.150 (*Walls, Retaining, Backfill*).

- A minimum compaction surcharge of 12 kPa should be included in the lateral earth pressures for the structural design of the wall stem, in accordance with CHBDC Section 6.12.3 and Figure 6.6. Compaction equipment should be used in accordance with OPSS.PROV 501. Other surcharge loadings should be accounted for in the design as required.
- For restrained structures, the granular fill may be placed in a zone with the width equal to at least 1.5 m behind the back of the walls (Figure C6.20 (a) of the *Commentary* to the *CHBDC*). For unrestrained structures, the granular fill should be placed within the wedge-shaped zone defined by a line drawn at 1.5 horizontal to 1 vertical (1.5H:1V) extending up and back from the rear face of the footing (Figure C6.20 (b) of the *Commentary* to the *CHBDC*).
- For restrained structures, the pressures are based on the existing embankment fill materials and the following parameters (unfactored) may be used assuming the use of granular earth fill such as OPSS.MUNI 1010 (Aggregates) Select Subgrade Material (SSM) for embankment construction:

Unfactored Para	Earth Fill	
Soil unit weig	21 kN/m ³	
Coefficients of static	At rest, K₀	0.47
lateral earth pressure:	Active, Ka	0.31

For unrestrained structures, where the pressures are based on OPSS.MUNI 1010 granular fill behind the wall, the following parameters (unfactored) may be assumed:

Unfactored Para	Granular A / Granular B Type II	
Soil unit wei	22 kN/m ³	
Coefficients of static	At rest, K₀	0.43
lateral earth pressure:	Active, Ka	0.27

If the wall support and superstructure allow lateral yielding of the stem, active earth pressures may be used in the geotechnical design of the structure. If the abutment support does not allow lateral yielding (such as for a rigid frame structure, including the anticipated box culverts), at-rest earth pressures should be assumed for geotechnical design. The movement required to allow active pressures to develop within the backfill, and thereby assume an unrestrained structure for design, should be calculated in accordance with Section C6.12.1 and Table C6.6 of the Commentary to the CHBDC.

5.5 Preliminary Pavement Design

Based on the borehole results, the subgrade for the pavement structure will generally comprise non-cohesive fill underlain by interlayered native strata comprised of loose to very dense silty sand to sand, and silty sand glacial till. A buried topsoil layer was encountered in Borehole BH16-04, which was advanced in proximity to Lover's Creek on Lockhart Road.

Prior to placing any granular material, the exposed subgrade should be prepared and heavily proof-rolled under the supervision of the geotechnical engineer. Remedial work should be carried out on any disturbed, softened or poorly performing zones, as directed by the geotechnical engineer. Future pavement structures should not be constructed on the topsoil layer as encountered in Borehole BH16-04; in this regard, removal of the topsoil layer and subsequent replacement with engineered fill is recommended.

The recommended preliminary pavement design for Lockhart Road and Mapleview Drive East is outlined below and is consistent with City of Barrie Standards.

	Motorial	Thickness of Pavement Elements (mm)			
	Material	14 m Asphalt Road	18 m Asphalt Road		
Asphaltic Material	HL1 Surface	40 mm	40 mm		
(OPSS 1150)	HL4 or HL8 Binder	100 mm	100 mm		
Granular Material	Granular A Base	150 mm	150 mm		
(OPSS 1010	Granular B Subbase	500 mm	500 mm – 600 mm		
Total Paver	nent Thickness (mm)	790 mm 790 mm to 890 m			
		Over Prepared And A	Approved Subgrade		

Granular materials should be uniformly compacted to 100 percent of the Standard Proctor Maximum Dry Density (SPMDD). The asphalt materials should be compacted to between 92.0 and 96.5 percent of their respective Marshall Maximum Relative Density (MRD), as measured in the field using a nuclear density gauge.

Golder should provide additional design recommendations regarding the pavement design once final grades have been determined and traffic data is provided.

5.6 Soil Submission

In order to provide preliminary information regarding the chemical quality of the subsurface soil, eight soil samples were submitted to AGAT Laboratories Ltd. of Mississauga, Ontario ("AGAT") for metals and inorganic parameter analyses. The boreholes and depth of the samples is detailed in the table below.

Borehole No.	Sample No.	Sample Depth (m)
BH16-01	SA3	1.5
BH16-02	SA2	0.8
BH16-03	SA2	0.8
BH16-04	SA3	1.5
BH16-05	SA3	1.5

Borehole No.	Sample No.	Sample Depth (m)
BH16-06	SA2	0.8
BH16-08	SA3	1.5
BH16-10	SA2	0.8

5.6.1 Soil Analytical Results

The soil sample analytical results were compared to the Ontario Ministry of the Environment ("MOE") "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 1 Full Depth Background Site Condition Standards for All Other Types of Property Use ("MOE Table 1 Standards").

A summary of the soil analytical results and the MOE Table 1 Standards is provided on the Laboratory Certificates of Analysis, included in Appendix C. Based on the results of the analyses and the Standards comparison, the following parameters were identified to be above the MOE Table 1 Standards:

- Sodium Absorption Ratio ("SAR") was detected above the MOE Table 1 Standard of 2.4 in each of the soil samples tested
- Electrical Conductivity ("EC") was detected above the MOE Table 1 Standard of 0.57 mS/cm in five of the eight soil samples tested

5.6.2 Discussion of Analytical Results

Elevated EC and SAR values in soils beneath roadways are often attributable to the application of de-icing salts. Although the levels identified are generally above the MOE generic full-depth remediation standards, some receivers (depending on their intended land use) may consider accepting materials for which only EC and/or SAR have been identified as potential contaminants of concern. For example, such materials may be considered environmentally suitable for re-use as road base materials. Available analytical data pertaining to this material should be forwarded to the potential receiver for review. Written authorization should be provided to the site representative by the potential receiver, indicating that this data was received and reviewed, and that the receiver accepts the excavated material. It is noted that receiving sites may be subject to filling or other land use restrictions which could affect the importation and placement of fill on their sites.

6.0 ADDITIONAL WORK, INSPECTIONS AND TESTING

Prior to tendering, the geotechnical aspects of the design drawings and specifications and the proposed construction methodology should be reviewed by Golder to confirm that the intent of the recommendations contained in this report have been met. During construction, sufficient subgrade inspections, in-situ density tests, and materials tests should be carried out to confirm that the conditions encountered are consistent with those encountered in the boreholes, and to monitor conformance with the pertinent project specifications. Full-time inspection should be performed by geotechnical personnel during structural fill placement.

Report Signature Page

If you have any questions or concerns regarding the contents of this report, please do not hesitate to contact our office.

Yours truly,

GOLDER ASSOCIATES LTD.

ILR

Nick La Posta, P.Eng. Geotechnical Engineer

NLP/JMAC/sm/plc

Alost

Jorge M.A. Costa, P.Eng. Senior Consultant

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

PRELIMINARY GEOTECHNICAL INVESTIGATION HEWITT'S SECONDARY PLAN EA, CITY OF BARRIE, ONTARIO

FIGURES

	0	050	-		
	4:40.500	250	D	50	
	1:12,500 (INSET	MAP SCALE 1:200.0	METRI 200 KM)	ES	
REFERENCE(S) BASE DATA - MNR L PRODUCED BY GOI NATURAL RESOUR PROJECTION: TRAN	.IO, OBTAINED 201 .DER ASSOCIATE: CES, © QUEENS P NSVERSE MERCAT	16 S LTD UNDER LICE! RINTER 2016 FOR DATUM: NAD 8	NCE FROM 3 COORDI	I ONTARIO N NATE SYSTE	/INISTRY OF EM: UTM ZONE
CLIENT HATCH CORF	PORATION				
PROJECT GEOTECHNIC HEWITT'S CL	CAL INVESTI ASS ENVIRC	GATION DNMENTAL AS	SSESS	MENT	
TITLE SITE AND BC	REHOLE LC	OCATION PLA	N		
CONSULTANT		VVVV-M	M-DD	2016-0	9-07

APPROXIMATE BOREHOLE LOCATION

25 mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FROM: ANY

PROJECT NO. 1525357

LEGEND

•

Control

 DESIGNED

 PREPARED
 STB

 REVIEWED
 NL

 APPROVED
 JMAC

 Figure

 1

PRELIMINARY GEOTECHNICAL INVESTIGATION HEWITT'S SECONDARY PLAN EA, CITY OF BARRIE, ONTARIO

APPENDIX A

Record of Borehole Sheets

METHOD OF SOIL CLASSIFICATION

The Gold	he Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)																			
Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$(xD_{60})^2$	Organic Content	USCS Group Symbol	Group Name								
		Gravels		Poorly Graded		<4		≤1 or ≩	:3	3		GRAVEL								
(ss	SOILS In 0.075 mm)	/ELS , mass action 4.75 r	fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL								
by ma		GRA 50% by arse fr er than	Gravels with	Below A Line			n/a				GM	SILTY GRAVEL								
aANIC t ≤30%	AINED rger th	larg c (×	fines (by mass)	Above A Line			n/a			<20%	GC	CLAYEY GRAVEL								
INORG (Organic Content	SE-GR/ ss is la	of is mm)	Sands with	Poorly Graded		<6		≤1 or 2	≥3	≥30%	SP	SAND								
	COARS by ma	JDS / mass action n 4.75	fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND								
	(>50%	SAN 50% by barse fr ller that	Sands with	Below A Line			n/a				SM	SILTY SAND								
		smal	fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND								
Organic	Soil			Loboratory		l	Field Indicators			Organic Content	USCS Group Symbol	Primary Name								
or Inorganic	organic Soil Type of Soil		Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)												
	GRAINED SOILS s is smaller than 0.075 mm)	- plot	Linuid Linuit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT									
(s		and L Line Sity ow)	Liquid Limit		Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT								
by mas		SILTS c or PI	SILTS c or PI ow A-L Plastid art bel	c or Pl low A-L Plasti art bel	art be	Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT							
ANIC ≤30%		bel bel	Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT									
NORG		-GRAIN	-GRAIN	GRAIN s is sm	-GRAIN s is sm	GRAIN s is sm	GRAIN s is sm	-GRAIN	-GRAII	-GRAII s is sm	(Noi	(Nor	250	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН
Janic C	FINE- y mass	lot	art	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY								
(Org	=50% b	CLAYS (Pl and LL p	CLAYS (PI and LL p above A-Line Plasticity Ch. below)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY								
	Ň			Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY								
NIC NIC	>30% >30%	୍ଥ Peat and mineral soil ନୁଦ୍ଧ mixtures				30% to 75%	30% SI to SA 75% SA													
HIGH ORGA SOIL	Content by ma	Predomin may cont mineral soi amorph	antly peat, tain some il, fibrous or ous peat							75% to 100%	PT	PEAT								
	40 Dual Symbol — A dual symbol is two symbols separated																			

Dual Symbol — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

Borderline Symbol — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to er indicates a range of similar soil types within a stratum.

ABBREVIATIONS AND TERMS USED ON RECORDS OF **BOREHOLES AND TEST PITS**

Μ

MH

MPC

SPC

OC

 SO_4

UC

UU

γ

1.

V (FV)

PARTICLE SIZES OF CONSTITUENTS

Soil	Particle Size	Millimetres	Inches
Constituent	Description		(US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse	19 to 75	0.75 to 3
	Fine	4.75 to 19	(4) to 0.75
SAND	Coarse	2.00 to 4.75	(10) to (4)
	Medium	0.425 to 2.00	(40) to (10)
	Fine	0.075 to 0.425	(200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL, SAND and CLAY)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.).

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (qt), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- Sampler advanced by hydraulic pressure PH:
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Compactness ²		
Term	SPT 'N' (blows/0.3m) ¹	
Very Loose	0 - 4	
Loose	4 to 10	
Compact	10 to 30	
Dense	30 to 50	
Very Dense	>50	
 SPT 'N' in accordance with a pressure effects. Definition of compactness designments 	ASTM D1586, uncorrected for ove scriptions based on SPT 'N' rang	erburde es fron

from Terzaghi and Peck (1967) and correspond to typical average $N_{\rm 60}$ values.

Field Moisture Condition		
Term	Description	
Dry	Soil flows freely through fingers.	
Moist	Soils are darker than in the dry condition and may feel cool.	
Wet	As moist, but with free water forming on hands when handled.	
Wet	As moist, but with free water forming on hands when handled.	

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
FS	Foil sample
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
то	Thin-walled, open – note size
ТР	Thin-walled, piston – note size
WS	Wash sample
SOIL TESTS	3
w	water content
PL, w _p	plastic limit
LL, w _L	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity

COHESIVE SOILS

sieve analysis for particle size

Modified Proctor compaction test

Standard Proctor compaction test

unconfined compression test

concentration of water-soluble sulphates

Tests which are anisotropically consolidated prior to shear are

unconsolidated undrained triaxial test

field vane (LV-laboratory vane test)

organic content test

unit weight

shown as CAD, CAU.

combined sieve and hydrometer (H) analysis

Consistency		
Term	Undrained Shear Strength (kPa)	SPT 'N' ¹ (blows/0.3m)
Very Soft	<12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	>200	>30

SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects: approximate only.

Water Content		
Term	Description	
w < PL	Material is estimated to be drier than the Plastic Limit.	
w ~ PL	Material is estimated to be close to the Plastic Limit.	
w > PL	Material is estimated to be wetter than the Plastic Limit.	

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a)	Index Properties (continued)
π In x log ₁₀ g t	3.1416 natural logarithm of x x or log x, logarithm of x to base 10 acceleration due to gravity time	w _I or LL w _p or PL I _p or PI W _s I _L I _C e _{max} e _{min}	liquid limit plastic limit plasticity index = $(w_l - w_p)$ shrinkage limit liquidity index = $(w - w_p) / I_p$ consistency index = $(w_l - w) / I_p$ void ratio in loosest state void ratio in densest state density index = $(e_{w_l} - e_{p_l}) / (e_{w_l} - e_{p_l})$
II.	STRESS AND STRAIN	U	(formerly relative density)
$\begin{array}{l} \gamma \\ \Delta \\ \epsilon \\ \epsilon_v \\ \eta \\ \upsilon \\ \sigma \\ \sigma' \end{array}$	shear strain change in, e.g. in stress: $\Delta \sigma$ linear strain volumetric strain coefficient of viscosity Poisson's ratio total stress effective stress ($\sigma' = \sigma - u$)	(b) h q v i k	Hydraulic Properties hydraulic head or potential rate of flow velocity of flow hydraulic gradient hydraulic conductivity (coefficient of permeability) seepage force per unit volume
σ′ _{vo} σ ₁ , σ ₂ ,	initial effective overburden stress principal stress (major, intermediate,		
σ ₃ σ _{oct}	mean stress or octahedral stress = $(\sigma_1 + \sigma_2 + \sigma_3)/3$ shear stress	C _c C _r	compression index (normally consolidated range) recompression index (over-consolidated range)
u E G K	porewater pressure modulus of deformation shear modulus of deformation bulk modulus of compressibility	$\begin{array}{c} C_s \\ C_\alpha \\ m_\nu \\ C_\nu \end{array}$	swelling index secondary compression index coefficient of volume change coefficient of consolidation (vertical direction)
III.	SOIL PROPERTIES	c _h Τ _v U σ' _p	coefficient of consolidation (horizontal direction) time factor (vertical direction) degree of consolidation pre-consolidation stress
(a) $\rho(\gamma)$ $\rho_{d}(\gamma_{d})$ $\rho_{w}(\gamma_{w})$ $\rho_{s}(\gamma_{s})$ γ' D _R e n S	Index Properties bulk density (bulk unit weight)* dry density (dry unit weight) density (unit weight) of water density (unit weight) of solid particles unit weight of submerged soil $(\gamma' = \gamma - \gamma_w)$ relative density (specific gravity) of solid particles (D _R = ρ_s / ρ_w) (formerly G _s) void ratio porosity degree of saturation	ΟCR (d) τ _p , τ _r φ΄ δ μ c' c _u , s _u p c' c _u , s _u p q u S _t	over-consolidation ratio = σ'_p / σ'_{vo} Shear Strength peak and residual shear strength effective angle of internal friction angle of interface friction coefficient of friction = tan δ effective cohesion undrained shear strength ($\phi = 0$ analysis) mean total stress ($\sigma_1 + \sigma_3$)/2 mean effective stress ($\sigma'_1 + \sigma'_3$)/2 ($\sigma_1 - \sigma_3$)/2 or ($\sigma'_1 - \sigma'_3$)/2 compressive strength ($\sigma_1 - \sigma_3$) sensitivity
* Densi where accele	ty symbol is ρ . Unit weight symbol is γ $\gamma = \rho g$ (i.e. mass density multiplied by eration due to gravity)	Notes: 1 2	$\label{eq:compressive} \begin{array}{l} \tau = c' + \sigma' \mbox{ tan } \phi' \\ \mbox{shear strength} = (\mbox{compressive strength})/2 \end{array}$

WEATHERINGS STATE

Fresh: no visible sign of weathering

Faintly weathered: weathering limited to the surface of major discontinuities.

Slightly weathered: penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material.

Moderately weathered: weathering extends throughout the rock mass but the rock material is not friable.

Highly weathered: weathering extends throughout rock mass and the rock material is partly friable.

Completely weathered: rock is wholly decomposed and in a friable condition but the rock and structure are preserved.

BEDDING THICKNESS

Description	Bedding Plane Spacing
Very thickly bedded	Greater than 2 m
Thickly bedded	0.6 m to 2 m
Medium bedded	0.2 m to 0.6 m
Thinly bedded	60 mm to 0.2 m
Very thinly bedded	20 mm to 60 mm
Laminated	6 mm to 20 mm
Thinly laminated	Less than 6 mm

JOINT OR FOLIATION SPACING

Description	Spacing
Very wide	Greater than 3 m
Wide	1 m to 3 m
Moderately close	0.3 m to 1 m
Close	50 mm to 300 mm
Very close	Less than 50 mm

GRAIN SIZE

Term	<u>Size*</u>
Very Coarse Grained	Greater than 60 mm
Coarse Grained	2 mm to 60 mm
Medium Grained	60 microns to 2 mm
Fine Grained	2 microns to 60 microns
Very Fine Grained	Less than 2 microns

Note: * Grains greater than 60 microns diameter are visible to the naked eye.

CORE CONDITION

Total Core Recovery (TCR)

The percentage of solid drill core recovered regardless of quality or length, measured relative to the length of the total core run.

Solid Core Recovery (SCR)

The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

Rock Quality Designation (RQD)

The percentage of solid drill core, greater than 100 mm length, recovered at full diameter, measured relative to the length of the total core run. RQD varied from 0% for completely broken core to 100% for core in solid sticks.

DISCONTINUITY DATA

Fracture Index

A count of the number of discontinuities (physical separations) in the rock core, including both naturally occurring fractures and mechanically induced breaks caused by drilling.

Dip with Respect to Core Axis

The angle of the discontinuity relative to the axis (length) of the core. In a vertical borehole a discontinuity with a 90° angle is horizontal.

Description and Notes

An abbreviation description of the discontinuities, whether naturally occurring separations such as fractures, bedding planes and foliation planes or mechanically induced features caused by drilling such as ground or shattered core and mechanically separated bedding or foliation surfaces. Additional information concerning the nature of fracture surfaces and infillings are also noted.

Abbreviations

MB Mechanical Break

JN	Joint	PL	Planar
FLT	Fault	CU	Curved
SH	Shear	UN	Undulating
VN	Vein	IR	Irregular
FR	Fracture	Κ	Slickensided
SY	Stylolite	PO	Polished
BD	Bedding	SM	Smooth
FO	Foliation	SR	Slightly Rough
СО	Contact	RO	Rough
AXJ	Axial Joint	VR	Very Rough
ΚV	Karstic Void		

Golder

RECORD OF BOREHOLE: BH16-01

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: June 15, 2016

SPT/DCPT	HAMMER:	MASS.	64ka:	DROP.	760mm
		110,000,	o mg,	DI(01,	10011111

	E	ЦО		SOIL PROFILE			SA	MPL	ES	DYNAMIC PER RESISTANCE	ETRAT	ION 5/0.3m	ľ	HYDR/	AULIC C k, cm/s	ONDUCT	IVITY,	Т	Ġ		
	SCAL	ETH H			-0T		~		Зm	20	40	60 8	0	1	0 ⁻⁶ 1	0 ⁻⁵ 10	D ⁻⁴ 10	p³ ⊥	STIN	PIEZOMETER OR	
	PTH (2 UU		DESCRIPTION	TA PI	ELEV.	MBEF	ΥPE	VS/0.	SHEAR STRE	NGTH	nat V. +	Q - ●	w	ATER C	ONTENT	PERCE	NT	DITIO	STANDPIPE INSTALLATION	N
	DEP	ORII			TRAT	DEPTH (m)	NUN	ŕ	RON	Cu, kPa		rem V. 🕀	U- 0	W	⊳ I	0 ^W		WI	AD		•
ŀ			-		ω.				ш	20	40	60 8	0	1	0 2	0 3	0 4	0			
Ŀ	- 0		+	FILL-(SP/GW) SAND and GRAVEL:	$\times\!$	241.80 0.00														ļ.	
E				brown; non-cohesive, moist, compact	\bigotimes		1A	DO	11					0						Concrete Casing	
E			ł	FILL-(SM) SILTY SAND to sandy SILT	⋘	241.39 0.41	1B								0						
F				and TOPSOIL, trace gravel; brown to black; non-cohesive, moist, very loose to	\bigotimes															Doptopito	
F				loose	\bigotimes															Bentonite	-
F	- 1				\boxtimes		2	DO	5						0				Metals		-
E					\bigotimes															#1 Silica Sand	
					\bigotimes															10.10	
Ē					\bigotimes		3	DO	2												13 :
F	- 2				\bigotimes		Ŭ		2											\Box	H4_
F					\bigotimes															July 14, 2016	13:
F			ł	(SM) SILTY SAND and GRAVEL; brown	ĤΎ	239.46 2.34															日3 -
F				to grey; non-cohesive, wet, dense			4	DO	33					0	þ						8
E																				5.V.	H2 -
E	- 3																			10 Slot PVC Screen	H-
E						238.50	5A	_							0						81
F				(SM) SILTY SAND, trace to some gravel; grey, (TILL); non-cohesive, wet,		3.30	5B	DO	6						>						1313 -
F				loose to very dense																100 A	13 :
F																					H2 -
F	- 4						6	DO	14					c					мн		87-
_																				5.V.	8
STE		lger	-																		Ha -
7-16		ver Au	Auge																		-
1-6-1	- 5	nt Pov	Stem				7	DO	11						P						
-GD		Mour	ollow																		-
-MIS		Track	т 8																		-
GAL																					-
G																					-
01.0	- 6																				
9- 9-																					-
57-B							8	DO	18						P						-
5253																					-
																					-
NG/	- /																				-
ATA																					
02																					1
RIE-							9	DO	108/ 279					0							-
BAR	- 8																				
ALD																					-
NOC																					-
ACI																					-
É																					-
₩	- 9																				-
Ъ																					-
IN HA							10	DO	44					0							-
INTS																					-
CLE	- 10	_[_			1	Ļ		_	\vdash \perp \perp \perp \perp		4	L	↓	L		<u> </u>	<u> </u>			
- Si	-			CONTINUED NEXT PAGE																	
1S 00	_				•	•	-				ŝ.										
A-BH	DE	PTł	۱S	CALE								Golde	r						LC	OGGED: SP	
ĽΒ	1:	50								<u> </u>	Z A	ssocia	<u>ates</u>						CH	ECKED: NL	

PROJECT:	1525357-BG-0001
LOCATION:	See Figure 1

RECORD OF BOREHOLE: BH16-01

SHEET 2 OF 2

BORING DATE: June 15, 2016

DATUM: Geodetic

ľ	щ	QO	SOIL PROFILE		SA	MPL	ES	DYNAMIC PEN RESISTANCE,	IETRATI BLOWS	ON 5/0.3m	$\overline{\boldsymbol{\lambda}}$	HYDR/	AULIC C k, cm/s	ONDUCT	TIVITY,	T	<u>ں</u>	
	I SCAL FRES	METH		LOT	R		0.3m	20 4	10 I	60 8	i0	1	0 ⁻⁶ 1) ⁻⁵ 1	0 ⁻⁴ 1	p-₃ ⊥	TIONAL	OR STANDPIPE
	EPTH MET	RING	DESCRIPTION	ELEV		TYPE	D/S/MC	SHEAR STREI Cu, kPa	NGTH	nat V. + rem V.⊕	Q - ● U - O	W	ATER C		PERCE	NT	ADDIT AB. TI	INSTALLATION
	Δ	BO		(m)	z		BLO	20	40	<u>60 8</u>	0	1	0 2	0 3	30 4	0	L	
	- 10		CONTINUED FROM PREVIOUS PAGE (SM) SILTY SAND, trace to some	4	+													
	-	r Auger uger	gravel; grey, (TILL); non-cohesive, wet, loose to very dense															-
	-	t Powel Stern A																-
	-	Anumt Hollow S																-
	- 11	Track 8" F			11	DO	71					0						-
	-		End of Borehole	230.5 11.2	8													-
	-		NOTE:															-
	- - - 12		1. Groundwater level measured at a depth of 1.8 m in open borehole upon															-
	- 12		completion of drilling June 15, 2016. 2. Groundwater level measured at a															-
	-		deptn of 2.0 m on July 14, 2016.															-
	-																	-
	- - 13																	
	-																	-
	-																	-
	-																	-
	— 14 -																	
е	-																	-
16 S	-																	-
F 9-7-	- - 15																	-
S.GD1	-																	-
AL-MI	-																	-
P. G	-																	-
001.G	- - 16																	-
BG-00	-																	-
5357-	-																	-
TN152	-																	-
A/GIN	— 17 -																	
DAT	-																	-
IE\02	-																	-
BARR	- - - 18																	-
IALD/	-																	-
CDON	-																	-
T_MA	-																	-
MOT	- - 19 -																	
VTCH	-																	
TS/HA	-																	-
, LIEN	-																	-
1 S:\C	- 20																	_
HS 00					•				Ŝ		•		•					
TA-BI	DE 1∶	50	DUALE					G	98	Golde	er ates						CH	ECKED: NL
Ċ		-						-44	- 110	00010							÷.,	

RECORD OF BOREHOLE: BH16-02

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: June 13, 2016

ш			SOIL PROFILE			SA	MPL	ES	DYNAMIC PENET RESISTANCE, BI	RATION .OWS/0.3m	<u>ک</u>	HYDR	AULIC C	ONDUCT	TIVITY,	Т	. (¹)	
SCAL				LOT		۲		Зm	20 40	60	80	1	0 ⁻⁶ 1	0 ⁻⁵ 1	0-4 10	. <u> </u>	ONAL	PIEZOMETER OR
METH		2 5 2	DESCRIPTION	TA PI	ELEV.	MBE	ΥPE	NS/0.	SHEAR STRENGT	TH nat V. +	- Q - ●	w	ATER C	ONTENT	PERCEN	т	B. TE	STANDPIPE INSTALLATION
DE		BUR		STRA	(m)	₽		BLO	20 40	60	•••	W	⊳—	O W	V	VI	LAI	
			GROUND SURFACE		247.80				20 40						40	,		
- (- - -			ASPHALT FILL-(SW/GW) SAND and GRAVEL to gravelly SILTY SAND; brown to grey to black, trace organics; non-cohesive, mainthe work to brack dense		0.00	1	DO	46				0						Concrete Casing
- - - - 1	1		moist to wet, loose to dense		2 2 2	2	DO	22				0					Metals	Bentonite
-							-											#1 Silica Sand
- - 2 -	2					3	DO	12				0						
-			organic seam at 2.5 to 2.7 mbgs increasing fines content with depth			4A 4B	DO	8					0	0				July 14, 2016
- 3 - 3 	3		(SM) SILTY SAND, trace to some		244.45 3.35	5A	DO	18					0					10 Slot PVC Screen
- - - - 4	- Auger	rger	gravel, some clay; grey, occasional cobble; non-cohesive, wet, compact to very dense		- - - - -	5B	-											
	k Mount Power	Hollow Stem A			· · · ·	6	DO	34				0					мн	
	Tra	-00 				7	DO	254 mm										
- 6 - -	5				1 	8	DO	50/ 102 mm				0						
- - - - 7	,																	
-					•	-9	DO	50/ 25										
- - - 8 -	3							mm										
			End of Borehole		239.14	10	DO	66/ 127 mm				,	þ					
- - 9 -	,		Spin Spoon and Auger Refusation Boulder NOTE:															
			1. Groundwater level measured at a depth of 5.7 m in open borehole upon completion of driling on June 13, 2016. 2. Groundwater level measured at a depth of 2.4 m on July 14, 2016.															
- 10	ĺ		-															
D	EPT	нs	CALE		•		•		Â	Gold	er	•	•				L	DGGED: SP
1	: 50									Associ	ates						СН	ECKED: NL

PROJECT:	1525357-BG-0001
LOCATION:	See Figure 1

RECORD OF BOREHOLE: BH16-03

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: June 13, 2016

|--|

	Q		SOIL PROFILE			SA	MPL	.ES	DYNAMIC PEN RESISTANCE,	ETRATI BLOWS	ON 5/0.3m	ľ	HYDR	AULIC C k, cm/s	ONDUC	TIVITY,	Т	ט∟	DIEZOMETER
RES	METH			LOT		к		.3m	20 4	0	60 8	0	10	0 ⁻⁶ 1	0 ⁻⁵ 1	0-4 10	-₃ ⊥	IONA	OR
MET	UD NG		DESCRIPTION	TAF	ELEV.	MBE	γPE	NS/0	SHEAR STREN	GTH	nat V. + rem V. ⊕	Q - ● U - O	w	ATER C	ONTENT	PERCEN	IT	B. TE	INSTALLATIO
	BOR			STRA	(m)	₽		BLO	00, 11 0	•		• • •	Wr	⊳ ⊢		V	VI	LAI	
		╉	GROUND SURFACE	0,	248 60				20 4	0 1	800	0				40)		
0			ASPHALT FILL-(SM-SW/GW) SAND and GRAVEL to SILTY SAND, trace clay; brown to grev to black: non-cohesive, moist to		0.00	1	DO	20					0						Concrete Casing
1			wet, very loose to compact																Bentonite
						2	DO	18					0					Metals	#1 Silica Sand
2						3	DO	9					0						July 14, 2016
						4	DO	4					0						
3					245.09	5A	DO	2					c	Þ					10 Slot PVC Screen
4			(CL) SILTY CLAY, trace sand; grey; cohesive, w>PL, soft to firm		3.51	5B 6A								0 0					
	ver Auger	n Auger	(ML-SW/SM) SILTY SAND, some gravel to gravelly; grey, (TILL); non-cohesive, wet, loose to very dense	4.4.4.4.4 4.4.4.4.4 4.4.4.4.4	4.11	6B	DO	8						0					
5	Track Mount Po	8" Hollow Sten		<u> </u>		7	DO	49					0						
6				1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		8	DO	42						0				мн	
7			decreasing gravel content, with depth	6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6															
				2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
8				A. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.		9A 9B	DO	73							0				
9				4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4															
			End of Borehole	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	238.85	10	DO	53						0					
10		_	Auger Refusal on Inferred Boulder		+	Ļ-	L _	-			+		↓		↓			<u> </u>	
			CONTINUED NEXT PAGE																

PROJECT:	1525357-BG-0001
LOCATION:	See Figure 1

RECORD OF BOREHOLE: BH16-03

SHEET 2 OF 2

BORING DATE: June 13, 2016

DATUM: Geodetic

													_						
	щ	DO	SOIL PROFILE			SAN	NPLE	B DY RE	NAMIC F	PENETRA CE, BLOV	TION /S/0.3m		HYDR/	AULIC C k, cm/s	ONDUC	FIVITY,	Т	_, 0	
	SCAL	IETH		.0T		~	1	5	20	40	60	80	1	D ⁻⁶ 1	0 ⁻⁵ 1	Q ⁻⁴ 1	_{0³} ⊥	STIN	PIEZOMETER OR
	TH C	Ŭ 2	DESCRIPTION	J A PL	ELEV.	ABEF	<u>الا</u>	SH	EAR ST	RENGTH	nat V. H	Q - ●	w	ATER C		PERCE	NT	DITIO	STANDPIPE
	ЧN	ORIN		RAT	DEPTH (m)	NN N	£ }	Cu	, kPa		rem V. f	€ U- O	Wp		W		WI	LAB	INGTALLATION
╞		ă		ST	(11)			5	20	40	60	80	1	0 2	20 :	30 4	10		
ŀ	- 10		CONTINUED FROM PREVIOUS PAGE	\square		\square		_											
F			NOTE:										1						
F			1. Groundwater level measured at a																
F			depth of 4.1 m in open borehole upon																-
F			2. Groundwater level measured at a																
F	- 11		depth of 1.6 m on July 14, 2016.																-
Ē																			-
F																			-
F																			-
F																			-
E	- 12																		-
E																			-
E																			-
E													1						
F																			:
þ	- 13																		-
F																			
F													1						:
F																			
F																			-
F	- 14																		-
																			-
STB																			
-19																			-
-6-	- 15																		
<u>G</u> D																			
MIS.																			-
- H																			-
2-2-																			
- 10 -	- 16																		-
00-																			-
-BG																			
5357																			
152																			
	- 17																		-
ĭ¥													1						
۲ ۵																			-
E/02													1						
ÅRR∣													1						
BB	- 18																		
NAL N													1						
öF													1						
Ψ.																			-
ξĒ	- 10												1						
ĭ₽	19												1						
ţ																			:
₹HS													1						
Ë													1						
	- 20																		-
Ś.													1						
8 00				•		· · · ·				<u> </u>		1	•	•		•			
-BH:	DE	PTH S	CALE						- (FA	Gold	er						LC	DGGED: SP
GTA	1:	50								D A	<u>ssoci</u>	ates						СН	ECKED: NL

RECORD OF BOREHOLE: BH16-04

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: June 10, 2016

ŝ	ETHOD	Ŧ	SOIL PROFILE	15		SA		ES E	DYNAMIC PENETRAT RESISTANCE, BLOW	FION /S/0.3m	HYDR	AULIC CO k, cm/s			I	NAL TING	PIEZOMETER
METKE	BORING MF		DESCRIPTION	STRATA PLC	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3	SHEAR STRENGTH Cu, kPa	nat V. + Q - ● rem V. ⊕ U - O 60	 	VATER CO /p	DNTENT ONTENT <u>OW</u>) PERCEN 		ADDITIO	STANDPIPE INSTALLATION
0		_	GROUND SURFACE FILL-(SW/GW) SAND and GRAVEL; brown, asphalt pieces; non-cohesive, moist, very loose to compact		246.50	1	DO	25			0						Concrete Casing
1						2	DO	9			0						Bentonite
2		-	TOPSOIL-(SM) SILTY SAND; grey to black; moist, loose		244.21	3	DO	2			0		þ			Metals	
3						5	DO	4							0		U July 14, 2016 #1 Silica Sand
4	er				241.9	6	DO	8						0			
5	Track Mount Power Aug	8" Hollow Stem Auger	(SM) SILTY SAND, trace to some clay, trace to some gravel; grey, (TILL); non-cohesive, wet, loose to compact	A A 4 4 A 4 4 A 4 4 4 4 4 4 4 4 4 4 4 4	4.57	7	DO	5				Φ					10 Slot PVC Screen
7						8	DO	6				Φ				МН	
8				<u> </u>		9	DO	7				0					
9				12 7 4 2 7 4 2 7 4 2 7 4 2 4 4 4 4 4 4 4		10	DO	20			с	>					
10 -	_L	_		- 6 - 14	Ľ		+-	-'		· + ·	+						

PROJECT:	1525357-BG-0001
LOCATION:	See Figure 1

RECORD OF BOREHOLE: BH16-04

SHEET 2 OF 2

BORING DATE: June 10, 2016

DATUM: Geodetic

ľ	щ	DD	SOIL PROFILE		SA	MPLI	ES	DYNAMIC PENETI RESISTANCE, BL	RATION OWS/0.3m	ì	HYDRAU	JLIC CC k, cm/s	NDUCT	IVITY,	Т	<u>ں</u>	
	I SCAL FRES	METH		PLOT	ER		0.3m	20 40	60	80	10 ⁻⁶	° 10	⁻⁵ 1()-4 1(_{)⁻³ ⊥}	FIONAL	OR STANDPIPE
	MEI	RING	DESCRIPTION	DEPTH		ΤΥΡΕ	0WS/I	SHEAR STRENGT Cu, kPa	TH nat V. + rem V. €	- Q - ● 9 U - O	WA Wp	TER CO		PERCE	NT WI	ADDI AB. T	INSTALLATION
		BC		S (m)			BL	20 40	60	80	10	20) 3	0 4	0		
	— 10	ger	CONTINUED FROM PREVIOUS PAGE (SM) SILTY SAND, trace to some clay, trace to some gravel; grey, (TILL);														
ł	-	wer Au(n Auger	non-cohesive, wet, loose to compact														-
ł		lount Pc low Ster			\vdash												-
ł	11	Track N 8" Hol			11	DO	9				c						-
			End of Borehole	235.2 11.2	2 B												
ł			NOTE:														-
ŀ	12		1. Groundwater level not encountered in open borehole upon completion of														-
ł	-		2. Groundwater level measured at a depth of 2.7 m on July 14. 2016.														
ŀ																	-
																	-
ŀ	- 13 -																
ŀ																	-
	-																
	— 14 -																
Ш	-																-
7-16 S																	-
DT 9-7	- 15																-
MIS.GI																	
GAL-I																	-
1.GPJ	— 16																-
G-000	-																-
5357-B																	-
TN152!																	-
LA/GIN	- 17 -																
12_DA1																	-
RRIE/0																	-
_D\BAI	- 18																
INOC																	-
MAC																	-
MOTT	19																-
TCH																	-
ITS/H/																	-
CLIEN	- - 20																-
01 S:																	
-BHS (DE	PTH	SCALE					Á	Cold	e r						LC	DGGED: SP
GTA-	1:	50							Associ	ates						СН	ECKED: NL

RECORD OF BOREHOLE: BH16-05

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: June 9, 2016

	щ		3	SOIL PROFILE			SA	MPL	ES	DYNAMIC PEN RESISTANCE	IETRAT BLOWS	ION S/0.3m	ì	HYDR	AULIC C	ONDUCT	TVITY,	T	٥	
	SCAL	METH			LOT		R		.3m	20	40	60 8		1	0 ⁻⁶ 1	0 ⁻⁵ 1	0 ⁻⁴ 10 ⁻³	T	IONAL	
	EPTH	SING		DESCRIPTION	ATA F	ELEV.	JMBE	ТҮРЕ	WS/0	SHEAR STREI Cu, kPa	NGTH	nat V. + rem V. ⊕	Q - ● U - O	W	ATER C	ONTENT	PERCENT		AB. TE	INSTALLATION
	ö	BOF			STR/	(m)	N		BLC	20	40	60 8	0		p 2	.0 3	WI 60 40		L A	
	- 0			GROUND SURFACE		260.20														
F	Ū			FILL-(SW/GW) SAND and GRAVEL; brown to black, trace organics, asphalt;	\bigotimes	0.00														Concrete Casing
E				non-cohesive, moist to wet, very loose to compact	\bigotimes	×	1	DO	19					0						
E					\bigotimes															
Ē	- 1				\bigotimes	Ś														Cuttings
E	- 1				\bigotimes		2	DO	17					0						
Ē					\bigotimes															
-					\bigotimes	Ś														
-	- 2				\bigotimes		3	DO	19					0					Metals	
-	2				\bigotimes															Bentonite
Ē					\bigotimes	×														∇
E					\bigotimes		4	DO	1					0						August 15, 2016
Ē	- 3				\bigotimes	257.15														#1 Silica Sand
F	Ū		Ī	FILL-(SM) SILTY SAND; grey to black, trace organics; non-cohesive, wet, very		3.05														
Ē				loose to compact	\bigotimes		5	DO	wн						0					
E					\bigotimes	*														
E	- 4				\bigotimes															· · · · · · · · · · · · · · · · · · ·
Ē				gravelly in Sample 6	\bigotimes	×	6	DO	22						0					
STB		Jer			\bigotimes	255.63														10 Slat DVC Saraan
7-16		ver Auç	Auger	(SW) SAND, trace silt, trace gravel; brown to grey; non-cohesive, wet,		4.57														
1-9-1 -	- 5	Int Pow	v Stem	compact to dense			7	DO	18						0				м	
S.GD		ck Mou	Hollow																	
H-NI		Tra	8																	
<u>9</u>																				
01.GF	- 6																			
- 00 - 00 - 00						•	8A								0					-
357-E							00	DO	36											-
1525							OB													
LNI0	- 7																			-
ATA/(-
05-																				-
RIE/				(SM) SILTY SAND, fine: grev:	і. П.	252.40	9A								0					
D/BAI	- 8			non-cohesive, wet, dense to very dense			9B	DO	31						0					-
NAL																				
ACDO																				-
≤ ⊢ ⊢																				-
М	- 9					1			801											-
ATCH							10	DO	279 mm						0				м	-
TS/H/																				
																				-
1 s:\C	- 10	- L		CONTINUED NEXT PAGE		1			1-	<u> </u>	— —	T		[<u> </u>			
.00 SF				0415							ŝ		1							
TA-Bł	DE 1 ·	년 [] 50	۶	UALE						(j		Golde	r						L(СН	FCKED: NI
Ċ												53UUI							011	

RECORD OF BOREHOLE: BH16-05

SHEET 2 OF 2

BORING DATE: June 9, 2016

DATUM: Geodetic

┢			SOIL PROFILE			SA		s	DYNAMIC PEN	ETRATI	ON	`	HYDR/	AULIC C	ONDUCT	TIVITY,	т		
Ļ	L L L S S	THO		F				-9	RESISTANCE	BLOWS	5/0.3m	<u>``</u>		k, cm/s	o-5			ING	PIEZOMETER
0		3 ME		PLO	ELEV.	BER	ш	/0.3n			60 8	su 	1		0 [™] 1 I		U~ I	TEST	OR STANDPIPE
	ΞΨ	RING	DESCRIPTION	RATA	DEPTH	IUME	₽	SWC	Cu, kPa	NGTH	nat v. + rem V. ⊕	U - O				PERCE	N I W/I	ADDI AB.	INSTALLATION
6	ב	BO		STR	(m)	z		BLO	20	40	60 8	30	1	0 2	10 3	30 4	40	L_1	
	10		CONTINUED FROM PREVIOUS PAGE																
F	10	er	(SM) SILTY SAND, fine; grey;																-
F		r Aug uger	hon-conesive, wet, dense to very dense																-
F		Powe em A																	-
E		ount l																	-
E	11	"Holl				11	ро	5							0				
E		Tra 8			0.40.00			-											-
E			End of Borehole	-41.	11.28														-
E			NOTE:																
E			1. Groundwater level measured at a																-
E	12		depth of 2.4 m in open borehole upon																-
F			2. Groundwater level measured at a																-
F			depth of 2.5 m on August 15, 2016.																-
F																			-
F																			-
F	13																		
F																			-
F																			
F																			-
F																			-
F	14																		-
F																			-
STB																			-
-16																			-
2-6	15																		-
100	13																		-
- ISI																			-
- I																			-
2-																			-
<u>ъ</u> -	16																		-
000-																			-
- BG																			-
1 1																			-
1152																			-
LN -	17																		
TAK																			-
																			-
E/02																			-
ARR -																			
1 <u>B</u>	18																		
NAL																			-
G																			-
Ă																			-
ξĿ	19																		
ź- ⊤'-																			-
ATC!																			-
HS L																			-
ENT																			-
<u>j</u> Ľ	20																		-
S S																			
15 OC	_									ŝ.									
ΑBΗ	DE	PTH S	SCALE								Golde	er						LC	DGGED: SP
GT/	1:	50							V	ZAS	socia	ates						CH	ECKED: NL

SP	ראד	CPT HAMMER MASS 64kg DROP 760m	m												
01	g	SOIL PROFILE			SA	MPLE	DYN PES	AMIC PE			HYDRAUL		г <u>ч,</u> т	(1)	
METRES	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	SHE Cu, H	20 AR STRE	40 60 NGTH nat V rem \	80 . + Q - ● . ⊕ U - C	10 ⁶ WATI Wp H	10 ⁻⁵ 10 ⁻⁴ ER CONTENT PEI		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE	0,	255.50				20	40 60	80	10	20 30	40		
1		ASPHALT FILL-(GW/SW) SAND and GRAVEL; brown; non-cohesive, moist to wet, very loose to compact		0.00	2	DO -	8				0			Metals	Concrete Casing
2					3	DO	5				0				Bentonite
3					4 5A	DO	2				0	0		Metals	Uly 14, 2016 July 14, 2016 #1 Silica Sand
4	ack Mount Power Auger	CL) SILTY CLAY; grey to black, trace organics; cohesive, w>PL (SM) SILTY SAND to SILT and SAND, trace gravel, some clay; grey, (TILL); non-cohesive, wet, dense to very dense		251.99 3.51 250.93 4.57	5B 6	DO :	6				q	0		МН	10 Slot PVC Screen
6	Ĕ	~	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		7	DO :	0				0				
7					8	DO 4	0				0				
9		End of Borehole Auger Refusal on Inferred Boulder NOTE: 1. Groundwater level measured at a	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	246.23 9.27	9	DO 1	0/ 27 m				0				
10		CONTINUED NEXT PAGE		†			-	†	+-		† -	-+	-+		

F	ROJE	CT: 1525357-BG-0001		REC	OF	RD	C)F B	ORE	EHO	LE:	Bŀ	116-0)6				Sł	HEET 2 OF 2
	UCAN					E	BOR	ING DA	TE: Ju	ne 9, 20	16							DA	ATUM: Geodetic
5	PT/DC	PT HAMMER: MASS, 64kg; DROP, 760mm			—														
Π Ω	НОР	SOIL PROFILE			SA	MPL	ES	DYNAI RESIS	MIC PEN TANCE,	BLOWS	0N 10.3m	Ì,	HYDR	AULIC CO k, cm/s	ONDUCT	'IVITY,	T	RGAL	PIEZOMETER
H SC/	U MEL		PLO7	ELEV.	BER	щ	/0.3m				0 8		10) ⁻⁵ 1(0 ⁻³ <u> </u>	TESTI	OR STANDPIPE
DEPT	ORING	DESCRIPTION	RATA	DEPTH (m)	NUME	ΤΥF	LOWS	Cu, kP	'a	r	em V.⊕	Ũ- Ŏ	Wr				WI	ADD LAB.	INSTALLATION
	<u> </u>		ST	(,	┝	<u> </u>	B	2	<u>20 4</u>	10 €	8 0	0	1	0 2	0 3	0 4	0		
- 1	0	depth of 5.1 m in open borehole upon	 		\vdash	\vdash		<u> </u>											
Ē		2. Groundwater level measured at a	ĺ																-
Ē			ĺ																-
F.			ĺ																
Ē	1		ĺ																-
Ē			ĺ																
E			ĺ																
- 1	2		ĺ																
E			ĺ																-
Ē			ĺ																
F			ĺ																-
- 1	3		ĺ																
Ē			ĺ																
Ē			ĺ																
F,			ĺ																-
E'	4		ĺ																
			ĺ																
<u>-</u>			ĺ																
<u>-</u> 1	5		ĺ																
בר - פ - ס			ĺ																-
			ĺ																
			ĺ																
- 1 8-	6		ĺ																
2- - -			ĺ																-
			ĺ																
	-		ĺ																-
	/		ĺ																-
5-			ĺ																
			ĺ																
	8		ĺ																
			ĺ																-
			ĺ																
[- -			ĺ																-
5 — 1 ≥ -	9		ĺ																
			ĺ																-
			ĺ																-
			ĺ																
2 2 0 -	0																		-
)EPTH	SCALE		1					Ĝ	Š	olde	r	I	1		1	1	LC CH	JGGED: SP

RECORD OF BOREHOLE: BH16-07

SHEET 1 OF 2

BORING DATE: June 10, 2016

DATUM: Geodetic

щ	DD	3	SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRA RESISTANCE, BLO	ATION Y WS/0.3m L	HYDR	AULIC C	ONDUCT	IVITY, -	. رم	
ETRES	G METH		DECODISTICU	A PLOT	ELEV.	BER	щ	3/0.3m	20 40	60 80	1	0 ⁻⁶ 1	0 ⁻⁵ 10 I) ⁻⁴ 10 ⁻³		PIEZOMETER OR STANDPIPE
DEPT	BORING		DESCRIPTION	STRATA	DEPTH (m)	NUME	TYF	BLOWS	Cu, kPa	rem V. \oplus U - O	W				ADD.	INSTALLATION
- 0			GROUND SURFACE		267.40				20 40					40		
Ū			FILL-(SW/GW) SAND and GRAVEL; brown; non-cohesive, moist, loose to compact		0.00	1	DO	29			0					Concrete Casing
1			some silt from 1.5 to 2.3 mbgs			2	DO	9			0				Metals	
. 2		-	(SM) SILTY SAND, some clay; brown, (TILL); non-cohesive, moist to wet,		264.96	4	DO	27			0				МН	Bentonite
• 3			compact to very dense	<u> </u>		5	DO	69/ 279 mm			0					#1 Silica Sand
4	Auger	Jer		<u> </u>		6	DO	31			С					10 Slot PVC Screen
5	Track Mount Power	8" Hollow Stem Aug		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		7	DO	35				D				July 14, 2016
6 7				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		8	DO	54				0				
8		-	(SM) SILTY SAND; brown; non-cohesive, wet, dense to very dense		260.08 7.32	9	DO	44				0				
9			End of Borebolc		257.65	10	DO	51								
10		_		┨─┤	9.70 - <u> </u>			-		-+			+	+	_	
DE	PTH	-ls	CALE			I			Ø	Golder	<u> </u>	<u> </u>	<u> </u>	I	L CH	I OGGED: SP IECKED: NL

RECORD OF BOREHOLE: BH16-07

BORING DATE: June 10, 2016

SHEET 2 OF 2

DATUM: Geodetic

ŀ	щ	Q	SOIL PROFILE			SAMF	PLES	DYNAM	IIC PEN	ETRATIO	DN /0.3m	ì	HYDR/	AULIC CO	ONDUCT	TIVITY,	Т	, (7	
	SCAL	METH		LOT		с	.3m	2) 4	0 6	i0 8	i0 `	1	0 ⁻⁶ 1() ⁻⁵ 1	0 ⁻⁴ 10	0-3 ⊥	IONAL STIN(PIEZOMETER OR
	EPTH	RING	DESCRIPTION		V. TH	JMBE TYPE	MS/0	SHEAR Cu, kPa	STREN	GTH r	iat V. + em V. ⊕	Q - ● U - O	W	ATER CO		PERCE	NT	AB. TE	STANDPIPE
	DE	BOF		u) STR/	I)	ž	BLO	20) 4	06	6 0	0	W 1	0 2	0" 0 3	30 4	WI Ю	ΓA	
	- 10		CONTINUED FROM PREVIOUS PAGE																
	-		NOTE:																-
	-		depth of 3.6 m in open borehole upon																-
	-		2. Groundwater level measured at a																-
	- - 11																		-
	-																		-
	-																		-
	-																		-
	- 12																		-
	-																		-
	-																		-
	-																		-
	- 13																		-
	-																		-
	-																		-
	-																		-
	- 14 - 14																		-
	-																		
STB	-																		-
-7-16	-																		-
DT 9	- 15 -																		-
AIS.G	-																		-
3AL-N	-																		-
PJ (-																		-
001.0	— 16 -																		
BG-0	-																		-
5357-	-																		-
TN152	-																		-
//GIN	- 17																		
DATA	-																		
E/02	-																		-
ARRII	-																		-
LD/B.	- 18 - -																		-
ANOC	-																		-
MACL	-																		-
Ę	- 10																		-
ĭ ĭ	- 19																		-
HATC	-																		-
NTS/	-																		-
CLE	- - 20																		
11 S:\																			
HS 00		ртн с							Å									10	
TA-B	1:	50							Ø		folde	er ates						СН	ECKED: NL
С										- 110	000010							5.1	=

RECORD OF BOREHOLE: BH16-08

SHEET 1 OF 2

BORING DATE: June 8, 2016

DATUM: Geodetic

ш		3	SOIL PROFILE			SA	MPL	ES			F	IYDRA		ONDUCT	FIVITY,	Т	0	
SCALI	15THC			LOT		2		3m	20 40	60 80	·	10	rk, cm/3) ⁻⁵ 1	0-4 1	o-₃ ⊥	ONAL	PIEZOMETER OR
METE	UND		DESCRIPTION	TA PI	ELEV.	IMBE	ΓYPE	NS/0.	SHEAR STRENGTH	nat V. + Q - rem V.⊕ U -		w	ATER CO		PERCE	NT	DDITI B. TE	STANDPIPE INSTALLATION
DE	aCa	Ś		STRA	(m)	R	Γ	BLO	20 40	60 80	Ĭ	Wp	1 – 2	<u> </u>	30 4	WI 10	LAI	
0			GROUND SURFACE		267.30								0 2					
. 0				8	0.00													
			brown, asphalt pieces; non-cohesive,	\bigotimes		1	DO	38			C	>						
					X													
					8													
• 1					<pre></pre>	2	DO	12			0							
				\otimes)													
					Š	3	DO	13				0					Metals	
2				\otimes	8													
			(SM) SILTY SAND, trace gravel; brown,	XX	265.01													
			compact to very dense	4 4 4		4	DO	18				0						
- 3																		
				4 2 2		5	DO	22					0					
4					:	6	DO	35				0						
					· ·													
	r Auge	uger		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4														
5	t Powe	Stem A				7	DO	73				0					MH	
5	Moun	ollow 3		1.2 N														
	Track	8		2 A 4														
				4.4														
6				4.2.4														
					r													
					d C	8	DO	47					0					
				4 × 4	d C													
7				8 . E	d C													
					C													
					.1 													
8						9	DO	53					0					
9				4 <u>7</u> 4 2 4														
				4 4 4														
						10	DO	38					0					
10	_	-			+	┣		-	┣━┽━━┝-	-+	- + -					+		
			CONTINUED NEXT PAGE															
DE	PTI	чs	CALE							Cald							LC	OGGED: SP
1:	50									Associate	5						СН	ECKED: NL

PROJECT:	1525357-BG-0001
LOCATION:	See Figure 1

RECORD OF BOREHOLE: BH16-08

SHEET 2 OF 2

BORING DATE: June 8, 2016

DATUM: Geodetic

ľ	щ	QD	SOIL PROFILE			SAN	/PLES	S C	OYNAN RESIST	IIC PEN	IETRATI BLOWS	DN /0.3m	$\sum_{i=1}^{n}$	HYDR/	AULIC C	ONDUCT	IVITY,	T	.0	
	SCAL	METH		гот		к	2	10.	20) 4	40	50 E	10	1	0 ⁻⁶ 1) ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³ ⊥	IONAL	PIEZOMETER OR
	EPTH	SING	DESCRIPTION	ATA P	ELEV. DEPTH	JMBE	TYPE		SHEAR Cu, kPa	STRE	IGTH	nat V. + em V. ⊕	Q - ● U - O	W	ATER C		PERCE	NT	AB. TE	INSTALLATION
	B	BOF		STR/	(m)	ž	· [20) 4	10 (30 E	80	W 1	o 2	 0 3	i0 4	WI 10	₹ A	
	- 10		CONTINUED FROM PREVIOUS PAGE							-										
	-	lger r	(SM) SILTY SAND, trace gravel; brown, (TILL); non-cohesive, moist to wet,																	-
ŀ	-	ver Au Auge	compact to very dense																	-
		unt Por v Sterr			-															-
ł		K Mou Hollov		4 A				~												-
Ē	- 11 -	Trac 8"			050.00			0												-
			End of Borehole		11.28															-
ŀ			NOTE:																	-
			1. Groundwater level measured at a																	-
ł	- 12 -		completion of drilling June 9, 2016.																	-
Ī																				-
																				-
ŀ	-																			-
F	- 13																			
ŀ																				-
Ē	-																			-
	-																			-
Ē	- - 14																			-
																				-
STB	-																			-
-16																				-
T 9-7	- 15																			-
GD.																				-
L-MIS																				-
Ъ																				-
ЧЭ.	16																			-
-000																				-
7-BG																				-
2535																				-
1T/15																				-
A/GIN	- 1/																			
DAT,																				-
02	-																			-
RRIE																				-
D/B/	— 18 -																			
ONAL	-																			-
ACD	-																			
Ž																				
БМ	— 19																			
Ъ																				-
S/HA:																				-
ENT																				-
S:/CLI	- 20																			-
50																				
BHS (DE	PTH S	SCALE									11							LC	DGGED: SP
GTA-	1:	50								V	Z As	7010E SOCI8	:r ates						СН	ECKED: NL

RECORD OF BOREHOLE: BH16-09

DATUM: Geodetic

BORING DATE: June 14, 2016

	DOH-	SOIL PROFILE	L		SA	MPL	ES	RESISTANCE, BLOWS/0.3m	k, cm/s	R ^R F	PIEZOMETER
AETRES	NG MET	DESCRIPTION	LOJA A.	ELEV.	ABER	ΡE	'S/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ●	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ I I I I WATER CONTENT PERCENT		
2	BORIN		STRAT.	DEPTH (m)	NUN	È	BLOW	Cu, kPa rem V. ⊕ U - Ō		ADI. LAB.	INSTALLATION
_		GROUND SURFACE	0,	260.60							
		ASPHALT FILL-(GW/SW) SAND and GRAVEL; brown; non-cohesive, moist, loose to dense		0.00	1	DO	35		0	Metals	Concrete Casing
1		FILL-(CL) SILTY CLAY, trace sand; brown to black; cohesive, w~PL, firm		259.53 1.07	2A 2B	DO	5		φ		#1 Silica Sand
2		FILL-(SW/ML) SILT and SAND, trace gravel; brown; non-cohesive, moist, loose		1.52	3	DO	6		φ		10 Slot PVC Screen
-		trace organics at 2.2 to 2.3 mbgs		257.96	4A		7		0		
3		(SM) SILTY SAND; brown; non-cohesive, wet, loose to dense		2.64	4B	DO	/		0		
					5	DO	9		0		July 14, 2016
4					6	DO	15		0		
	Power Auger tem Auger				7	DO	19		0	мн	
5	Track Mount 8" Hollow St										
-					8	DO	30		o		
8		increasing fines content with depth			9	DO	39		0		
9											
		(SM) SILT and SAND; grey; non-cohesive, wet, compact to dense		<u>251.46</u> 9.14	10	DO	38		φ	м	
	_ L	F	-1-1-1-	1	┣-	\vdash –	—	+	╉━━┝━┽━━┝━┼━	-	

SHEET 1 OF 2

RECORD OF BOREHOLE: BH16-09

SHEET 2 OF 2

BORING DATE: June 14, 2016

DATUM: Geodetic

ŀ		6		SOIL PROFILE			SAI	MPL	ES	DYNAMIC PE		ON /0.3m	>	HYDR/		ONDUCT	TIVITY,	T	(1)	
	SCALE		Ĕ		OT .		~		Зm	20	40 6	50.511 50 8	io ``	1	0 ⁻⁶ 1	0 ⁻⁵ 1	0-4 10	₀-₃ ⊥	STING	PIEZOMETER OR
	AETR 0	U U	≦ כ	DESCRIPTION	A PL	ELEV.	ABEF	ſΡΕ	/S/0.3	SHEAR STRE	NGTH r	nat V. +	Q - ●	w	ATER C	ONTENT	PERCE	NT	DITIO	STANDPIPE
					TRAT	DEPTH (m)	NUN	F	RON	Cu, kPa	r	rem V. ⊕	U - O	w	⊳ ——	0		WI	AD	INO INCEDITION
			-		ς,				ш	20	40 6	50 E	0	1	0 2	20 3	80 4	0		
F	- 10		\square	(SM) SILT and SAND; grey;																-
F		Auge	lger	non-cohesive, wet, compact to dense																-
þ		ower	am Au																	-
F		ount F	ow Ste																	-
E	_ 11	ick M	Hollo				11	DO	29							6				-
F		Tra	°			240 32		-								[-
F				End of Borehole	· 6-1 -	11.28														-
F				NOTE:																-
E				1. Groundwater level measured at a																-
E	- 12			depth of 2.8 m in open borehole upon completion of drilling June 14, 2016.																
F				2. Groundwater level measured at a depth of 3.1 m on July 14, 2016.																-
F				,																-
F																				-
E	- 13																			-
þ	10																			-
F																				-
F																				-
E																				-
F	- 14																			-
F																				-
STB																				-
-16																				-
L-9-7	- 15																			-
Ъ.																				-
																				-
B																				-
GPJ																				-
<u>5</u>	- 16																			-
Ч. В																				-
357-																				-
152																				-
Ë	- 17																			
ĭ₹																				-
Z L																				-
ЮЩ.																				-
ARR	- 10																			-
	10																			-
AN PAR																				-
₽ F																				-
Ĕ																				-
§Ē	- 19																			
라																				-
HAT																				-
STS																				-
۳Ê	- 20																			-
,	20																			
1S 00											Ś									
-A-BF	DE ,	PTI	нS	CALE								Folde	r						L	DGGED: SP
5	1:	50								N	Z As	SOCÍ	ates						CH	ECKED: NL

RECORD OF BOREHOLE: BH16-10

SHEET 1 OF 2

BORING DATE: June 14, 2016

DATUM: Geodetic

щ		ДŎ	SOIL PROFILE			SA	MPL	.ES	DYNAMIC PENETRA RESISTANCE, BLOV	TION /S/0.3m		HYDR	AULIC Co k, cm/s	ONDUCT	IVITY,	Т	٥	
I SCAL	IRES	METH.				R		J.3m	20 40	60 80	ì	10) ⁻⁶ 1	D ⁻⁵ 1(D ⁻⁴ 10) ⁻³ ⊥	ESTIN	PIEZOMETER OR STANDPIPE
EPTH	MET	RING	DESCRIPTION	RATA F	DEPTH	IUMBE	ТҮРЕ	O/S//O	SHEAR STRENGTH Cu, kPa	nat V. + Q rem V. ⊕ U	2-● 1-0	W			PERCEN		ADDIT AB. TI	INSTALLATION
		BO		STR	(m)	z		BLO	20 40	60 80		1	0 2	0 3	0 4	0		
F	0		GROUND SURFACE		260.00 0.00	1	DO											
E																		
Ē					259.35													
F			FILL-(SW/GW) SAND and GRAVEL; brown; non-cohesive, moist, very dense		0.65													
F	1		to loose		×	2	DO	56				0					Metals	-
Ē																		
Ē			topsoil mixed from 1.5 to 2.2 mbgs		*													
-						3	DO	12				0						
-	2																	-
E					è.													
F						4	DO	6				0						
Ē	3				256.95													-
F	Ű		FILL-(ML) CLAYEY SILT and SAND, trace gravel; brown; cohesive, w>PL,		3.05													
E			firm		2 2	5	DO	5				0						
Ē					256.19													
F	4		(SM) SILTY SAND, trace to some gravel, some clay; brown to grey, (TILL);		3.81													-
E			non-cohesive, moist to wet, compact to very dense	a a a a		6	DO	10				()					
		- Ider	-]													
2 -		m Auge	Auge			7	DO	11					0				мн	
	5	ount Po				Ĺ	DO						0					-
2		ack Me																
-					;													
5-				4 4 4 4 4														
-	6																	-
-						8	DO	27					0					
-					}													
-	7																	_
-	<i>`</i>																	
					i I													
-					i	9	DO	84/ 292				C	b					
Ē	8			42]	H		mm										-
-					!													
-					!													
	9				250.86													-
-			(SM) SILTY SAND; grey; non-cohesive, wet, very dense		9.14													
]	10	DO	60						0				
Ē																		
-	10	_ L		1412	1	╞┤		-	ert - + ert -	+	· — 🕇							
2	DEF	тΗ	SCALE						Â	Golder							LC	DGGED: SP
	1:5	50								ssociat	es						СН	ECKED: NL

PROJECT:	1525357-BG-0001
LOCATION:	See Figure 1

RECORD OF BOREHOLE: BH16-10

SHEET 2 OF 2

BORING DATE: June 14, 2016

DATUM: Geodetic

	ш	QO	SOIL PROFILE		s	AMPL	.ES	DYNAMIC PEN RESISTANCE)N 0.3m	$\sum_{i=1}^{n}$	HYDRA	AULIC C	ONDUC	TIVITY,	Т	.0	
	SCAL	METH		PLOT	2		.3m	20	40 6	0 8	o ``	10) ⁻⁶ 1	0 ⁻⁵ 1	0 ⁻⁴ 1	0-3 ⊥	IONAL	PIEZOMETER OR
	EPTH MET	RING	DESCRIPTION			TYPE	0/S/VC	SHEAR STRE Cu, kPa	NGTH r	at V. + em V. ⊕	Q - ● U - O	W.	ATER C		PERCE	NT	ABDIT AB. TE	INSTALLATION
	D	BOF		(m) Ž		BLC	20	<u>40 6</u>	0 8	0	Wp 1	0 2	20 3	30 4	0	4]	
	- 10		CONTINUED FROM PREVIOUS PAGE	.ra														
		uger Ier	wet, very dense															-
		ower A m Aug																-
ŀ		ount Province																-
	- - 11	ack M 3" Holk			11	DO	49							6				-
ŀ	-	F ~		248	.72													-
			End of Borehole	11	.28													-
ŀ			NOTE:															-
	12		1. Groundwater level measured at a depth of 4.8 m in open borehole upon															-
ŀ	-		completion of arilling June 14, 2016.															-
F																		-
ł	-																	
ŀ	13																	-
ŀ																		
ł																		
Ē	-																	-
ŀ	- 14																	-
																		-
STB	-																	-
7-16	-																	-
Т 9-1	- 15																	-
IS.GD	-																	-
AL-M																		-
ڻ ص																		-
01.G	- 16																	
9-0 0-0	-																	-
357-E																		-
1525																		-
LNID	- 17 - 17																	
ATA	-																	-
02																		-
RRE	-																	-
D\BAI	— 18																	
NALI																		-
ÅCDC																		-
ź	-																	
БМ М	— 19 -																	
TCH	-																	
S\HA	-																	-
LEN L	-																	-
s:/CI	- 20																	-
S 001		L							l É									l
A-BH:	DE	PTH S	SCALE							olde	r						LC	DGGED: SP
ťΒ	1:	50						<u> </u>	As	socia	ites						CH	ECKED: NL

PRELIMINARY GEOTECHNICAL INVESTIGATION HEWITT'S SECONDARY PLAN EA, CITY OF BARRIE, ONTARIO

APPENDIX B

Laboratory Test Results

Project Number: 1525357	Golder Associates	Date [:] 11-Aug-16

BH16-4

8

6.10 - 6.71

0

GRAIN SIZE DISTRIBUTION GRAVELLY SILTY SAND TILL

FIGURE B3

SILTY SAND to SILT and SAND

FIGURE B4

SYMBOL	BOREHOLE	SAMPLE	DEPTH(m)
•	BH16-5	10	9.14 - 9.75
•	BH16-9	10	9.14 - 9.75
♦	BH16-9	7	4.57 - 5.18

Project Number: 1525357

Checked By: _

Golder Associates

PRELIMINARY GEOTECHNICAL INVESTIGATION HEWITT'S SECONDARY PLAN EA, CITY OF BARRIE, ONTARIO

APPENDIX C

Analytical Laboratory Results

CLIENT NAME: GOLDER ASSOCIATES LTD. 121 COMMERCE PARK DRIVE, UNIT L BARRIE, ON L4N8X1 (705) 722-4492

ATTENTION TO: Nick LaPosta

PROJECT: Mapleview and Lockhart

AGAT WORK ORDER: 16T113658

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

DATE REPORTED: Jul 19, 2016

PAGES (INCLUDING COVER): 6

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 6

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 16T113658 **PROJECT: Mapleview and Lockhart**

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:

ATTENTION TO: Nick LaPosta

SAMPLED BY:

			Ο.	Reg. 153(511) - Metal	s & Inorgan	ics (Soil)				
DATE RECEIVED: 2016-07-08									DATE REPORT	ED: 2016-07-19)
December		SAMPLE DES SAM DATE	CRIPTION: PLE TYPE: SAMPLED:	BH16-1 SA3 Soil 6/9/2016	BH16-2 SA2 Soil 6/13/2016	BH16-3 SA2 Soil 6/13/2016	BH16-4 SA3 Soil 6/10/2016	BH16-5 SA3 Soil 6/9/2016	BH16-6 SA2 Soil 6/9/2016	BH16-8 SA3 Soil 6/9/2016	BH16-10 SA2 Soil 6/14/2016
Parameter		G/S		7690894	7690897	7690898	7690899	7690900	7690901	7690902	7690903
Arsonic	µg/g	1.5	1	1	<0.0	<0.0	1	<0.0	<0.0	1	<0.0
Barium	µg/g	220	2	37	26	38	40	26	27	43	21
Beryllium	P9/9	25	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron	µ9/9	36	5	<5	<5	<5	<5	<5	<5	<5	<5
Boron (Hot Water Soluble)	µg/g	NA	0.10	0.59	0.15	<0.10	0.16	<0.10	<0.10	<0.10	<0.10
Cadmium	ua/a	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	ha/a	70	2	10	9	10	12	10	8	11	8
Cobalt	µg/g	21	0.5	2.3	2.6	3.3	4.1	2.9	2.9	4.0	2.4
Copper	µg/g	92	1	4	5	7	7	6	5	7	7
Lead	µg/g	120	1	5	5	4	5	7	3	3	3
Molybdenum	µg/g	2	0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	0.5
Nickel	µg/g	82	1	4	5	6	7	6	5	7	4
Selenium	µg/g	1.5	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Silver	µg/g	0.5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Uranium	µg/g	2.5	0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
Vanadium	µg/g	86	1	17	18	19	21	21	19	20	15
Zinc	µg/g	290	5	23	17	18	27	18	16	20	16
Chromium VI	µg/g	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide	µg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Mercury	µg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity	mS/cm	0.57	0.005	4.11	0.282	0.629	1.04	0.539	1.33	2.85	0.388
Sodium Adsorption Ratio	NA	2.4	NA	24.1	3.61	6.39	19.1	7.14	22.0	35.0	7.86
pH, 2:1 CaCl2 Extraction	pH Units		NA	6.92	7.63	7.73	7.78	7.79	7.99	7.90	7.98

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 1: Full Depth Background Site Condition Standards - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

7690894-7690903 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. Please note that samples were received and analyzed past hold time for Cyanide analysis.

Certified By:

Amanjot Bhela

Guideline Violation

AGAT WORK ORDER: 16T113658 PROJECT: Mapleview and Lockhart 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Nick LaPosta

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	GUIDEVALUE	RESULT
7690894	BH16-1 SA3	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	0.57	4.11
7690894	BH16-1 SA3	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	24.1
7690897	BH16-2 SA2	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	3.61
7690898	BH16-3 SA2	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	0.57	0.629
7690898	BH16-3 SA2	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	6.39
7690899	BH16-4 SA3	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	0.57	1.04
7690899	BH16-4 SA3	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	19.1
7690900	BH16-5 SA3	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	7.14
7690901	BH16-6 SA2	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	0.57	1.33
7690901	BH16-6 SA2	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	22.0
7690902	BH16-8 SA3	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity	0.57	2.85
7690902	BH16-8 SA3	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	35.0
7690903	BH16-10 SA2	ON T1 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio	2.4	7.86

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: Mapleview and Lockhart

SAMPLING SITE:

AGAT WORK ORDER: 16T113658

ATTENTION TO: Nick LaPosta

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date: Jul 19, 2016			C	UPLICATE	Ξ		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Ind	organics (Soil)													
Antimony	7690894	7690894	<0.8	<0.8	NA	< 0.8	118%	70%	130%	101%	80%	120%	104%	70%	130%
Arsenic	7690894	7690894	1	1	NA	< 1	101%	70%	130%	96%	80%	120%	91%	70%	130%
Barium	7690894	7690894	37	35	5.6%	< 2	97%	70%	130%	94%	80%	120%	97%	70%	130%
Beryllium	7690894	7690894	<0.5	<0.5	NA	< 0.5	114%	70%	130%	114%	80%	120%	101%	70%	130%
Boron	7690894	7690894	<5	<5	NA	< 5	75%	70%	130%	105%	80%	120%	86%	70%	130%
Boron (Hot Water Soluble)	7690894	7690894	0.59	0.63	6.6%	< 0.10	98%	60%	140%	100%	70%	130%	103%	60%	140%
Cadmium	7690894	7690894	<0.5	<0.5	NA	< 0.5	98%	70%	130%	102%	80%	120%	113%	70%	130%
Chromium	7690894	7690894	10	11	9.5%	< 2	94%	70%	130%	114%	80%	120%	101%	70%	130%
Cobalt	7690894	7690894	2.3	2.5	NA	< 0.5	100%	70%	130%	109%	80%	120%	96%	70%	130%
Copper	7690894	7690894	4	4	NA	< 1	98%	70%	130%	110%	80%	120%	91%	70%	130%
Lead	7690894	7690894	5	5	0.0%	< 1	98%	70%	130%	105%	80%	120%	108%	70%	130%
Molybdenum	7690894	7690894	<0.5	<0.5	NA	< 0.5	105%	70%	130%	100%	80%	120%	106%	70%	130%
Nickel	7690894	7690894	4	4	NA	< 1	95%	70%	130%	101%	80%	120%	92%	70%	130%
Selenium	7690894	7690894	<0.4	<0.4	NA	< 0.4	99%	70%	130%	98%	80%	120%	99%	70%	130%
Silver	7690894	7690894	<0.2	<0.2	NA	< 0.2	98%	70%	130%	110%	80%	120%	103%	70%	130%
Thallium	7690894	7690894	<0.4	<0.4	NA	< 0.4	112%	70%	130%	94%	80%	120%	90%	70%	130%
Uranium	7690894	7690894	<0.5	<0.5	NA	< 0.5	107%	70%	130%	106%	80%	120%	111%	70%	130%
Vanadium	7690894	7690894	17	17	0.0%	< 1	91%	70%	130%	106%	80%	120%	89%	70%	130%
Zinc	7690894	7690894	23	23	NA	< 5	103%	70%	130%	108%	80%	120%	102%	70%	130%
Chromium VI	7691550		<0.2	<0.2	NA	< 0.2	92%	70%	130%	90%	80%	120%	90%	70%	130%
Cyanide	7688523		<0.040	<0.040	NA	< 0.040	107%	70%	130%	103%	80%	120%	92%	70%	130%
Mercury	7690894	7690894	<0.10	<0.10	NA	< 0.10	106%	70%	130%	93%	80%	120%	93%	70%	130%
Electrical Conductivity	7690894	7690894	4.11	4.11	0.0%	< 0.005	99%	90%	110%	NA			NA		
Sodium Adsorption Ratio	7690894	7690894	24.1	24.8	2.9%	NA	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	7690898	7690898	7.73	7.72	0.1%	NA	100%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Amanjot Bhela

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 4 of 6

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: Mapleview and Lockhart

AGAT WORK ORDER: 16T113658

ATTENTION TO: Nick LaPosta

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	L	1	
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6029	SM 3500 B; MSA Part 3, Ch. 25	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010B	ICP/OES
pH. 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER

AT) Required: 5 to 7 Business Days pw 2 Business Days Carbon for rush veekends and statutory rior notification for rush veekends and statutory Pageof

-

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Asia

+ 27 11 254 4800

+ 86 21 6258 5522

+ 61 3 8862 3500 + 44 1628 851851

North America + 1 800 275 3281

South America + 56 2 2616 2000

Golder Associates Ltd. 121 Commerce Park Drive, Unit L Barrie, Ontario, L4N 8X1 Canada T: +1 (705) 722 4492

